// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*- // vim: ts=8 sw=2 smarttab /* * Ceph - scalable distributed file system * * Copyright (C) 2004-2006 Sage Weil * Copyright (C) 2013,2014 Cloudwatt * * Author: Loic Dachary * * This is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License version 2.1, as published by the Free Software * Foundation. See file COPYING. * */ #ifndef CEPH_OSDMAP_H #define CEPH_OSDMAP_H /* * describe properties of the OSD cluster. * disks, disk groups, total # osds, * */ #include "common/config.h" #include "include/types.h" #include "osd_types.h" #include "msg/Message.h" #include "common/Mutex.h" #include "common/Clock.h" #include "include/ceph_features.h" #include "crush/CrushWrapper.h" #include "include/interval_set.h" #include #include #include #include #include "include/memory.h" using namespace std; #include "include/unordered_set.h" /* * we track up to two intervals during which the osd was alive and * healthy. the most recent is [up_from,up_thru), where up_thru is * the last epoch the osd is known to have _started_. i.e., a lower * bound on the actual osd death. down_at (if it is > up_from) is an * upper bound on the actual osd death. * * the second is the last_clean interval [first,last]. in that case, * the last interval is the last epoch known to have been either * _finished_, or during which the osd cleanly shut down. when * possible, we push this forward to the epoch the osd was eventually * marked down. * * the lost_at is used to allow build_prior to proceed without waiting * for an osd to recover. In certain cases, progress may be blocked * because an osd is down that may contain updates (i.e., a pg may have * gone rw during an interval). If the osd can't be brought online, we * can force things to proceed knowing that we _might_ be losing some * acked writes. If the osd comes back to life later, that's fine to, * but those writes will still be lost (the divergent objects will be * thrown out). */ struct osd_info_t { epoch_t last_clean_begin; // last interval that ended with a clean osd shutdown epoch_t last_clean_end; epoch_t up_from; // epoch osd marked up epoch_t up_thru; // lower bound on actual osd death (if > up_from) epoch_t down_at; // upper bound on actual osd death (if > up_from) epoch_t lost_at; // last epoch we decided data was "lost" osd_info_t() : last_clean_begin(0), last_clean_end(0), up_from(0), up_thru(0), down_at(0), lost_at(0) {} void dump(Formatter *f) const; void encode(bufferlist& bl) const; void decode(bufferlist::iterator& bl); static void generate_test_instances(list& o); }; WRITE_CLASS_ENCODER(osd_info_t) ostream& operator<<(ostream& out, const osd_info_t& info); struct osd_xinfo_t { utime_t down_stamp; ///< timestamp when we were last marked down float laggy_probability; ///< encoded as __u32: 0 = definitely not laggy, 0xffffffff definitely laggy __u32 laggy_interval; ///< average interval between being marked laggy and recovering uint64_t features; ///< features supported by this osd we should know about __u32 old_weight; ///< weight prior to being auto marked out osd_xinfo_t() : laggy_probability(0), laggy_interval(0), features(0), old_weight(0) {} void dump(Formatter *f) const; void encode(bufferlist& bl) const; void decode(bufferlist::iterator& bl); static void generate_test_instances(list& o); }; WRITE_CLASS_ENCODER(osd_xinfo_t) ostream& operator<<(ostream& out, const osd_xinfo_t& xi); /** OSDMap */ class OSDMap { public: class Incremental { public: /// feature bits we were encoded with. the subsequent OSDMap /// encoding should match. uint64_t encode_features; uuid_d fsid; epoch_t epoch; // new epoch; we are a diff from epoch-1 to epoch utime_t modified; int64_t new_pool_max; //incremented by the OSDMonitor on each pool create int32_t new_flags; // full (rare) bufferlist fullmap; // in lieu of below. bufferlist crush; // incremental int32_t new_max_osd; map new_pools; map new_pool_names; set old_pools; map > new_erasure_code_profiles; vector old_erasure_code_profiles; map new_up_client; map new_up_cluster; map new_state; // XORed onto previous state. map new_weight; map > new_pg_temp; // [] to remove map new_primary_temp; // [-1] to remove map new_primary_affinity; map new_up_thru; map > new_last_clean_interval; map new_lost; map new_uuid; map new_xinfo; map new_blacklist; vector old_blacklist; map new_hb_back_up; map new_hb_front_up; string cluster_snapshot; mutable bool have_crc; ///< crc values are defined uint32_t full_crc; ///< crc of the resulting OSDMap mutable uint32_t inc_crc; ///< crc of this incremental int get_net_marked_out(const OSDMap *previous) const; int get_net_marked_down(const OSDMap *previous) const; int identify_osd(uuid_d u) const; void encode_client_old(bufferlist& bl) const; void encode_classic(bufferlist& bl, uint64_t features) const; void encode(bufferlist& bl, uint64_t features=CEPH_FEATURES_ALL) const; void decode_classic(bufferlist::iterator &p); void decode(bufferlist::iterator &bl); void dump(Formatter *f) const; static void generate_test_instances(list& o); Incremental(epoch_t e=0) : encode_features(0), epoch(e), new_pool_max(-1), new_flags(-1), new_max_osd(-1), have_crc(false), full_crc(0), inc_crc(0) { memset(&fsid, 0, sizeof(fsid)); } Incremental(bufferlist &bl) { bufferlist::iterator p = bl.begin(); decode(p); } Incremental(bufferlist::iterator &p) { decode(p); } pg_pool_t *get_new_pool(int64_t pool, const pg_pool_t *orig) { if (new_pools.count(pool) == 0) new_pools[pool] = *orig; return &new_pools[pool]; } bool has_erasure_code_profile(const string &name) const { map >::const_iterator i = new_erasure_code_profiles.find(name); return i != new_erasure_code_profiles.end(); } void set_erasure_code_profile(const string &name, const map &profile) { new_erasure_code_profiles[name] = profile; } /// propage update pools' snap metadata to any of their tiers int propagate_snaps_to_tiers(CephContext *cct, const OSDMap &base); }; private: uuid_d fsid; epoch_t epoch; // what epoch of the osd cluster descriptor is this utime_t created, modified; // epoch start time int32_t pool_max; // the largest pool num, ever uint32_t flags; int num_osd; // not saved int32_t max_osd; vector osd_state; struct addrs_s { vector > client_addr; vector > cluster_addr; vector > hb_back_addr; vector > hb_front_addr; entity_addr_t blank; }; ceph::shared_ptr osd_addrs; vector<__u32> osd_weight; // 16.16 fixed point, 0x10000 = "in", 0 = "out" vector osd_info; ceph::shared_ptr< map > > pg_temp; // temp pg mapping (e.g. while we rebuild) ceph::shared_ptr< map > primary_temp; // temp primary mapping (e.g. while we rebuild) ceph::shared_ptr< vector<__u32> > osd_primary_affinity; ///< 16.16 fixed point, 0x10000 = baseline map pools; map pool_name; map > erasure_code_profiles; map name_pool; ceph::shared_ptr< vector > osd_uuid; vector osd_xinfo; ceph::unordered_map blacklist; epoch_t cluster_snapshot_epoch; string cluster_snapshot; bool new_blacklist_entries; mutable uint64_t cached_up_osd_features; mutable bool crc_defined; mutable uint32_t crc; void _calc_up_osd_features(); public: bool have_crc() const { return crc_defined; } uint32_t get_crc() const { return crc; } ceph::shared_ptr crush; // hierarchical map friend class OSDMonitor; friend class PGMonitor; friend class MDS; public: OSDMap() : epoch(0), pool_max(-1), flags(0), num_osd(0), max_osd(0), osd_addrs(new addrs_s), pg_temp(new map >), primary_temp(new map), osd_uuid(new vector), cluster_snapshot_epoch(0), new_blacklist_entries(false), cached_up_osd_features(0), crc_defined(false), crc(0), crush(new CrushWrapper) { memset(&fsid, 0, sizeof(fsid)); } // no copying /* oh, how i long for c++11... private: OSDMap(const OSDMap& other) = default; const OSDMap& operator=(const OSDMap& other) = default; public: */ void deepish_copy_from(const OSDMap& o) { *this = o; primary_temp.reset(new map(*o.primary_temp)); pg_temp.reset(new map >(*o.pg_temp)); osd_uuid.reset(new vector(*o.osd_uuid)); // NOTE: this still references shared entity_addr_t's. osd_addrs.reset(new addrs_s(*o.osd_addrs)); // NOTE: we do not copy crush. note that apply_incremental will // allocate a new CrushWrapper, though. } // map info const uuid_d& get_fsid() const { return fsid; } void set_fsid(uuid_d& f) { fsid = f; } epoch_t get_epoch() const { return epoch; } void inc_epoch() { epoch++; } void set_epoch(epoch_t e); /* stamps etc */ const utime_t& get_created() const { return created; } const utime_t& get_modified() const { return modified; } bool is_blacklisted(const entity_addr_t& a) const; void get_blacklist(list > *bl) const; string get_cluster_snapshot() const { if (cluster_snapshot_epoch == epoch) return cluster_snapshot; return string(); } /***** cluster state *****/ /* osds */ int get_max_osd() const { return max_osd; } void set_max_osd(int m); unsigned get_num_osds() const { return num_osd; } int calc_num_osds(); void get_all_osds(set& ls) const; void get_up_osds(set& ls) const; unsigned get_num_up_osds() const; unsigned get_num_in_osds() const; unsigned get_num_pg_temp() const { return pg_temp->size(); } int get_flags() const { return flags; } int test_flag(int f) const { return flags & f; } void set_flag(int f) { flags |= f; } void clear_flag(int f) { flags &= ~f; } static void calc_state_set(int state, set& st); int get_state(int o) const { assert(o < max_osd); return osd_state[o]; } int get_state(int o, set& st) const { assert(o < max_osd); unsigned t = osd_state[o]; calc_state_set(t, st); return osd_state[o]; } void set_state(int o, unsigned s) { assert(o < max_osd); osd_state[o] = s; } void set_weightf(int o, float w) { set_weight(o, (int)((float)CEPH_OSD_IN * w)); } void set_weight(int o, unsigned w) { assert(o < max_osd); osd_weight[o] = w; if (w) osd_state[o] |= CEPH_OSD_EXISTS; } unsigned get_weight(int o) const { assert(o < max_osd); return osd_weight[o]; } float get_weightf(int o) const { return (float)get_weight(o) / (float)CEPH_OSD_IN; } void adjust_osd_weights(const map& weights, Incremental& inc) const; void set_primary_affinity(int o, int w) { assert(o < max_osd); if (!osd_primary_affinity) osd_primary_affinity.reset(new vector<__u32>(max_osd, CEPH_OSD_DEFAULT_PRIMARY_AFFINITY)); (*osd_primary_affinity)[o] = w; } unsigned get_primary_affinity(int o) const { assert(o < max_osd); if (!osd_primary_affinity) return CEPH_OSD_DEFAULT_PRIMARY_AFFINITY; return (*osd_primary_affinity)[o]; } float get_primary_affinityf(int o) const { return (float)get_primary_affinity(o) / (float)CEPH_OSD_MAX_PRIMARY_AFFINITY; } bool has_erasure_code_profile(const string &name) const { map >::const_iterator i = erasure_code_profiles.find(name); return i != erasure_code_profiles.end(); } int get_erasure_code_profile_default(CephContext *cct, map &profile_map, ostream *ss); void set_erasure_code_profile(const string &name, const map &profile) { erasure_code_profiles[name] = profile; } const map &get_erasure_code_profile(const string &name) const { map >::const_iterator i = erasure_code_profiles.find(name); static map empty; if (i == erasure_code_profiles.end()) return empty; else return i->second; } const map > &get_erasure_code_profiles() const { return erasure_code_profiles; } bool exists(int osd) const { //assert(osd >= 0); return osd >= 0 && osd < max_osd && (osd_state[osd] & CEPH_OSD_EXISTS); } bool is_up(int osd) const { return exists(osd) && (osd_state[osd] & CEPH_OSD_UP); } bool is_down(int osd) const { return !is_up(osd); } bool is_out(int osd) const { return !exists(osd) || get_weight(osd) == CEPH_OSD_OUT; } bool is_in(int osd) const { return !is_out(osd); } /** * check if an entire crush subtre is down */ bool subtree_is_down(int id, set *down_cache) const; bool containing_subtree_is_down(CephContext *cct, int osd, int subtree_type, set *down_cache) const; int identify_osd(const entity_addr_t& addr) const; int identify_osd(const uuid_d& u) const; bool have_addr(const entity_addr_t& addr) const { return identify_osd(addr) >= 0; } bool find_osd_on_ip(const entity_addr_t& ip) const; bool have_inst(int osd) const { return exists(osd) && is_up(osd); } const entity_addr_t &get_addr(int osd) const { assert(exists(osd)); return osd_addrs->client_addr[osd] ? *osd_addrs->client_addr[osd] : osd_addrs->blank; } const entity_addr_t &get_cluster_addr(int osd) const { assert(exists(osd)); if (!osd_addrs->cluster_addr[osd] || *osd_addrs->cluster_addr[osd] == entity_addr_t()) return get_addr(osd); return *osd_addrs->cluster_addr[osd]; } const entity_addr_t &get_hb_back_addr(int osd) const { assert(exists(osd)); return osd_addrs->hb_back_addr[osd] ? *osd_addrs->hb_back_addr[osd] : osd_addrs->blank; } const entity_addr_t &get_hb_front_addr(int osd) const { assert(exists(osd)); return osd_addrs->hb_front_addr[osd] ? *osd_addrs->hb_front_addr[osd] : osd_addrs->blank; } entity_inst_t get_inst(int osd) const { assert(is_up(osd)); return entity_inst_t(entity_name_t::OSD(osd), get_addr(osd)); } entity_inst_t get_cluster_inst(int osd) const { assert(is_up(osd)); return entity_inst_t(entity_name_t::OSD(osd), get_cluster_addr(osd)); } entity_inst_t get_hb_back_inst(int osd) const { assert(is_up(osd)); return entity_inst_t(entity_name_t::OSD(osd), get_hb_back_addr(osd)); } entity_inst_t get_hb_front_inst(int osd) const { assert(is_up(osd)); return entity_inst_t(entity_name_t::OSD(osd), get_hb_front_addr(osd)); } const uuid_d& get_uuid(int osd) const { assert(exists(osd)); return (*osd_uuid)[osd]; } const epoch_t& get_up_from(int osd) const { assert(exists(osd)); return osd_info[osd].up_from; } const epoch_t& get_up_thru(int osd) const { assert(exists(osd)); return osd_info[osd].up_thru; } const epoch_t& get_down_at(int osd) const { assert(exists(osd)); return osd_info[osd].down_at; } const osd_info_t& get_info(int osd) const { assert(osd < max_osd); return osd_info[osd]; } const osd_xinfo_t& get_xinfo(int osd) const { assert(osd < max_osd); return osd_xinfo[osd]; } int get_any_up_osd() const { for (int i=0; i= get_max_osd()) i = 0; if (i == n) break; if (is_up(i)) return i; } return -1; } int get_previous_up_osd_before(int n) const { for (int i = n - 1; i != n; --i) { if (i < 0) i = get_max_osd() - 1; if (i == n) break; if (is_up(i)) return i; } return -1; } /** * get feature bits required by the current structure * * @param entity_type [in] what entity type we are asking about * @param mask [out] set of all possible map-related features we could set * @return feature bits used by this map */ uint64_t get_features(int entity_type, uint64_t *mask) const; /** * get intersection of features supported by up osds */ uint64_t get_up_osd_features() const; int apply_incremental(const Incremental &inc); /// try to re-use/reference addrs in oldmap from newmap static void dedup(const OSDMap *oldmap, OSDMap *newmap); static void remove_redundant_temporaries(CephContext *cct, const OSDMap& osdmap, Incremental *pending_inc); static void remove_down_temps(CephContext *cct, const OSDMap& osdmap, Incremental *pending_inc); // serialize, unserialize private: void encode_client_old(bufferlist& bl) const; void encode_classic(bufferlist& bl, uint64_t features) const; void decode_classic(bufferlist::iterator& p); void post_decode(); public: void encode(bufferlist& bl, uint64_t features=CEPH_FEATURES_ALL) const; void decode(bufferlist& bl); void decode(bufferlist::iterator& bl); /**** mapping facilities ****/ int object_locator_to_pg(const object_t& oid, const object_locator_t& loc, pg_t &pg) const; pg_t object_locator_to_pg(const object_t& oid, const object_locator_t& loc) const { pg_t pg; int ret = object_locator_to_pg(oid, loc, pg); assert(ret == 0); return pg; } static object_locator_t file_to_object_locator(const ceph_file_layout& layout) { return object_locator_t(layout.fl_pg_pool); } // XXX: not used, mentioned in psim.cc comment // oid -> pg ceph_object_layout file_to_object_layout(object_t oid, ceph_file_layout& layout, string nspace) const { return make_object_layout(oid, layout.fl_pg_pool, nspace); } ceph_object_layout make_object_layout(object_t oid, int pg_pool, string nspace) const; int get_pg_num(int pg_pool) const { const pg_pool_t *pool = get_pg_pool(pg_pool); return pool->get_pg_num(); } private: /// pg -> (raw osd list) int _pg_to_osds(const pg_pool_t& pool, pg_t pg, vector *osds, int *primary, ps_t *ppps) const; void _remove_nonexistent_osds(const pg_pool_t& pool, vector& osds) const; void _apply_primary_affinity(ps_t seed, const pg_pool_t& pool, vector *osds, int *primary) const; /// pg -> (up osd list) void _raw_to_up_osds(const pg_pool_t& pool, const vector& raw, vector *up, int *primary) const; /** * Get the pg and primary temp, if they are specified. * @param temp_pg [out] Will be empty or contain the temp PG mapping on return * @param temp_primary [out] Will be the value in primary_temp, or a value derived * from the pg_temp (if specified), or -1 if you should use the calculated (up_)primary. */ void _get_temp_osds(const pg_pool_t& pool, pg_t pg, vector *temp_pg, int *temp_primary) const; /** * map to up and acting. Fills in whatever fields are non-NULL. */ void _pg_to_up_acting_osds(const pg_t& pg, vector *up, int *up_primary, vector *acting, int *acting_primary) const; public: /*** * This is suitable only for looking at raw CRUSH outputs. It skips * applying the temp and up checks and should not be used * by anybody for data mapping purposes. * raw and primary must be non-NULL */ int pg_to_osds(pg_t pg, vector *raw, int *primary) const; /// map a pg to its acting set. @return acting set size int pg_to_acting_osds(const pg_t& pg, vector *acting, int *acting_primary) const { _pg_to_up_acting_osds(pg, NULL, NULL, acting, acting_primary); return acting->size(); } int pg_to_acting_osds(pg_t pg, vector& acting) const { return pg_to_acting_osds(pg, &acting, NULL); } /** * This does not apply temp overrides and should not be used * by anybody for data mapping purposes. Specify both pointers. */ void pg_to_raw_up(pg_t pg, vector *up, int *primary) const; /** * map a pg to its acting set as well as its up set. You must use * the acting set for data mapping purposes, but some users will * also find the up set useful for things like deciding what to * set as pg_temp. * Each of these pointers must be non-NULL. */ void pg_to_up_acting_osds(pg_t pg, vector *up, int *up_primary, vector *acting, int *acting_primary) const { _pg_to_up_acting_osds(pg, up, up_primary, acting, acting_primary); } void pg_to_up_acting_osds(pg_t pg, vector& up, vector& acting) const { int up_primary, acting_primary; pg_to_up_acting_osds(pg, &up, &up_primary, &acting, &acting_primary); } bool pg_is_ec(pg_t pg) const { map::const_iterator i = pools.find(pg.pool()); assert(i != pools.end()); return i->second.ec_pool(); } bool get_primary_shard(const pg_t& pgid, spg_t *out) const { map::const_iterator i = get_pools().find(pgid.pool()); if (i == get_pools().end()) { return false; } if (!i->second.ec_pool()) { *out = spg_t(pgid); return true; } int primary; vector acting; pg_to_acting_osds(pgid, &acting, &primary); for (uint8_t i = 0; i < acting.size(); ++i) { if (acting[i] == primary) { *out = spg_t(pgid, shard_id_t(i)); return true; } } return false; } int64_t lookup_pg_pool_name(const string& name) const { map::const_iterator p = name_pool.find(name); if (p == name_pool.end()) return -ENOENT; return p->second; } int64_t get_pool_max() const { return pool_max; } const map& get_pools() const { return pools; } const string& get_pool_name(int64_t p) const { map::const_iterator i = pool_name.find(p); assert(i != pool_name.end()); return i->second; } bool have_pg_pool(int64_t p) const { return pools.count(p); } const pg_pool_t* get_pg_pool(int64_t p) const { map::const_iterator i = pools.find(p); if (i != pools.end()) return &i->second; return NULL; } unsigned get_pg_size(pg_t pg) const { map::const_iterator p = pools.find(pg.pool()); assert(p != pools.end()); return p->second.get_size(); } int get_pg_type(pg_t pg) const { assert(pools.count(pg.pool())); return pools.find(pg.pool())->second.get_type(); } pg_t raw_pg_to_pg(pg_t pg) const { assert(pools.count(pg.pool())); return pools.find(pg.pool())->second.raw_pg_to_pg(pg); } // pg -> acting primary osd int get_pg_acting_primary(pg_t pg) const { vector group; int nrep = pg_to_acting_osds(pg, group); if (nrep > 0) return group[0]; return -1; // we fail! } int get_pg_acting_tail(pg_t pg) const { vector group; int nrep = pg_to_acting_osds(pg, group); if (nrep > 0) return group[group.size()-1]; return -1; // we fail! } /* what replica # is a given osd? 0 primary, -1 for none. */ static int calc_pg_rank(int osd, const vector& acting, int nrep=0); static int calc_pg_role(int osd, const vector& acting, int nrep=0); static bool primary_changed( int oldprimary, const vector &oldacting, int newprimary, const vector &newacting); /* rank is -1 (stray), 0 (primary), 1,2,3,... (replica) */ int get_pg_acting_rank(pg_t pg, int osd) const { vector group; int nrep = pg_to_acting_osds(pg, group); return calc_pg_rank(osd, group, nrep); } /* role is -1 (stray), 0 (primary), 1 (replica) */ int get_pg_acting_role(const pg_t& pg, int osd) const { vector group; int nrep = pg_to_acting_osds(pg, group); return calc_pg_role(osd, group, nrep); } bool osd_is_valid_op_target(pg_t pg, int osd) const { int primary; vector group; int nrep = pg_to_acting_osds(pg, &group, &primary); if (osd == primary) return true; if (pg_is_ec(pg)) return false; return calc_pg_role(osd, group, nrep) >= 0; } /* * handy helpers to build simple maps... */ /** * Build an OSD map suitable for basic usage. If **num_osd** is >= 0 * it will be initialized with the specified number of OSDs in a * single host. If **num_osd** is < 0 the layout of the OSD map will * be built by reading the content of the configuration file. * * @param cct [in] in core ceph context * @param e [in] initial epoch * @param fsid [in] id of the cluster * @param num_osd [in] number of OSDs if >= 0 or read from conf if < 0 * @return **0** on success, negative errno on error. */ int build_simple(CephContext *cct, epoch_t e, uuid_d &fsid, int num_osd, int pg_bits, int pgp_bits); static int _build_crush_types(CrushWrapper& crush); static int build_simple_crush_map(CephContext *cct, CrushWrapper& crush, int num_osd, ostream *ss); static int build_simple_crush_map_from_conf(CephContext *cct, CrushWrapper& crush, ostream *ss); static int build_simple_crush_rulesets(CephContext *cct, CrushWrapper& crush, const string& root, ostream *ss); bool crush_ruleset_in_use(int ruleset) const; void clear_temp() { pg_temp->clear(); primary_temp->clear(); } private: void print_osd_line(int cur, ostream *out, Formatter *f) const; public: void print(ostream& out) const; void print_pools(ostream& out) const; void print_summary(Formatter *f, ostream& out) const; void print_oneline_summary(ostream& out) const; void print_tree(Formatter *f, ostream *out) const; string get_flag_string() const; static string get_flag_string(unsigned flags); static void dump_erasure_code_profiles(const map > &profiles, Formatter *f); void dump(Formatter *f) const; static void generate_test_instances(list& o); bool check_new_blacklist_entries() const { return new_blacklist_entries; } }; WRITE_CLASS_ENCODER_FEATURES(OSDMap) WRITE_CLASS_ENCODER_FEATURES(OSDMap::Incremental) typedef ceph::shared_ptr OSDMapRef; inline ostream& operator<<(ostream& out, const OSDMap& m) { m.print_oneline_summary(out); return out; } #endif