// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*- // vim: ts=8 sw=2 smarttab /* * Ceph - scalable distributed file system * * Copyright (C) 2004-2006 Sage Weil * * This is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License version 2.1, as published by the Free Software * Foundation. See file COPYING. * */ #ifndef CEPH_PG_H #define CEPH_PG_H #include #include #include #include #include #include #include #include #include #include "include/mempool.h" // re-include our assert to clobber boost's #include "include/ceph_assert.h" #include "include/types.h" #include "include/stringify.h" #include "osd_types.h" #include "include/xlist.h" #include "SnapMapper.h" #include "Session.h" #include "common/Timer.h" #include "PGLog.h" #include "OSDMap.h" #include "messages/MOSDPGLog.h" #include "include/str_list.h" #include "PGBackend.h" #include "PGPeeringEvent.h" #include "PeeringState.h" #include "MissingLoc.h" #include "mgr/OSDPerfMetricTypes.h" #include #include #include #include #include //#define DEBUG_RECOVERY_OIDS // track set of recovering oids explicitly, to find counting bugs //#define PG_DEBUG_REFS // track provenance of pg refs, helpful for finding leaks class OSD; class OSDService; class OSDShard; class OSDShardPGSlot; class MOSDOp; class MOSDPGScan; class MOSDPGBackfill; class MOSDPGInfo; class PG; struct OpRequest; typedef OpRequest::Ref OpRequestRef; class MOSDPGLog; class CephContext; class DynamicPerfStats; namespace Scrub { class Store; } #ifdef PG_DEBUG_REFS #include "common/tracked_int_ptr.hpp" uint64_t get_with_id(PG *pg); void put_with_id(PG *pg, uint64_t id); typedef TrackedIntPtr PGRef; #else typedef boost::intrusive_ptr PGRef; #endif class PGRecoveryStats { struct per_state_info { uint64_t enter, exit; // enter/exit counts uint64_t events; utime_t event_time; // time spent processing events utime_t total_time; // total time in state utime_t min_time, max_time; // cppcheck-suppress unreachableCode per_state_info() : enter(0), exit(0), events(0) {} }; map info; Mutex lock; public: PGRecoveryStats() : lock("PGRecoverStats::lock") {} void reset() { std::lock_guard l(lock); info.clear(); } void dump(ostream& out) { std::lock_guard l(lock); for (map::iterator p = info.begin(); p != info.end(); ++p) { per_state_info& i = p->second; out << i.enter << "\t" << i.exit << "\t" << i.events << "\t" << i.event_time << "\t" << i.total_time << "\t" << i.min_time << "\t" << i.max_time << "\t" << p->first << "\n"; } } void dump_formatted(Formatter *f) { std::lock_guard l(lock); f->open_array_section("pg_recovery_stats"); for (map::iterator p = info.begin(); p != info.end(); ++p) { per_state_info& i = p->second; f->open_object_section("recovery_state"); f->dump_int("enter", i.enter); f->dump_int("exit", i.exit); f->dump_int("events", i.events); f->dump_stream("event_time") << i.event_time; f->dump_stream("total_time") << i.total_time; f->dump_stream("min_time") << i.min_time; f->dump_stream("max_time") << i.max_time; vector states; get_str_vec(p->first, "/", states); f->open_array_section("nested_states"); for (vector::iterator st = states.begin(); st != states.end(); ++st) { f->dump_string("state", *st); } f->close_section(); f->close_section(); } f->close_section(); } void log_enter(const char *s) { std::lock_guard l(lock); info[s].enter++; } void log_exit(const char *s, utime_t dur, uint64_t events, utime_t event_dur) { std::lock_guard l(lock); per_state_info &i = info[s]; i.exit++; i.total_time += dur; if (dur > i.max_time) i.max_time = dur; if (dur < i.min_time || i.min_time == utime_t()) i.min_time = dur; i.events += events; i.event_time += event_dur; } }; /** PG - Replica Placement Group * */ class PG : public DoutPrefixProvider, public PeeringState::PeeringListener { friend class NamedState; friend class PeeringState; protected: PeeringState recovery_state; public: using PeeringCtx = PeeringState::PeeringCtx; protected: /** * Peering state information being moved to PeeringState */ pg_shard_t &primary; pg_shard_t &pg_whoami; pg_shard_t &up_primary; set &upset; set &actingset; set &acting_recovery_backfill; bool &dirty_info; bool &dirty_big_info; pg_info_t &info; PastIntervals &past_intervals; PGLog &pg_log; epoch_t &last_peering_reset; eversion_t &last_update_ondisk; eversion_t &last_complete_ondisk; eversion_t &last_update_applied; eversion_t &last_rollback_info_trimmed_to_applied; map &peer_info; map &peer_missing; set &peer_log_requested; set &peer_missing_requested; map &peer_last_complete_ondisk; eversion_t &min_last_complete_ondisk; eversion_t &pg_trim_to; set &backfill_targets; set &async_recovery_targets; set &might_have_unfound; MissingLoc &missing_loc; public: // -- members -- const spg_t pg_id; const coll_t coll; ObjectStore::CollectionHandle ch; // -- methods -- std::ostream& gen_prefix(std::ostream& out) const override; CephContext *get_cct() const override { return cct; } unsigned get_subsys() const override { return ceph_subsys_osd; } const OSDMapRef& get_osdmap() const { ceph_assert(is_locked()); return recovery_state.get_osdmap(); } epoch_t get_osdmap_epoch() const override { return recovery_state.get_osdmap()->get_epoch(); } PerfCounters &get_peering_perf() override; PerfCounters &get_perf_logger() override; void log_state_enter(const char *state) override; void log_state_exit( const char *state_name, utime_t enter_time, uint64_t events, utime_t event_dur) override; void lock_suspend_timeout(ThreadPool::TPHandle &handle) { handle.suspend_tp_timeout(); lock(); handle.reset_tp_timeout(); } void lock(bool no_lockdep = false) const; void unlock() const { //generic_dout(0) << this << " " << info.pgid << " unlock" << dendl; ceph_assert(!dirty_info); ceph_assert(!dirty_big_info); _lock.Unlock(); } bool is_locked() const { return _lock.is_locked(); } const spg_t& get_pgid() const { return pg_id; } const PGPool& get_pool() const { return pool; } uint64_t get_last_user_version() const { return info.last_user_version; } const pg_history_t& get_history() const { return info.history; } bool get_need_up_thru() const { return recovery_state.get_need_up_thru(); } epoch_t get_same_interval_since() const { return info.history.same_interval_since; } static void set_last_scrub_stamp( utime_t t, pg_history_t &history, pg_stat_t &stats) { stats.last_scrub_stamp = t; history.last_scrub_stamp = t; } void set_last_scrub_stamp(utime_t t) { recovery_state.update_stats( [=](auto &history, auto &stats) { set_last_scrub_stamp(t, history, stats); return true; }); } static void set_last_deep_scrub_stamp( utime_t t, pg_history_t &history, pg_stat_t &stats) { stats.last_deep_scrub_stamp = t; history.last_deep_scrub_stamp = t; } void set_last_deep_scrub_stamp(utime_t t) { recovery_state.update_stats( [=](auto &history, auto &stats) { set_last_deep_scrub_stamp(t, history, stats); return true; }); } bool is_deleting() const { return recovery_state.is_deleting(); } bool is_deleted() const { return recovery_state.is_deleted(); } bool is_replica() const { return recovery_state.is_replica(); } bool is_primary() const { return recovery_state.is_primary(); } bool pg_has_reset_since(epoch_t e) { ceph_assert(is_locked()); return recovery_state.pg_has_reset_since(e); } bool is_ec_pg() const { return recovery_state.is_ec_pg(); } int get_role() const { return recovery_state.get_role(); } const vector get_acting() const { return recovery_state.get_acting(); } int get_acting_primary() const { return recovery_state.get_acting_primary(); } pg_shard_t get_primary() const { return recovery_state.get_primary(); } const vector get_up() const { return recovery_state.get_up(); } int get_up_primary() const { return recovery_state.get_up_primary(); } const PastIntervals& get_past_intervals() const { return recovery_state.past_intervals; } bool is_acting_recovery_backfill(pg_shard_t osd) const { return recovery_state.is_acting_recovery_backfill(osd); } bool is_acting(pg_shard_t osd) const { return recovery_state.is_acting(osd); } bool is_up(pg_shard_t osd) const { return recovery_state.is_up(osd); } static bool has_shard(bool ec, const vector& v, pg_shard_t osd) { return PeeringState::has_shard(ec, v, osd); } /// initialize created PG void init( int role, const vector& up, int up_primary, const vector& acting, int acting_primary, const pg_history_t& history, const PastIntervals& pim, bool backfill, ObjectStore::Transaction *t); /// read existing pg state off disk void read_state(ObjectStore *store); static int peek_map_epoch(ObjectStore *store, spg_t pgid, epoch_t *pepoch); static int get_latest_struct_v() { return latest_struct_v; } static int get_compat_struct_v() { return compat_struct_v; } static int read_info( ObjectStore *store, spg_t pgid, const coll_t &coll, pg_info_t &info, PastIntervals &past_intervals, __u8 &); static bool _has_removal_flag(ObjectStore *store, spg_t pgid); void rm_backoff(BackoffRef b); void update_snap_mapper_bits(uint32_t bits) { snap_mapper.update_bits(bits); } void start_split_stats(const set& childpgs, vector *v); virtual void split_colls( spg_t child, int split_bits, int seed, const pg_pool_t *pool, ObjectStore::Transaction *t) = 0; void split_into(pg_t child_pgid, PG *child, unsigned split_bits); void merge_from(map& sources, PeeringCtx *rctx, unsigned split_bits, const pg_merge_meta_t& last_pg_merge_meta); void finish_split_stats(const object_stat_sum_t& stats, ObjectStore::Transaction *t); void scrub(epoch_t queued, ThreadPool::TPHandle &handle); void reg_next_scrub(); void unreg_next_scrub(); void queue_want_pg_temp(const vector &wanted) override; void clear_want_pg_temp() override; void on_new_interval() override; virtual void plpg_on_new_interval() = 0; void on_role_change() override; virtual void plpg_on_role_change() = 0; void on_pool_change() override; virtual void plpg_on_pool_change() = 0; void on_info_history_change() override; void scrub_requested(bool deep, bool repair) override; uint64_t get_snap_trimq_size() const override { return snap_trimq.size(); } void clear_publish_stats() override; void clear_primary_state() override; epoch_t oldest_stored_osdmap() override; LogChannel &get_clog() override; void schedule_event_after( PGPeeringEventRef event, float delay) override; void request_local_background_io_reservation( unsigned priority, PGPeeringEventRef on_grant, PGPeeringEventRef on_preempt) override; void update_local_background_io_priority( unsigned priority) override; void cancel_local_background_io_reservation() override; void request_remote_recovery_reservation( unsigned priority, PGPeeringEventRef on_grant, PGPeeringEventRef on_preempt) override; void cancel_remote_recovery_reservation() override; void schedule_event_on_commit( ObjectStore::Transaction &t, PGPeeringEventRef on_commit) override; void on_active_exit() override; Context *on_clean() override { if (is_active()) { kick_snap_trim(); } requeue_ops(waiting_for_clean_to_primary_repair); return finish_recovery(); } void on_activate(interval_set snaps) override { ceph_assert(scrubber.callbacks.empty()); ceph_assert(callbacks_for_degraded_object.empty()); snap_trimq = snaps; release_pg_backoffs(); projected_last_update = info.last_update; } void on_activate_committed() override; void on_active_actmap() override; void on_active_advmap(const OSDMapRef &osdmap) override; void on_backfill_reserved() override; void on_backfill_canceled() override; void on_recovery_reserved() override; bool is_forced_recovery_or_backfill() const { return recovery_state.is_forced_recovery_or_backfill(); } PGLog::LogEntryHandlerRef get_log_handler( ObjectStore::Transaction *t) override { return std::make_unique(this, t); } void do_delete_work(ObjectStore::Transaction *t) override; void clear_ready_to_merge() override; void set_not_ready_to_merge_target(pg_t pgid, pg_t src) override; void set_not_ready_to_merge_source(pg_t pgid) override; void set_ready_to_merge_target(eversion_t lu, epoch_t les, epoch_t lec) override; void set_ready_to_merge_source(eversion_t lu) override; void send_pg_created(pg_t pgid) override; void queue_peering_event(PGPeeringEventRef evt); void do_peering_event(PGPeeringEventRef evt, PeeringCtx *rcx); void queue_null(epoch_t msg_epoch, epoch_t query_epoch); void queue_flushed(epoch_t started_at); void handle_advance_map( OSDMapRef osdmap, OSDMapRef lastmap, vector& newup, int up_primary, vector& newacting, int acting_primary, PeeringCtx *rctx); void handle_activate_map(PeeringCtx *rctx); void handle_initialize(PeeringCtx *rctx); void handle_query_state(Formatter *f); /** * @param ops_begun returns how many recovery ops the function started * @returns true if any useful work was accomplished; false otherwise */ virtual bool start_recovery_ops( uint64_t max, ThreadPool::TPHandle &handle, uint64_t *ops_begun) = 0; // more work after the above, but with a PeeringCtx void find_unfound(epoch_t queued, PeeringCtx *rctx); virtual void get_watchers(std::list *ls) = 0; void dump_pgstate_history(Formatter *f); void dump_missing(Formatter *f); void get_pg_stats(std::function f); void with_heartbeat_peers(std::function f); void shutdown(); virtual void on_shutdown() = 0; bool get_must_scrub() const { return scrubber.must_scrub; } bool sched_scrub(); virtual void do_request( OpRequestRef& op, ThreadPool::TPHandle &handle ) = 0; virtual void clear_cache() = 0; virtual int get_cache_obj_count() = 0; virtual void snap_trimmer(epoch_t epoch_queued) = 0; virtual int do_command( cmdmap_t cmdmap, ostream& ss, bufferlist& idata, bufferlist& odata, ConnectionRef conn, ceph_tid_t tid) = 0; virtual bool agent_work(int max) = 0; virtual bool agent_work(int max, int agent_flush_quota) = 0; virtual void agent_stop() = 0; virtual void agent_delay() = 0; virtual void agent_clear() = 0; virtual void agent_choose_mode_restart() = 0; struct C_DeleteMore : public Context { PGRef pg; epoch_t epoch; C_DeleteMore(PG *p, epoch_t e) : pg(p), epoch(e) {} void finish(int r) override { ceph_abort(); } void complete(int r) override; }; void _delete_some(ObjectStore::Transaction *t); virtual void set_dynamic_perf_stats_queries( const std::list &queries) { } virtual void get_dynamic_perf_stats(DynamicPerfStats *stats) { } // reference counting #ifdef PG_DEBUG_REFS uint64_t get_with_id(); void put_with_id(uint64_t); void dump_live_ids(); #endif void get(const char* tag); void put(const char* tag); int get_num_ref() { return ref; } // ctor PG(OSDService *o, OSDMapRef curmap, const PGPool &pool, spg_t p); ~PG() override; // prevent copying explicit PG(const PG& rhs) = delete; PG& operator=(const PG& rhs) = delete; protected: // ------------- // protected OSDService *osd; public: OSDShard *osd_shard = nullptr; OSDShardPGSlot *pg_slot = nullptr; protected: CephContext *cct; const PGPool &pool; // locking and reference counting. // I destroy myself when the reference count hits zero. // lock() should be called before doing anything. // get() should be called on pointer copy (to another thread, etc.). // put() should be called on destruction of some previously copied pointer. // unlock() when done with the current pointer (_most common_). mutable Mutex _lock = {"PG::_lock"}; std::atomic ref{0}; #ifdef PG_DEBUG_REFS Mutex _ref_id_lock = {"PG::_ref_id_lock"}; map _live_ids; map _tag_counts; uint64_t _ref_id = 0; friend uint64_t get_with_id(PG *pg) { return pg->get_with_id(); } friend void put_with_id(PG *pg, uint64_t id) { return pg->put_with_id(id); } #endif private: friend void intrusive_ptr_add_ref(PG *pg) { pg->get("intptr"); } friend void intrusive_ptr_release(PG *pg) { pg->put("intptr"); } // ===================== protected: OSDriver osdriver; SnapMapper snap_mapper; bool eio_errors_to_process = false; virtual PGBackend *get_pgbackend() = 0; virtual const PGBackend* get_pgbackend() const = 0; protected: void requeue_map_waiters(); protected: ZTracer::Endpoint trace_endpoint; protected: __u8 info_struct_v = 0; static const __u8 latest_struct_v = 10; // v10 is the new past_intervals encoding // v9 was fastinfo_key addition // v8 was the move to a per-pg pgmeta object // v7 was SnapMapper addition in 86658392516d5175b2756659ef7ffaaf95b0f8ad // (first appeared in cuttlefish). static const __u8 compat_struct_v = 10; void upgrade(ObjectStore *store); protected: ghobject_t pgmeta_oid; // ------------------ interval_set snap_trimq; /* You should not use these items without taking their respective queue locks * (if they have one) */ xlist::item stat_queue_item; bool scrub_registered = false; bool scrub_queued; bool recovery_queued; int recovery_ops_active; set waiting_on_backfill; #ifdef DEBUG_RECOVERY_OIDS multiset recovering_oids; #endif public: bool dne() { return info.dne(); } virtual void send_cluster_message( int osd, Message *m, epoch_t epoch, bool share_map_update) override; protected: epoch_t get_last_peering_reset() const { return last_peering_reset; } /* heartbeat peers */ void set_probe_targets(const set &probe_set) override; void clear_probe_targets() override; Mutex heartbeat_peer_lock; set heartbeat_peers; set probe_targets; public: /** * BackfillInterval * * Represents the objects in a range [begin, end) * * Possible states: * 1) begin == end == hobject_t() indicates the the interval is unpopulated * 2) Else, objects contains all objects in [begin, end) */ struct BackfillInterval { // info about a backfill interval on a peer eversion_t version; /// version at which the scan occurred map objects; hobject_t begin; hobject_t end; /// clear content void clear() { *this = BackfillInterval(); } /// clear objects list only void clear_objects() { objects.clear(); } /// reinstantiate with a new start+end position and sort order void reset(hobject_t start) { clear(); begin = end = start; } /// true if there are no objects in this interval bool empty() const { return objects.empty(); } /// true if interval extends to the end of the range bool extends_to_end() const { return end.is_max(); } /// removes items <= soid and adjusts begin to the first object void trim_to(const hobject_t &soid) { trim(); while (!objects.empty() && objects.begin()->first <= soid) { pop_front(); } } /// Adjusts begin to the first object void trim() { if (!objects.empty()) begin = objects.begin()->first; else begin = end; } /// drop first entry, and adjust @begin accordingly void pop_front() { ceph_assert(!objects.empty()); objects.erase(objects.begin()); trim(); } /// dump void dump(Formatter *f) const { f->dump_stream("begin") << begin; f->dump_stream("end") << end; f->open_array_section("objects"); for (map::const_iterator i = objects.begin(); i != objects.end(); ++i) { f->open_object_section("object"); f->dump_stream("object") << i->first; f->dump_stream("version") << i->second; f->close_section(); } f->close_section(); } }; protected: BackfillInterval backfill_info; map peer_backfill_info; bool backfill_reserving; // The primary's num_bytes and local num_bytes for this pg, only valid // during backfill for non-primary shards. // Both of these are adjusted for EC to reflect the on-disk bytes std::atomic primary_num_bytes = 0; std::atomic local_num_bytes = 0; public: bool is_backfill_targets(pg_shard_t osd) { return recovery_state.is_backfill_targets(osd); } // Space reserved for backfill is primary_num_bytes - local_num_bytes // Don't care that difference itself isn't atomic uint64_t get_reserved_num_bytes() { int64_t primary = primary_num_bytes.load(); int64_t local = local_num_bytes.load(); if (primary > local) return primary - local; else return 0; } bool is_remote_backfilling() { return primary_num_bytes.load() > 0; } bool try_reserve_recovery_space(int64_t primary, int64_t local) override; void unreserve_recovery_space() override; // If num_bytes are inconsistent and local_num- goes negative // it's ok, because it would then be ignored. // The value of num_bytes could be negative, // but we don't let local_num_bytes go negative. void add_local_num_bytes(int64_t num_bytes) { if (num_bytes) { int64_t prev_bytes = local_num_bytes.load(); int64_t new_bytes; do { new_bytes = prev_bytes + num_bytes; if (new_bytes < 0) new_bytes = 0; } while(!local_num_bytes.compare_exchange_weak(prev_bytes, new_bytes)); } } void sub_local_num_bytes(int64_t num_bytes) { ceph_assert(num_bytes >= 0); if (num_bytes) { int64_t prev_bytes = local_num_bytes.load(); int64_t new_bytes; do { new_bytes = prev_bytes - num_bytes; if (new_bytes < 0) new_bytes = 0; } while(!local_num_bytes.compare_exchange_weak(prev_bytes, new_bytes)); } } // The value of num_bytes could be negative, // but we don't let info.stats.stats.sum.num_bytes go negative. void add_num_bytes(int64_t num_bytes) { ceph_assert(_lock.is_locked_by_me()); if (num_bytes) { info.stats.stats.sum.num_bytes += num_bytes; if (info.stats.stats.sum.num_bytes < 0) { info.stats.stats.sum.num_bytes = 0; } } } void sub_num_bytes(int64_t num_bytes) { ceph_assert(_lock.is_locked_by_me()); ceph_assert(num_bytes >= 0); if (num_bytes) { info.stats.stats.sum.num_bytes -= num_bytes; if (info.stats.stats.sum.num_bytes < 0) { info.stats.stats.sum.num_bytes = 0; } } } // Only used in testing so not worried about needing the PG lock here int64_t get_stats_num_bytes() { Mutex::Locker l(_lock); int num_bytes = info.stats.stats.sum.num_bytes; if (pool.info.is_erasure()) { num_bytes /= (int)get_pgbackend()->get_ec_data_chunk_count(); // Round up each object by a stripe num_bytes += get_pgbackend()->get_ec_stripe_chunk_size() * info.stats.stats.sum.num_objects; } int64_t lnb = local_num_bytes.load(); if (lnb && lnb != num_bytes) { lgeneric_dout(cct, 0) << this << " " << info.pgid << " num_bytes mismatch " << lnb << " vs stats " << info.stats.stats.sum.num_bytes << " / chunk " << get_pgbackend()->get_ec_data_chunk_count() << dendl; } return num_bytes; } protected: /* * blocked request wait hierarchy * * In order to preserve request ordering we need to be careful about the * order in which blocked requests get requeued. Generally speaking, we * push the requests back up to the op_wq in reverse order (most recent * request first) so that they come back out again in the original order. * However, because there are multiple wait queues, we need to requeue * waitlists in order. Generally speaking, we requeue the wait lists * that are checked first. * * Here are the various wait lists, in the order they are used during * request processing, with notes: * * - waiting_for_map * - may start or stop blocking at any time (depending on client epoch) * - waiting_for_peered * - !is_peered() * - only starts blocking on interval change; never restarts * - waiting_for_flush * - flushes_in_progress * - waiting for final flush during activate * - waiting_for_active * - !is_active() * - only starts blocking on interval change; never restarts * - waiting_for_scrub * - starts and stops blocking for varying intervals during scrub * - waiting_for_unreadable_object * - never restarts once object is readable (* except for EIO?) * - waiting_for_degraded_object * - never restarts once object is writeable (* except for EIO?) * - waiting_for_blocked_object * - starts and stops based on proxied op activity * - obc rwlocks * - starts and stops based on read/write activity * * Notes: * * 1. During and interval change, we requeue *everything* in the above order. * * 2. When an obc rwlock is released, we check for a scrub block and requeue * the op there if it applies. We ignore the unreadable/degraded/blocked * queues because we assume they cannot apply at that time (this is * probably mostly true). * * 3. The requeue_ops helper will push ops onto the waiting_for_map list if * it is non-empty. * * These three behaviors are generally sufficient to maintain ordering, with * the possible exception of cases where we make an object degraded or * unreadable that was previously okay, e.g. when scrub or op processing * encounter an unexpected error. FIXME. */ // ops with newer maps than our (or blocked behind them) // track these by client, since inter-request ordering doesn't otherwise // matter. unordered_map> waiting_for_map; // ops waiting on peered list waiting_for_peered; // ops waiting on active (require peered as well) list waiting_for_active; list waiting_for_flush; list waiting_for_scrub; list waiting_for_cache_not_full; list waiting_for_clean_to_primary_repair; map> waiting_for_unreadable_object, waiting_for_degraded_object, waiting_for_blocked_object; set objects_blocked_on_cache_full; map objects_blocked_on_degraded_snap; map objects_blocked_on_snap_promotion; // Callbacks should assume pg (and nothing else) is locked map> callbacks_for_degraded_object; map > > waiting_for_ondisk; void requeue_object_waiters(map>& m); void requeue_op(OpRequestRef op); void requeue_ops(list &l); // stats that persist lazily object_stat_collection_t unstable_stats; // publish stats Mutex pg_stats_publish_lock; bool pg_stats_publish_valid; pg_stat_t pg_stats_publish; friend class TestOpsSocketHook; void publish_stats_to_osd() override; bool needs_recovery() const { return recovery_state.needs_recovery(); } bool needs_backfill() const { return recovery_state.needs_backfill(); } bool all_unfound_are_queried_or_lost(const OSDMapRef osdmap) const; virtual void calc_trim_to() = 0; virtual void calc_trim_to_aggressive() = 0; struct PGLogEntryHandler : public PGLog::LogEntryHandler { PG *pg; ObjectStore::Transaction *t; PGLogEntryHandler(PG *pg, ObjectStore::Transaction *t) : pg(pg), t(t) {} // LogEntryHandler void remove(const hobject_t &hoid) override { pg->get_pgbackend()->remove(hoid, t); } void try_stash(const hobject_t &hoid, version_t v) override { pg->get_pgbackend()->try_stash(hoid, v, t); } void rollback(const pg_log_entry_t &entry) override { ceph_assert(entry.can_rollback()); pg->get_pgbackend()->rollback(entry, t); } void rollforward(const pg_log_entry_t &entry) override { pg->get_pgbackend()->rollforward(entry, t); } void trim(const pg_log_entry_t &entry) override { pg->get_pgbackend()->trim(entry, t); } }; void update_object_snap_mapping( ObjectStore::Transaction *t, const hobject_t &soid, const set &snaps); void clear_object_snap_mapping( ObjectStore::Transaction *t, const hobject_t &soid); void remove_snap_mapped_object( ObjectStore::Transaction& t, const hobject_t& soid); bool have_unfound() const { return recovery_state.have_unfound(); } uint64_t get_num_unfound() const { return recovery_state.get_num_unfound(); } virtual void check_local() = 0; void purge_strays(); void update_heartbeat_peers(set peers) override; Context *finish_sync_event; Context *finish_recovery(); void _finish_recovery(Context *c); struct C_PG_FinishRecovery : public Context { PGRef pg; explicit C_PG_FinishRecovery(PG *p) : pg(p) {} void finish(int r) override { pg->_finish_recovery(this); } }; void cancel_recovery(); void clear_recovery_state(); virtual void _clear_recovery_state() = 0; void start_recovery_op(const hobject_t& soid); void finish_recovery_op(const hobject_t& soid, bool dequeue=false); virtual void _split_into(pg_t child_pgid, PG *child, unsigned split_bits) = 0; friend class C_OSD_RepModify_Commit; friend class C_DeleteMore; // -- backoff -- Mutex backoff_lock; // orders inside Backoff::lock map> backoffs; void add_backoff(SessionRef s, const hobject_t& begin, const hobject_t& end); void release_backoffs(const hobject_t& begin, const hobject_t& end); void release_backoffs(const hobject_t& o) { release_backoffs(o, o); } void clear_backoffs(); void add_pg_backoff(SessionRef s) { hobject_t begin = info.pgid.pgid.get_hobj_start(); hobject_t end = info.pgid.pgid.get_hobj_end(pool.info.get_pg_num()); add_backoff(s, begin, end); } void release_pg_backoffs() { hobject_t begin = info.pgid.pgid.get_hobj_start(); hobject_t end = info.pgid.pgid.get_hobj_end(pool.info.get_pg_num()); release_backoffs(begin, end); } // -- scrub -- public: struct Scrubber { Scrubber(); ~Scrubber(); // metadata set reserved_peers; bool reserved, reserve_failed; epoch_t epoch_start; // common to both scrubs bool active; set waiting_on_whom; int shallow_errors; int deep_errors; int fixed; ScrubMap primary_scrubmap; ScrubMapBuilder primary_scrubmap_pos; epoch_t replica_scrub_start = 0; ScrubMap replica_scrubmap; ScrubMapBuilder replica_scrubmap_pos; map received_maps; OpRequestRef active_rep_scrub; utime_t scrub_reg_stamp; // stamp we registered for omap_stat_t omap_stats = (const struct omap_stat_t){ 0 }; // For async sleep bool sleeping = false; bool needs_sleep = true; utime_t sleep_start; // flags to indicate explicitly requested scrubs (by admin) bool must_scrub, must_deep_scrub, must_repair; // Priority to use for scrub scheduling unsigned priority = 0; // this flag indicates whether we would like to do auto-repair of the PG or not bool auto_repair; // this flag indicates that we are scrubbing post repair to verify everything is fixed bool check_repair; // this flag indicates that if a regular scrub detects errors <= osd_scrub_auto_repair_num_errors, // we should deep scrub in order to auto repair bool deep_scrub_on_error; // Maps from objects with errors to missing/inconsistent peers map> missing; map> inconsistent; // Map from object with errors to good peers map >> authoritative; // Cleaned map pending snap metadata scrub ScrubMap cleaned_meta_map; void clean_meta_map(ScrubMap &for_meta_scrub) { if (end.is_max() || cleaned_meta_map.objects.empty()) { cleaned_meta_map.swap(for_meta_scrub); } else { auto iter = cleaned_meta_map.objects.end(); --iter; // not empty, see if clause auto begin = cleaned_meta_map.objects.begin(); if (iter->first.has_snapset()) { ++iter; } else { while (iter != begin) { auto next = iter--; if (next->first.get_head() != iter->first.get_head()) { ++iter; break; } } } for_meta_scrub.objects.insert(begin, iter); cleaned_meta_map.objects.erase(begin, iter); } } // digest updates which we are waiting on int num_digest_updates_pending; // chunky scrub hobject_t start, end; // [start,end) hobject_t max_end; // Largest end that may have been sent to replicas eversion_t subset_last_update; // chunky scrub state enum State { INACTIVE, NEW_CHUNK, WAIT_PUSHES, WAIT_LAST_UPDATE, BUILD_MAP, BUILD_MAP_DONE, WAIT_REPLICAS, COMPARE_MAPS, WAIT_DIGEST_UPDATES, FINISH, BUILD_MAP_REPLICA, } state; std::unique_ptr store; // deep scrub bool deep; int preempt_left; int preempt_divisor; list callbacks; void add_callback(Context *context) { callbacks.push_back(context); } void run_callbacks() { list to_run; to_run.swap(callbacks); for (list::iterator i = to_run.begin(); i != to_run.end(); ++i) { (*i)->complete(0); } } static const char *state_string(const PG::Scrubber::State& state) { const char *ret = NULL; switch( state ) { case INACTIVE: ret = "INACTIVE"; break; case NEW_CHUNK: ret = "NEW_CHUNK"; break; case WAIT_PUSHES: ret = "WAIT_PUSHES"; break; case WAIT_LAST_UPDATE: ret = "WAIT_LAST_UPDATE"; break; case BUILD_MAP: ret = "BUILD_MAP"; break; case BUILD_MAP_DONE: ret = "BUILD_MAP_DONE"; break; case WAIT_REPLICAS: ret = "WAIT_REPLICAS"; break; case COMPARE_MAPS: ret = "COMPARE_MAPS"; break; case WAIT_DIGEST_UPDATES: ret = "WAIT_DIGEST_UPDATES"; break; case FINISH: ret = "FINISH"; break; case BUILD_MAP_REPLICA: ret = "BUILD_MAP_REPLICA"; break; } return ret; } bool is_chunky_scrub_active() const { return state != INACTIVE; } // clear all state void reset() { active = false; waiting_on_whom.clear(); if (active_rep_scrub) { active_rep_scrub = OpRequestRef(); } received_maps.clear(); must_scrub = false; must_deep_scrub = false; must_repair = false; auto_repair = false; check_repair = false; deep_scrub_on_error = false; state = PG::Scrubber::INACTIVE; start = hobject_t(); end = hobject_t(); max_end = hobject_t(); subset_last_update = eversion_t(); shallow_errors = 0; deep_errors = 0; fixed = 0; omap_stats = (const struct omap_stat_t){ 0 }; deep = false; run_callbacks(); inconsistent.clear(); missing.clear(); authoritative.clear(); num_digest_updates_pending = 0; primary_scrubmap = ScrubMap(); primary_scrubmap_pos.reset(); replica_scrubmap = ScrubMap(); replica_scrubmap_pos.reset(); cleaned_meta_map = ScrubMap(); sleeping = false; needs_sleep = true; sleep_start = utime_t(); } void create_results(const hobject_t& obj); void cleanup_store(ObjectStore::Transaction *t); } scrubber; protected: bool scrub_after_recovery; int active_pushes; bool scrub_can_preempt = false; bool scrub_preempted = false; // we allow some number of preemptions of the scrub, which mean we do // not block. then we start to block. once we start blocking, we do // not stop until the scrub range is completed. bool write_blocked_by_scrub(const hobject_t &soid); /// true if the given range intersects the scrub interval in any way bool range_intersects_scrub(const hobject_t &start, const hobject_t& end); void repair_object( const hobject_t& soid, list > *ok_peers, pg_shard_t bad_peer); void chunky_scrub(ThreadPool::TPHandle &handle); void scrub_compare_maps(); /** * return true if any inconsistency/missing is repaired, false otherwise */ bool scrub_process_inconsistent(); bool ops_blocked_by_scrub() const; void scrub_finish(); void scrub_clear_state(bool keep_repair = false); void _scan_snaps(ScrubMap &map); void _repair_oinfo_oid(ScrubMap &map); void _scan_rollback_obs(const vector &rollback_obs); void _request_scrub_map(pg_shard_t replica, eversion_t version, hobject_t start, hobject_t end, bool deep, bool allow_preemption); int build_scrub_map_chunk( ScrubMap &map, ScrubMapBuilder &pos, hobject_t start, hobject_t end, bool deep, ThreadPool::TPHandle &handle); /** * returns true if [begin, end) is good to scrub at this time * a false return value obliges the implementer to requeue scrub when the * condition preventing scrub clears */ virtual bool _range_available_for_scrub( const hobject_t &begin, const hobject_t &end) = 0; virtual void scrub_snapshot_metadata( ScrubMap &map, const std::map, boost::optional>> &missing_digest) { } virtual void _scrub_clear_state() { } virtual void _scrub_finish() { } void clear_scrub_reserved(); void scrub_reserve_replicas(); void scrub_unreserve_replicas(); bool scrub_all_replicas_reserved() const; void replica_scrub( OpRequestRef op, ThreadPool::TPHandle &handle); void do_replica_scrub_map(OpRequestRef op); void handle_scrub_reserve_request(OpRequestRef op); void handle_scrub_reserve_grant(OpRequestRef op, pg_shard_t from); void handle_scrub_reserve_reject(OpRequestRef op, pg_shard_t from); void handle_scrub_reserve_release(OpRequestRef op); // -- recovery state -- struct QueuePeeringEvt : Context { PGRef pg; PGPeeringEventRef evt; template QueuePeeringEvt(PG *pg, epoch_t epoch, EVT evt) : pg(pg), evt(std::make_shared(epoch, epoch, evt)) {} QueuePeeringEvt(PG *pg, PGPeeringEventRef evt) : pg(pg), evt(std::move(evt)) {} void finish(int r) override { pg->lock(); pg->queue_peering_event(std::move(evt)); pg->unlock(); } }; public: int pg_stat_adjust(osd_stat_t *new_stat); protected: bool delete_needs_sleep = false; protected: bool hard_limit_pglog() const { return (get_osdmap()->test_flag(CEPH_OSDMAP_PGLOG_HARDLIMIT)); } bool state_test(uint64_t m) const { return recovery_state.state_test(m); } void state_set(uint64_t m) { recovery_state.state_set(m); } void state_clear(uint64_t m) { recovery_state.state_clear(m); } bool is_complete() const { return recovery_state.is_complete(); } bool should_send_notify() const { return recovery_state.should_send_notify(); } bool is_active() const { return recovery_state.is_active(); } bool is_activating() const { return recovery_state.is_activating(); } bool is_peering() const { return recovery_state.is_peering(); } bool is_down() const { return recovery_state.is_down(); } bool is_recovery_unfound() const { return recovery_state.is_recovery_unfound(); } bool is_backfill_unfound() const { return recovery_state.is_backfill_unfound(); } bool is_incomplete() const { return recovery_state.is_incomplete(); } bool is_clean() const { return recovery_state.is_clean(); } bool is_degraded() const { return recovery_state.is_degraded(); } bool is_undersized() const { return recovery_state.is_undersized(); } bool is_scrubbing() const { return state_test(PG_STATE_SCRUBBING); } bool is_remapped() const { return recovery_state.is_remapped(); } bool is_peered() const { return recovery_state.is_peered(); } bool is_recovering() const { return recovery_state.is_recovering(); } bool is_premerge() const { return recovery_state.is_premerge(); } bool is_repair() const { return recovery_state.is_repair(); } bool is_empty() const { return recovery_state.is_empty(); } // pg on-disk state void do_pending_flush(); public: static void _create(ObjectStore::Transaction& t, spg_t pgid, int bits); static void _init(ObjectStore::Transaction& t, spg_t pgid, const pg_pool_t *pool); virtual void prepare_write( pg_info_t &info, pg_info_t &last_written_info, PastIntervals &past_intervals, PGLog &pglog, bool dirty_info, bool dirty_big_info, bool need_write_epoch, ObjectStore::Transaction &t) override; static int _prepare_write_info( CephContext* cct, map *km, epoch_t epoch, pg_info_t &info, pg_info_t &last_written_info, PastIntervals &past_intervals, bool dirty_big_info, bool dirty_epoch, bool try_fast_info, PerfCounters *logger = nullptr); void write_if_dirty(PeeringCtx *rctx) { write_if_dirty(*rctx->transaction); } protected: void write_if_dirty(ObjectStore::Transaction& t) { recovery_state.write_if_dirty(t); } PGLog::IndexedLog projected_log; bool check_in_progress_op( const osd_reqid_t &r, eversion_t *version, version_t *user_version, int *return_code) const; eversion_t projected_last_update; eversion_t get_next_version() const { eversion_t at_version( get_osdmap_epoch(), projected_last_update.version+1); ceph_assert(at_version > info.last_update); ceph_assert(at_version > pg_log.get_head()); ceph_assert(at_version > projected_last_update); return at_version; } void add_log_entry(const pg_log_entry_t& e, bool applied); void append_log( const vector& logv, eversion_t trim_to, eversion_t roll_forward_to, ObjectStore::Transaction &t, bool transaction_applied = true, bool async = false); bool check_log_for_corruption(ObjectStore *store); std::string get_corrupt_pg_log_name() const; void update_snap_map( const vector &log_entries, ObjectStore::Transaction& t); void filter_snapc(vector &snaps); virtual void kick_snap_trim() = 0; virtual void snap_trimmer_scrub_complete() = 0; bool requeue_scrub(bool high_priority = false); void queue_recovery(); bool queue_scrub(); unsigned get_scrub_priority(); bool try_flush_or_schedule_async() override; void start_flush_on_transaction( ObjectStore::Transaction *t) override; void update_history(const pg_history_t& history) { recovery_state.update_history(history); } // OpRequest queueing bool can_discard_op(OpRequestRef& op); bool can_discard_scan(OpRequestRef op); bool can_discard_backfill(OpRequestRef op); bool can_discard_request(OpRequestRef& op); template bool can_discard_replica_op(OpRequestRef& op); bool old_peering_msg(epoch_t reply_epoch, epoch_t query_epoch); bool old_peering_evt(PGPeeringEventRef evt) { return old_peering_msg(evt->get_epoch_sent(), evt->get_epoch_requested()); } static bool have_same_or_newer_map(epoch_t cur_epoch, epoch_t e) { return e <= cur_epoch; } bool have_same_or_newer_map(epoch_t e) { return e <= get_osdmap_epoch(); } bool op_has_sufficient_caps(OpRequestRef& op); // abstract bits friend class FlushState; friend ostream& operator<<(ostream& out, const PG& pg); }; ostream& operator<<(ostream& out, const PG::BackfillInterval& bi); #endif