// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*- // vim: ts=8 sw=2 smarttab /* * Ceph - scalable distributed file system * * Copyright (C) 2004-2006 Sage Weil * * This is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License version 2.1, as published by the Free Software * Foundation. See file COPYING. * */ #include "WorkQueue.h" #include "include/compat.h" #include "common/errno.h" #define dout_subsys ceph_subsys_tp #undef dout_prefix #define dout_prefix *_dout << name << " " ThreadPool::ThreadPool(CephContext *cct_, std::string nm, std::string tn, int n, const char *option) : cct(cct_), name(std::move(nm)), thread_name(std::move(tn)), lockname(name + "::lock"), _lock(ceph::make_mutex(lockname)), // this should be safe due to declaration order _stop(false), _pause(0), _draining(0), _num_threads(n), processing(0) { if (option) { _thread_num_option = option; // set up conf_keys _conf_keys = new const char*[2]; _conf_keys[0] = _thread_num_option.c_str(); _conf_keys[1] = NULL; } else { _conf_keys = new const char*[1]; _conf_keys[0] = NULL; } } void ThreadPool::TPHandle::suspend_tp_timeout() { cct->get_heartbeat_map()->clear_timeout(hb); } void ThreadPool::TPHandle::reset_tp_timeout() { cct->get_heartbeat_map()->reset_timeout( hb, grace, suicide_grace); } ThreadPool::~ThreadPool() { ceph_assert(_threads.empty()); delete[] _conf_keys; } void ThreadPool::handle_conf_change(const ConfigProxy& conf, const std::set &changed) { if (changed.count(_thread_num_option)) { char *buf; int r = conf.get_val(_thread_num_option.c_str(), &buf, -1); ceph_assert(r >= 0); int v = atoi(buf); free(buf); if (v >= 0) { _lock.lock(); _num_threads = v; start_threads(); _cond.notify_all(); _lock.unlock(); } } } void ThreadPool::worker(WorkThread *wt) { std::unique_lock ul(_lock); ldout(cct,10) << "worker start" << dendl; std::stringstream ss; ss << name << " thread " << (void *)pthread_self(); auto hb = cct->get_heartbeat_map()->add_worker(ss.str(), pthread_self()); while (!_stop) { // manage dynamic thread pool join_old_threads(); if (_threads.size() > _num_threads) { ldout(cct,1) << " worker shutting down; too many threads (" << _threads.size() << " > " << _num_threads << ")" << dendl; _threads.erase(wt); _old_threads.push_back(wt); break; } if (work_queues.empty()) { ldout(cct, 10) << "worker no work queues" << dendl; } else if (!_pause) { WorkQueue_* wq; int tries = 2 * work_queues.size(); bool did = false; while (tries--) { next_work_queue %= work_queues.size(); wq = work_queues[next_work_queue++]; void *item = wq->_void_dequeue(); if (item) { processing++; ldout(cct,12) << "worker wq " << wq->name << " start processing " << item << " (" << processing << " active)" << dendl; ul.unlock(); TPHandle tp_handle(cct, hb, wq->timeout_interval.load(), wq->suicide_interval.load()); tp_handle.reset_tp_timeout(); wq->_void_process(item, tp_handle); ul.lock(); wq->_void_process_finish(item); processing--; ldout(cct,15) << "worker wq " << wq->name << " done processing " << item << " (" << processing << " active)" << dendl; if (_pause || _draining) _wait_cond.notify_all(); did = true; break; } } if (did) continue; } ldout(cct,20) << "worker waiting" << dendl; cct->get_heartbeat_map()->reset_timeout( hb, ceph::make_timespan(cct->_conf->threadpool_default_timeout), ceph::make_timespan(0)); auto wait = std::chrono::seconds( cct->_conf->threadpool_empty_queue_max_wait); _cond.wait_for(ul, wait); } ldout(cct,1) << "worker finish" << dendl; cct->get_heartbeat_map()->remove_worker(hb); } void ThreadPool::start_threads() { ceph_assert(ceph_mutex_is_locked(_lock)); while (_threads.size() < _num_threads) { WorkThread *wt = new WorkThread(this); ldout(cct, 10) << "start_threads creating and starting " << wt << dendl; _threads.insert(wt); wt->create(thread_name.c_str()); } } void ThreadPool::join_old_threads() { ceph_assert(ceph_mutex_is_locked(_lock)); while (!_old_threads.empty()) { ldout(cct, 10) << "join_old_threads joining and deleting " << _old_threads.front() << dendl; _old_threads.front()->join(); delete _old_threads.front(); _old_threads.pop_front(); } } void ThreadPool::start() { ldout(cct,10) << "start" << dendl; if (_thread_num_option.length()) { ldout(cct, 10) << " registering config observer on " << _thread_num_option << dendl; cct->_conf.add_observer(this); } _lock.lock(); start_threads(); _lock.unlock(); ldout(cct,15) << "started" << dendl; } void ThreadPool::stop(bool clear_after) { ldout(cct,10) << "stop" << dendl; if (_thread_num_option.length()) { ldout(cct, 10) << " unregistering config observer on " << _thread_num_option << dendl; cct->_conf.remove_observer(this); } _lock.lock(); _stop = true; _cond.notify_all(); join_old_threads(); _lock.unlock(); for (auto p = _threads.begin(); p != _threads.end(); ++p) { (*p)->join(); delete *p; } _threads.clear(); _lock.lock(); for (unsigned i=0; i_clear(); _stop = false; _lock.unlock(); ldout(cct,15) << "stopped" << dendl; } void ThreadPool::pause() { std::unique_lock ul(_lock); ldout(cct,10) << "pause" << dendl; _pause++; while (processing) { _wait_cond.wait(ul); } ldout(cct,15) << "paused" << dendl; } void ThreadPool::pause_new() { ldout(cct,10) << "pause_new" << dendl; _lock.lock(); _pause++; _lock.unlock(); } void ThreadPool::unpause() { ldout(cct,10) << "unpause" << dendl; _lock.lock(); ceph_assert(_pause > 0); _pause--; _cond.notify_all(); _lock.unlock(); } void ThreadPool::drain(WorkQueue_* wq) { std::unique_lock ul(_lock); ldout(cct,10) << "drain" << dendl; _draining++; while (processing || (wq != NULL && !wq->_empty())) { _wait_cond.wait(ul); } _draining--; } ShardedThreadPool::ShardedThreadPool(CephContext *pcct_, std::string nm, std::string tn, uint32_t pnum_threads): cct(pcct_), name(std::move(nm)), thread_name(std::move(tn)), lockname(name + "::lock"), shardedpool_lock(ceph::make_mutex(lockname)), num_threads(pnum_threads), num_paused(0), num_drained(0), wq(NULL) {} void ShardedThreadPool::shardedthreadpool_worker(uint32_t thread_index) { ceph_assert(wq != NULL); ldout(cct,10) << "worker start" << dendl; std::stringstream ss; ss << name << " thread " << (void *)pthread_self(); auto hb = cct->get_heartbeat_map()->add_worker(ss.str(), pthread_self()); while (!stop_threads) { if (pause_threads) { std::unique_lock ul(shardedpool_lock); ++num_paused; wait_cond.notify_all(); while (pause_threads) { cct->get_heartbeat_map()->reset_timeout( hb, wq->timeout_interval.load(), wq->suicide_interval.load()); shardedpool_cond.wait_for( ul, std::chrono::seconds(cct->_conf->threadpool_empty_queue_max_wait)); } --num_paused; } if (drain_threads) { std::unique_lock ul(shardedpool_lock); if (wq->is_shard_empty(thread_index)) { ++num_drained; wait_cond.notify_all(); while (drain_threads) { cct->get_heartbeat_map()->reset_timeout( hb, wq->timeout_interval.load(), wq->suicide_interval.load()); shardedpool_cond.wait_for( ul, std::chrono::seconds(cct->_conf->threadpool_empty_queue_max_wait)); } --num_drained; } } cct->get_heartbeat_map()->reset_timeout( hb, wq->timeout_interval.load(), wq->suicide_interval.load()); wq->_process(thread_index, hb); } ldout(cct,10) << "sharded worker finish" << dendl; cct->get_heartbeat_map()->remove_worker(hb); } void ShardedThreadPool::start_threads() { ceph_assert(ceph_mutex_is_locked(shardedpool_lock)); int32_t thread_index = 0; while (threads_shardedpool.size() < num_threads) { WorkThreadSharded *wt = new WorkThreadSharded(this, thread_index); ldout(cct, 10) << "start_threads creating and starting " << wt << dendl; threads_shardedpool.push_back(wt); wt->create(thread_name.c_str()); thread_index++; } } void ShardedThreadPool::start() { ldout(cct,10) << "start" << dendl; shardedpool_lock.lock(); start_threads(); shardedpool_lock.unlock(); ldout(cct,15) << "started" << dendl; } void ShardedThreadPool::stop() { ldout(cct,10) << "stop" << dendl; stop_threads = true; ceph_assert(wq != NULL); wq->return_waiting_threads(); for (auto p = threads_shardedpool.begin(); p != threads_shardedpool.end(); ++p) { (*p)->join(); delete *p; } threads_shardedpool.clear(); ldout(cct,15) << "stopped" << dendl; } void ShardedThreadPool::pause() { std::unique_lock ul(shardedpool_lock); ldout(cct,10) << "pause" << dendl; pause_threads = true; ceph_assert(wq != NULL); wq->return_waiting_threads(); while (num_threads != num_paused){ wait_cond.wait(ul); } ldout(cct,10) << "paused" << dendl; } void ShardedThreadPool::pause_new() { ldout(cct,10) << "pause_new" << dendl; shardedpool_lock.lock(); pause_threads = true; ceph_assert(wq != NULL); wq->return_waiting_threads(); shardedpool_lock.unlock(); ldout(cct,10) << "paused_new" << dendl; } void ShardedThreadPool::unpause() { ldout(cct,10) << "unpause" << dendl; shardedpool_lock.lock(); pause_threads = false; wq->stop_return_waiting_threads(); shardedpool_cond.notify_all(); shardedpool_lock.unlock(); ldout(cct,10) << "unpaused" << dendl; } void ShardedThreadPool::drain() { std::unique_lock ul(shardedpool_lock); ldout(cct,10) << "drain" << dendl; drain_threads = true; ceph_assert(wq != NULL); wq->return_waiting_threads(); while (num_threads != num_drained) { wait_cond.wait(ul); } drain_threads = false; wq->stop_return_waiting_threads(); shardedpool_cond.notify_all(); ldout(cct,10) << "drained" << dendl; }