/**
** Simple entropy harvester based upon the havege RNG
**
** Copyright 2018-2022 Jirka Hladky hladky DOT jiri AT gmail DOT com
** Copyright 2012-2014 Gary Wuertz gary@issiweb.com
** Copyright 2012 BenEleventh Consulting manolson@beneleventh.com
**
** This program is free software: you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation, either version 3 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program. If not, see .
*/
/**
* This compile unit implements online tests for haveged through the public functions tests*.
* Online tests are run directly against the contents of the collection buffer immediately after
* a buffer fill. Because collection buffer size does not have any direct relationship with
* the data requirements of the individual tests, all tests implement a state machine to
* handle segmented input.
*
* Note code directly related to the havege interface has been moved to a conditional
* in that unit for easier maintainability.
*/
#include "config.h"
#include
#include
#include
#include "havegetest.h"
#ifdef ONLINE_TESTS_ENABLE
/**
* Final value for aisSeq() when no transition found. Originally, Initially this used
* INFINITY from but definition is undefined some gcc versions - foo!
*/
#define NO_TRANSITION 999999
/**
* This structure is used only to pack the test structures into a single memory allocation.
* This is necessary because some architectures have stringent alignment requirements that
* cannot be met unless (compiler generated) padding is included. On mips in particular
* double must be dword aligned or bus errors result.
*/
typedef struct {
onlineTests olt;
procA pa;
procB pb;
} testsMemory;
/**
* The tests and supporting methods
*/
static H_UINT aisProcedureA(H_COLLECT *h_ctxt, procShared *tps,
procA *context, H_UINT *buffer, H_UINT sz, H_UINT offs, H_UINT prod);
static H_UINT aisProcedureB(H_COLLECT *h_ctxt, procShared *tps,
procB *context, H_UINT *buffer, H_UINT sz, H_UINT offs, H_UINT prod);
static H_UINT aisSeq(procB *p, H_UINT offs, H_UINT id);
static H_UINT aisTest(H_COLLECT * h_ctxt, H_UINT prod, H_UINT *buffer, H_UINT sz);
static H_UINT copyBits(procA *p, H_UINT ct,H_UINT sz);
static H_UINT fips140(procShared *tps, procA *p, H_UINT offs, H_UINT id);
static H_UINT test0(procA *p, H_UINT offs, H_UINT id);
static int test0cmp(const void *aa, const void *bb);
static H_UINT test5(procA *p, H_UINT offs, H_UINT id);
static H_UINT test5XOR(H_UINT8 *src, H_UINT shift);
static H_UINT test6a(procB *p, H_UINT offs, H_UINT id);
static H_UINT test8(procShared *tps, procB *p, H_UINT offs, H_UINT id);
static int testsDiscard(H_COLLECT *rdr);
static void testsMute(H_COLLECT * h_ctxt, H_UINT action, H_UINT prod, H_UINT state, H_UINT ct);
static int testsRun(H_COLLECT *rdr, H_UINT prod);
/**
* The following suite of macros encapsulate the major bit operations of the test suite.
* The intention is to write simple rather than clever code and let the optimizer strut
* it's sutff. Note bit index starts with MSB for direct comparison with the test suit'e
* Java reference implementation.
*/
#define BITSTREAM_BIT() ((*bitstream_src)&bitstream_in)==0? 0 : 1
#define BITSTREAM_NEXT() {if (bitstream_in==1) {\
bitstream_src+=1;\
bitstream_in=0x80;\
}\
else bitstream_in>>=1;}
#define BITSTREAM_OPEN(a,b) H_UINT8 *bitstream_src=(H_UINT8 *)(a);\
H_UINT bitstream_in=0x80>>((b)%8);\
bitstream_src+=(b)/8
/**
* Setup shared resources for online tests by sorting the test options into "tot"
* and production groupings and allocating any resources used by the tests.
* Caller is responsible for initializing the procShared structure with the
* report, testsUsed, totTests[], runTests[], totText, and prodText fields.
*/
int havege_test( /* RETURN: nz on failure */
procShared *tps, /* IN-OUT: test anchor */
H_PARAMS *params) /* IN: app parameters */
{
H_UINT i;
tps->discard = testsDiscard;
if (0==tps->report)
tps->report = testsMute;
tps->run = testsRun;
tps->options = params->options;
if (0!=(tps->testsUsed & A_RUN)) {
H_UINT low[6] = {FIPS_RUNS_LOW};
H_UINT high[6] = {FIPS_RUNS_HIGH};
tps->procReps = 1 + (5 * AIS_A_REPS);
for (i=0;i<6;i++) {
tps->fips_low[i] = low[i];
tps->fips_high[i] = high[i];
}
}
if (0!=(tps->testsUsed & B_RUN)) {
tps->G = (double *) malloc((Q+K+1)*sizeof(double));
if (0 == tps->G)
return 1;
tps->G[1] = 0.0;
for(i=1; i<=(K+Q-1); i++)
tps->G[i+1]=tps->G[i]+1.0/i;
for(i=1; i<=(K+Q); i++)
tps->G[i] /= LN2;
}
return 0;
}
/**
* Check if the current buffer should be released if continuous testing is
* being performed. The buffer must be discarded if it contains an
* uncompleted retry or an uncompleted procedure with a failed test
* or a failed procedure.
*/
static int testsDiscard( /* RETURN: non-zero to discard */
H_COLLECT * h_ctxt) /* IN-OUT: collector context */
{
onlineTests *context = (onlineTests *) h_ctxt->havege_tests;
procShared *tps = TESTS_SHARED(h_ctxt);
procInst *p;
H_UINT i;
if (0==tps->testsUsed)
return 0;
if (context->result!=0)
return -1;
p = tps->runTests + context->runIdx;
switch(p->action) {
case A_RUN:
if (0 != context->pA->procRetry)
return 1;
for (i = 0;ipA->testRun;i++)
if (0 !=(context->pA->results[i].testResult & 1))
return 1;
break;
case B_RUN:
if (0 != context->pB->procRetry)
return 1;
for (i=0;ipB->testNbr;i++)
if (0!=(context->pB->results[i].testResult & 0xff))
return 1;
break;
}
return 0;
}
/**
* Place holder for when report is not configured
*/
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
static void testsMute(
H_COLLECT * h_ctxt, /* IN-OUT: collector context */
H_UINT action, /* IN: A_RUN or B_RUN */
H_UINT prod, /* IN: 0==tot, else continuous */
H_UINT state, /* IN: state variable */
H_UINT ct) /* IN: bytes consumed */
{
;
}
#pragma GCC diagnostic pop
/**
* The public wrapper that runs the tests. On the first call, the necessary machinery is built.
* The calls to aisTest() actually run the tests. The test shared structure is read only in this
* case, since testsRun could be called in a multi-threaded environment where an onlineTests
* structure is associated with each collection thread.
*/
static int testsRun( /* RETURN: nz if input needed */
H_COLLECT * h_ctxt, /* IN-OUT: collector context */
H_UINT prod) /* IN: nz if production else tot */
{
procShared *tps = TESTS_SHARED(h_ctxt);
onlineTests *context;
testsMemory *mem;
procB *pb;
if (0 ==(tps->testsUsed))
return 0;
if (0 == h_ctxt->havege_tests) {
H_UINT sz = sizeof(testsMemory);
if (0==(tps->testsUsed & A_RUN))
sz -= sizeof(procA);
if (0==(tps->testsUsed & B_RUN))
sz -= sizeof(procB);
mem = (testsMemory *) malloc(sz);
if (NULL==mem) {
h_ctxt->havege_err = H_NOTESTMEM;
return 1;
}
context = (onlineTests *) mem;
memset(context, 0, sizeof(onlineTests));
if (0!=(tps->testsUsed & A_RUN)) {
context->pA = &mem->pa;
context->pA->procState = TEST_INIT;
pb = &mem->pb;
}
else pb = (procB *)((void *) &mem->pa);
if (0!=(tps->testsUsed & B_RUN)) {
context->pB = pb;
context->pB->procState = TEST_INIT;
}
h_ctxt->havege_tests = context;
if (0 != (h_ctxt->havege_raw & H_DEBUG_TEST_IN))
return 0;
}
return aisTest(h_ctxt, prod, (H_UINT *)h_ctxt->havege_bigarray, h_ctxt->havege_szFill);
}
/**
* AIS-31 test procedure A. The test is initiated by setting procState to TEST_INIT and
* the test is performed by calling the procedure adding input until completion is indicated
* by a proc state of TEST_DONE. The first test requires 3145728 bits (393,216 bytes) and
* the remaining 5 tests are repeated on sucessive 2500 byte samples for 257 times.
*
* Exit states TEST_DONE, TEST_IGNORE, TEST_INPUT, TEST_RETRY
*
* An ideal RNG will pass this test with a probablilty of 0.9987. If there is a single failed
* test, the test will be repeated. An ideal RNG should almost never fail the retry. The goal
* of this procedure is to verify RNG output is statisically inconspicuous.
*/
static H_UINT aisProcedureA( /* RETURN: bits used */
H_COLLECT *h_ctxt, /* IN-OUT: collection instance */
procShared *tps, /* IN-OUT: shared data */
procA *p, /* IN: the context */
H_UINT *buffer, /* IN: the input */
H_UINT sz, /* IN: the input range */
H_UINT ct, /* IN: initial bit offset */
H_UINT prod) /* IN: production if nz */
{
onlineTests *context = TESTS_CONTEXT(h_ctxt);
H_UINT i, r;
switch(p->procState) {
case TEST_INIT:
p->bytesUsed = 0;
p->procRetry = 0;
/* fallthrough */
case TEST_RETRY:
p->procState = TEST_INPUT;
p->testState = TEST_INIT;
p->testId = p->testRun = 0;
/* fallthrough */
case TEST_INPUT:
p->data = (H_UINT8 *)buffer;
p->range = sz * sizeof(H_UINT) <<3;
while(p->testRun < tps->procReps) {
p->testId = p->testRun<6? p->testRun : (1+(p->testRun-6) % 5);
switch(p->testId) {
case 0:
ct = test0(p, ct, p->testRun);
break;
case 1: case 2: case 3: case 4:
ct = fips140(tps, p, ct, p->testRun);
break;
case 5:
ct = test5(p, ct, p->testRun);
break;
}
context->szCarry = ct;
if (p->testState == TEST_DONE)
p->testState = TEST_INPUT;
else if (p->testState == TEST_INPUT)
return 0;
}
/* fallthrough */
case TEST_EVAL:
p->procState = TEST_DONE;
for (r = i = 0;itestRun;i++)
r += p->results[i].testResult & 1;
if (0!=r) {
tps->meters[prod? H_OLT_PROD_A_F : H_OLT_TOT_A_F] += 1;
if (1==r && 0==p->procRetry) {
p->procRetry = 1;
p->procState = TEST_RETRY;
}
else if (0!=(p->options & A_WARN))
p->procState = TEST_IGNORE;
else {
context->result = A_RUN;
h_ctxt->havege_err = prod? H_NOTESTRUN : H_NOTESTTOT;
}
break;
}
else tps->meters[prod? H_OLT_PROD_A_P : H_OLT_TOT_A_P] += 1;
if (0!=(tps->options & (H_DEBUG_OLT|H_DEBUG_OLT))|| TEST_DONE != p->procState)
tps->report(h_ctxt, A_RUN, prod, p->procState, p->bytesUsed);
break;
}
return p->bytesUsed<<3;
}
/**
* AIS-31 test procedure B. The test is initiated by setting procState to TEST_INIT and
* the test is performed by calling the procedure adding input until completion is indicated
* by a proc state of TEST_DONE. Unlike procedure A, the number of input bits is not fixed
* but depends on the input.
*
* Exit states TEST_DONE, TEST_IGNORE, TEST_INPUT, TEST_RETRY
*
* The probability that an ideal RNG will pass this test is 0.9998. If a single test fails,
* the test is repeated. An ideal RNG should almost never fail the retry. The goal of this
* procedure is to ensure the entropy of the output is sufficiently large.
*/
static H_UINT aisProcedureB( /* RETURN: bits used */
H_COLLECT *h_ctxt, /* IN-OUT: collection instance */
procShared *tps, /* IN-OUT: shared data */
procB *p, /* IN: the context */
H_UINT *buffer, /* IN: the input */
H_UINT sz, /* IN: the input range */
H_UINT ct, /* IN: initial bit offset */
H_UINT prod) /* IN: production if nz */
{
onlineTests *context = TESTS_CONTEXT(h_ctxt);
H_UINT i, r;
switch(p->procState) {
case TEST_INIT:
p->bitsUsed = 0;
p->procRetry = 0;
/* fallthrough */
case TEST_RETRY:
p->testId = p->testNbr = 0;
p->procState = TEST_INPUT;
p->testState = TEST_INIT;
/* fallthrough */
case TEST_INPUT:
p->noise = buffer;
p->range = sz * BITS_PER_H_UINT;
i = p->testId;
while(p->testState != TEST_DONE && i < 5) {
p->seq = 1<testState == TEST_INPUT)
break;
p->testId = ++i;
p->testState = TEST_INIT;
}
context->szCarry = ct;
if (p->testState == TEST_INPUT)
return 0;
/* fallthrough */
case TEST_EVAL:
p->procState = TEST_DONE;
for (i=r=0;itestNbr;i++)
r += p->results[i].testResult & 1;
if (0!=r) {
tps->meters[prod? H_OLT_PROD_B_F : H_OLT_TOT_B_F] += 1;
if (1==r && 0==p->procRetry) {
p->procRetry = 1;
p->procState = TEST_RETRY;
}
else if (0!=(p->options & B_WARN))
p->procState = TEST_IGNORE;
else {
context->result = B_RUN;
h_ctxt->havege_err = prod? H_NOTESTRUN : H_NOTESTTOT;
}
}
else tps->meters[prod? H_OLT_PROD_B_P : H_OLT_TOT_B_P] += 1;
if (0!=(tps->options & H_DEBUG_OLT)|| TEST_DONE != p->procState)
tps->report(h_ctxt, B_RUN, prod, p->procState, p->bitsUsed/8);
break;
}
return p->bitsUsed;
}
/**
* Driver for disjoint sequence tests - steps 2,3,4 of AIS-31 procedure B (aka test6b, test7a, and test7b).
* Input tid is the width of the transition to be analyzed: tid=1 { 0x, 1x }, tid=2 {00x, 01x, 10x, 11x},
* tid=3 {000x, 001x, 010x, 011x, 100x, 101x, 110x, 111x}. The seq menber of procB gives # categories.
* For a tuple of width n, transition probabilities are calculated for log2(n) transitions for the first
* 100000 sequences. The deadman counter prevents total runaways with pathalogical input by counting
* interations that fail to update any counter. If the deadman value exceeds the limit, evaluation of
* the result forced. The probability of a forced evaluation is 10e-15.
*
* The macros below use fields in the procB structure to save/restore context when the input is
* segmented.
*/
#define RESTORE(a,b,c) a=p->bridge;b=p->lastpos[0];c=p->lastpos[1]
#define SAVE(a,b,c) p->bridge=a;p->lastpos[0]=b;p->lastpos[1]=c
static H_UINT aisSeq( /* RETURN: last bit index */
procB *p, /* IN-OUT: the context */
H_UINT offs, /* IN: starting bit offset */
H_UINT tid) /* IN: test id == #bits */
{
static const H_UINT seq_dead[5] = {0, 50, 120, 258, 0}; /* dead man limit */
static const H_UINT seq_mask[5] = {0, 3, 15, 255, 0}; /* full mask */
H_UINT i=0, c, deadman, r, s, j, hilf;
switch(p->testState) {
case TEST_INIT:
for(j=0;jseq;j++)
p->counter[j] = p->einsen[j] = 0;
p->full = 0;
p->testState = TEST_INPUT;
SAVE(0,0,0);
/* fallthrough */
case TEST_INPUT:
RESTORE(j, hilf, deadman);
offs %= p->range;
r = p->range - offs;
s = r % (tid+1);
r -= s;
{
BITSTREAM_OPEN(p->noise,offs);
while(ifull & (1< seq_dead[tid]) {
p->testState = TEST_DONE;
break;
}
}
else {
deadman = 0;
p->einsen[hilf] += c;
if ((p->counter[hilf]+=1)==AIS_LENGTH) {
p->full |= (1<full == seq_mask[tid]) {
p->testState = TEST_EVAL;
break;
}
}
}
j = hilf = 0;
}
if (p->testState==TEST_INPUT) {
for(j=hilf=0;jbitsUsed += i;
if (p->testState == TEST_INPUT)
break;
/* fallthrough */
case TEST_EVAL:
if (tid==1) {
double q[2];
if (p->testState == TEST_EVAL) {
for(j=0;j<2;j++)
q[j] = (double)(p->einsen[j]) / (double) AIS_LENGTH;
p->results[p->testNbr].finalValue = q[0] - q[1];
}
else p->results[p->testNbr].finalValue = NO_TRANSITION;
hilf = tid << 8;
if (p->results[p->testNbr].finalValue <= -0.02 || p->results[p->testNbr].finalValue >= 0.02)
hilf |= 1;
p->results[p->testNbr++].testResult = hilf;
}
else {
/**
* The spec is very confusing but the reference implementation is correct. The test
* operates on observed transions, i.e. the difference between pairs of successive
* einsen and nullen (AIS_LENGTH - einsen)
*/
for(j=0; jseq; j+=2) {
if (p->testState == TEST_EVAL) {
double qn = (double)((int)p->einsen[j] - (int)p->einsen[j+1]);
double qd = (double)(p->einsen[j] + p->einsen[j+1]);
double pd = AIS_LENGTH * 2.0 - qd;
p->results[p->testNbr].finalValue = ((qn * qn) / pd) + ((qn * qn) / qd);
}
else p->results[p->testNbr].finalValue = NO_TRANSITION;
hilf = tid << 8;
if (p->results[p->testNbr].finalValue > 15.13)
hilf |= 1;
p->results[p->testNbr++].testResult = hilf;
}
}
p->testState = TEST_DONE;
break;
}
return i+offs;
}
/**
* Run the configured test procedures. This function cycles the procedure calls
* setup by the configuration using tail recursion to sequence multiple tests.
*/
static H_UINT aisTest( /* RETURN: nz if input needed */
H_COLLECT * h_ctxt, /* IN-OUT: collector context */
H_UINT prod, /* IN: production indicator */
H_UINT *buffer, /* IN: test data, H_UINT aligned */
H_UINT sz) /* IN: size of data in H_UINT */
{
procShared *tps = TESTS_SHARED(h_ctxt);
onlineTests *context = (onlineTests *) h_ctxt->havege_tests;
procInst *p;
H_UINT offs,state=TEST_DONE, tot=0;
if (context->result!=0)
return 0;
if (prod==0)
p = tps->totTests + context->totIdx;
else p = tps->runTests + context->runIdx;
switch(p->action) {
case A_RUN:
if (context->pA->procState==TEST_INIT)
context->pA->options = p->options;
tot = aisProcedureA(h_ctxt, tps, context->pA,
buffer, sz, context->szCarry, prod);
state = context->pA->procState;
break;
case B_RUN:
if (context->pB->procState==TEST_INIT)
context->pB->options = p->options;
tot = aisProcedureB(h_ctxt, tps, context->pB,
buffer, sz, context->szCarry, prod);
state = context->pB->procState;
break;
}
if (state==TEST_INPUT) {
context->szCarry = 0;
return 1;
}
context->szTotal += tot;
if (prod==0) {
if (context->totIdx>=1) /* check for end of tot */
return 0;
context->totIdx += 1;
p = tps->totTests + context->totIdx;
}
else {
if (0==tps->runTests[0].action) /* check for no cont tests */
return 0;
else if (0!=tps->runTests[1].action) /* check for only 1 cont test */
context->runIdx = context->runIdx? 0 : 1;
p = tps->runTests + context->runIdx;
}
switch(p->action) {
case A_RUN:
context->pA->procState=TEST_INIT;
break;
case B_RUN:
context->pB->procState=TEST_INIT;
break;
}
offs = context->szCarry/BITS_PER_H_UINT;
if (offsszCarry -= offs * BITS_PER_H_UINT;
return aisTest(h_ctxt, prod, buffer+offs, sz - offs);
}
return 1;
}
/**
* Procedure A input is obtained by copying bits from p->data to p->aux using
* p->bridge as position. This realigns the input to a byte boundary and
* resolves segmentation issues. Originally implemented in BITSTREAM macros
* performance was bad enough to justify serious tuning. Returns the updated
* bit offset.
*/
/**
* The BITSTREAM macros were totally inadequate for the proecedure A needs. These
* helpers are used to implement a high performance copyBit().
*/
#define COPY_BYTE() {c = (*src<>bit_diff_rs);src++;}
#define COPY_FIRST() if ( (int) xfr >= (8 - dst_bits)) {\
*dst &= rm[dst_bits];\
xfr -= 8 - dst_bits;\
}\
else {\
*dst &= rm[dst_bits] | rm_xor[dst_bits + xfr + 1];\
c &= rm[dst_bits + xfr];\
xfr = 0;\
}\
xfr_bytes = xfr>>3;\
xfr_bits = xfr&7;\
*dst++ |= c;
/**
* Each procedure A repetition moves TEST0_USED + 257*FIPS_USED bits
* to the auxilary work space - a little more than 1MB
*/
static H_UINT copyBits( /* RETURN: updated bit offset */
procA *p, /* IN-OUT: the context */
H_UINT offs, /* IN: the input bit offset */
H_UINT sz) /* IN: number of bits to copy */
{
H_UINT avail = p->range;
H_UINT need = sz - p->bridge;
H_UINT xfer, xfr;
offs %= avail;
xfer = (avail-offs)data+(offs>>3);
H_UINT8 *dst = p->aux +(p->bridge>>3);
H_UINT8 src_bits = offs&7;
H_UINT8 dst_bits = p->bridge&7;
H_UINT xfr_bytes = xfr>>3;
H_UINT xfr_bits = xfr&7;
H_UINT8 c;
if (src_bits==dst_bits) {
if (src_bits!=0){
c = rm_xor[dst_bits] & *src++;
COPY_FIRST();
}
if (xfr_bytes!=0) {
memcpy(dst, src, xfr_bytes);
src += xfr_bytes;
dst += xfr_bytes;
}
if (xfr_bits) {
*dst &= rm_xor[xfr_bits];
*dst |= rm[xfr_bits] & *src++;
}
}
else {
H_UINT bit_diff_ls, bit_diff_rs;
if (src_bits>dst_bits) {
bit_diff_ls = src_bits - dst_bits;
bit_diff_rs = 8 - bit_diff_ls;
COPY_BYTE();
c &= rm_xor[dst_bits];
}
else {
bit_diff_rs = dst_bits - src_bits;
bit_diff_ls = 8 - bit_diff_rs;
c = *src >> bit_diff_rs & rm_xor[dst_bits];
}
COPY_FIRST();
while (xfr_bytes-- != 0) {
COPY_BYTE();
*dst++ = c;
}
if (xfr_bits!=0) {
COPY_BYTE();
c &= rm[xfr_bits];
*dst &= rm_xor[xfr_bits];
*dst |= c;
}
}
}
p->bridge += xfer;
if (p->bridge>=sz) {
p->bytesUsed += sz>>3;
p->bridge = 0;
p->testState = TEST_EVAL;
}
return offs + xfer;
}
/**
* Procedure A tests 1 through 4 correspond to the fips140-1 tests. These tests
* are conducted on the same input stream, so the calculations can be
* done in parallel.
*/
#define FIPS_ADD() {\
if (runLength < 5)\
runs[runLength + (6*current)]++;\
else runs[5 + (6*current)]++;\
}
static H_UINT fips140( /* RETURN: updated bit offset */
procShared *tps, /* IN: shared data */
procA *p, /* IN-OUT: the context */
H_UINT offs, /* IN: starting offset */
H_UINT tid) /* IN: test id */
{
H_UINT poker[16]; /* counters for poker test */
H_UINT ones; /* counter for monbit test */
H_UINT runs[12]; /* counters for runs tests */
H_UINT runLength; /* current run length */
H_UINT maxRun; /* largest run encountered */
H_UINT current; /* current bit */
H_UINT last; /* last bit index */
H_UINT c, i, j, k;
switch(p->testState) {
case TEST_INIT:
p->testState = TEST_INPUT;
p->bridge = 0;
/* fallthrough */
case TEST_INPUT:
offs = copyBits(p, offs, FIPS_USED);
if (p->testState!=TEST_EVAL)
break;
/* fallthrough */
case TEST_EVAL:
maxRun = ones = runLength = 0;
memset(poker, 0, 16*sizeof(H_UINT));
memset(runs, 0, 12*sizeof(H_UINT));
{
BITSTREAM_OPEN(p->aux,0);
last = BITSTREAM_BIT();
for (c=i=0;imaxRun)
maxRun = runLength;
}
else {
FIPS_ADD();
runLength = 0;
last = current;
}
c += c + current;
ones += current;
if (bitstream_in==1) {
poker[c&15] += 1;
c = 0;
}
else if (bitstream_in==16)
poker[c] += 1;
BITSTREAM_NEXT();
}
FIPS_ADD();
}
/* 1 = monobit test */
k = (ones >= FIPS_ONES_HIGH || ones <= FIPS_ONES_LOW)? 1 : 0;
p->results[tid].testResult = k | (1<<8);
p->results[tid++].finalValue = ones;
/* 2 = poker test */
for(j=k=0;j<16;j++) k += poker[j]*poker[j];
j = (k <= FIPS_POKER_LOW || k >= FIPS_POKER_HIGH)? 1 : 0;
p->results[tid].testResult = j | (2<<8);
p->results[tid++].finalValue = k;
/* 3 = runs test */
for(i=j=k=0;j<12;j++)
if (runs[j] < tps->fips_low[j%6] || runs[j] > tps->fips_high[j%6]) {
k |= 1;
i = runs[j];
}
p->results[tid].testResult = k | (3<<8);
p->results[tid++].finalValue = i;
/* 4 = max run length */
k = maxRun>=FIPS_MAX_RUN? 1 : 0;
p->results[tid].testResult = k | (4<<8);
p->results[tid++].finalValue = maxRun;
p->testRun = tid;
p->testState = TEST_DONE;
}
return offs;
}
/**
* Procedure A disjointness test on 48 bit strings. Rejection probability for ideal
* RNG is 2e^-17
*/
static H_UINT test0( /* RETURN: updated bit offset */
procA *p, /* IN-OUT: the context */
H_UINT offs, /* IN: starting bit offset */
H_UINT tid) /* IN: test id */
{
H_UINT i, j;
switch(p->testState) {
case TEST_INIT:
p->testState = TEST_INPUT;
p->bridge = 0;
/* fallthrough */
case TEST_INPUT:
offs = copyBits(p, offs, TEST0_USED);
if (p->testState!=TEST_EVAL)
break;
/* fallthrough */
case TEST_EVAL:
qsort(p->aux, TEST0_LENGTH, 6, test0cmp);
for (i=6,j=0;iaux+i-6, p->aux+i, 6)) {
j=1;
}
p->results[tid].testResult = j;
p->results[tid++].finalValue = i;
p->testRun = tid;
p->testState = TEST_DONE;
}
return offs;
}
/**
* Comparison method for the test0 sort
*/
static int test0cmp(const void *aa, const void *bb)
{
return memcmp(aa,bb,6);
}
/**
* Procedure A autocorrelation test. Brutal bit twiddling. Uses same
* data as FIPS - no update to bit offset
*/
static H_UINT test5( /* RETURN: updated bit offset */
procA *p, /* IN-OUT: the context */
H_UINT offs, /* IN: starting bit offset */
H_UINT tid) /* IN: test id */
{
H_UINT8 *dp = (H_UINT8 *)p->aux;
H_UINT j, k, max, tau, Z_tau;
/**
* Because this test is so slow it can be skipped on one or more repetitions
*/
if (0 != (p->options & A_CYCLE)) {
j = p->options & A_CYCLE;
if (j==0 || ((tid-1)/5 % j)!=0) {
p->results[tid++].testResult = 0xff00;
p->testRun = tid;
p->testState = TEST_DONE;
return offs;
}
}
/**
* This test always uses the same data as test1 through test4
*/
for (max = k = 0,tau=1;tau<=TEST5_LENGTH;tau++){
Z_tau = abs( (int) test5XOR(dp, tau) - 2500);
if (Z_tau > max) {
max = Z_tau;
k = tau - 1;
}
}
dp += TEST5_LENGTH/8;
Z_tau = test5XOR(dp, k + 1);
j = 5<<8;
if (( Z_tau <= 2326) || ( Z_tau >= 2674))
j |= 1;
p->results[tid].testResult = j;
p->results[tid++].finalValue = Z_tau;
p->testRun = tid;
p->testState = TEST_DONE;
return offs;
}
/**
* The test5 reference implementation looks something like this:
*
* for(i=0,j=shift;i>3]>>(i & 7))) ^ ((src[j>>3]>>(j & 7))));
* return rv;
*
* A high performance optimization using multi-byte casts is 3x as fast as the above but blows up
* because of alignment issues (leftovers from the test0 implementation)
* The optimized single byte optimization is 2x as fast as the above but uses no alignment games
*/
static H_UINT test5XOR(H_UINT8 *src, H_UINT shift)
{
H_UINT8 *src1;
H_UINT i,rest, rv;
src1 = src + (shift>>3);
shift &= 7;
rest = 8 - shift;
for(i=rv=0;i<(TEST5_LENGTH>>3);i++) {
H_UINT8 lw = *src++;
H_UINT8 rw = *src1++;
H_UINT8 w;
for (w = (lw & (0xff>>shift)) ^ (rw>>shift);w!=0;w>>=1)
rv += w & 1;
for (w = (lw>>rest) ^ (*src1 & (0xff>>rest));w!=0;w>>=1)
rv += w & 1;
}
return rv;
}
/**
* Procedure B uniform distribution test for parameter set (1,100000,0.25). Very simple, just
* count bits. Fixed input size, deadman not needed
*/
#define SIDEWAYS_ADD(c,i) {H_UINT in = i;\
in -= ((in >> 1) & 0x55555555);\
in = (in & 0x33333333) + ((in >> 2) & 0x33333333);\
c=(((in + (in >> 4)) & 0x0F0F0F0F) * 0x01010101) >> 24;\
}
static H_UINT test6a( /* RETURN: bit offset */
procB *p, /* IN-OUT: the context */
H_UINT offs, /* IN: starting bit offset */
H_UINT tid) /* IN: test id */
{
H_UINT r = p->range - offs;
H_UINT i=0,j=p->bridge;
switch(p->testState) {
case TEST_INIT:
j = p->counter[0] = 0;
p->testState = TEST_INPUT;
/* fallthrough */
case TEST_INPUT:
{
BITSTREAM_OPEN(p->noise,offs);
H_UINT c;
/* align to a byte boundary, then shift gears to gobble bytes */
while(i < r && j < AIS_LENGTH && bitstream_in != 0x80){
p->counter[0] += BITSTREAM_BIT();BITSTREAM_NEXT();
i++;j++;
}
/* align to a word boundary, then shift gears to gobble words */
while((i+8) < r && (j+8) < AIS_LENGTH) {
if (0==((char *)bitstream_src - (char *)p->noise) % sizeof(H_UINT))
break;
SIDEWAYS_ADD(c, *bitstream_src++);
p->counter[0] += c;
i+=8;j+=8;
}
/* gobble all words available */
while((i+BITS_PER_H_UINT) < r && (j+BITS_PER_H_UINT) < AIS_LENGTH) {
SIDEWAYS_ADD(c, *((H_UINT *)bitstream_src));
bitstream_src += sizeof(H_UINT);
p->counter[0] += c;
i+=BITS_PER_H_UINT;j+=BITS_PER_H_UINT;
}
/* shift back to bits & cleanup the leftovers */
for(;i < r && j < AIS_LENGTH;i++,j++) {
p->counter[0] += BITSTREAM_BIT();BITSTREAM_NEXT();
}
p->bitsUsed += i;
if (j < AIS_LENGTH) {
p->bridge = j;
break;
}
}
/* fallthrough */
case TEST_EVAL:
p->results[p->testNbr].finalValue = (double)(p->counter[0]) / (double) AIS_LENGTH;
r = tid << 8;
if (p->results[p->testNbr].finalValue <= 0.25 || p->results[p->testNbr].finalValue >= 0.75)
r |= 1;
p->results[p->testNbr++].testResult = r;
p->testState = TEST_DONE;
}
return i+offs;
}
/**
* Context is saved and restored using inactive members of the anchor.
*/
#define RESTORE8(a,b,c,d) a=p->bridge;b=p->full;c=p->einsen[0];\
d=p->results[p->testNbr].finalValue
#define SAVE8(a,b,c,d) p->bridge=a;p->full=b;p->einsen[0]=c;\
p->results[p->testNbr].finalValue = d
/**
* Procedure B entropy estimator (Coron). Find the distribution of the distance between
* bytes and their predecessors. Fixed input size, no deadman needed.
*/
static H_UINT test8( /* RETURN: bit offset */
procShared *tps, /* IN-OUT: shared data */
procB *p, /* IN-OUT: the context */
H_UINT offs, /* IN: starting bit offset */
H_UINT tid) /* IN: test id */
{
H_UINT hilf, j, k, r, i=0;
double TG=0.0;
switch(p->testState) {
case TEST_INIT:
memset(p->lastpos, 0, 256*sizeof(H_UINT));
SAVE8(0,0,0,0.0);
p->testState = TEST_INPUT;
/* fallthrough */
case TEST_INPUT:
RESTORE8(k,j,hilf,TG);
r = p->range - offs;
{
H_UINT align;
/* gobble bits up to a byte boundary */
BITSTREAM_OPEN(p->noise,offs);
for(;j<8 && i>align);
bitstream_src++;i+=8;j=8;
}
for(;j<8 && ilastpos[hilf] = k++;
else {
TG += tps->G[k - p->lastpos[hilf]];
p->lastpos[hilf] = k++;
if (k==(K+Q)) {
p->testState = TEST_EVAL;
break;
}
}
j = hilf = 0;
}
if (p->testState==TEST_INPUT) {
SAVE8(k,j,hilf,TG);
}
}
p->bitsUsed += i;
if (p->testState == TEST_INPUT)
break;
/* fallthrough */
case TEST_EVAL:
tps->lastCoron = p->results[p->testNbr].finalValue = TG/(double)K;
r = tid<<8;
if (p->results[p->testNbr].finalValue <= 7.967)
r |= 1;
p->results[p->testNbr++].testResult = r;
p->testState = TEST_DONE;
}
return i+offs;
}
#endif