/* * Interface functions. * Copyright (C) 1997, 98 Kunihiro Ishiguro * * This file is part of GNU Zebra. * * GNU Zebra is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published * by the Free Software Foundation; either version 2, or (at your * option) any later version. * * GNU Zebra is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; see the file COPYING; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include "linklist.h" #include "vector.h" #include "lib_errors.h" #include "vty.h" #include "command.h" #include "vrf.h" #include "if.h" #include "sockunion.h" #include "prefix.h" #include "memory.h" #include "table.h" #include "buffer.h" #include "log.h" DEFINE_MTYPE(LIB, IF, "Interface") DEFINE_MTYPE_STATIC(LIB, CONNECTED, "Connected") DEFINE_MTYPE_STATIC(LIB, NBR_CONNECTED, "Neighbor Connected") DEFINE_MTYPE(LIB, CONNECTED_LABEL, "Connected interface label") DEFINE_MTYPE_STATIC(LIB, IF_LINK_PARAMS, "Informational Link Parameters") static int if_cmp_func(const struct interface *, const struct interface *); static int if_cmp_index_func(const struct interface *ifp1, const struct interface *ifp2); RB_GENERATE(if_name_head, interface, name_entry, if_cmp_func); RB_GENERATE(if_index_head, interface, index_entry, if_cmp_index_func); DEFINE_QOBJ_TYPE(interface) DEFINE_HOOK(if_add, (struct interface * ifp), (ifp)) DEFINE_KOOH(if_del, (struct interface * ifp), (ifp)) /* List of interfaces in only the default VRF */ int ptm_enable = 0; /* Compare interface names, returning an integer greater than, equal to, or * less than 0, (following the strcmp convention), according to the * relationship between ifp1 and ifp2. Interface names consist of an * alphabetic prefix and a numeric suffix. The primary sort key is * lexicographic by name, and then numeric by number. No number sorts * before all numbers. Examples: de0 < de1, de100 < fxp0 < xl0, devpty < * devpty0, de0 < del0 */ int if_cmp_name_func(char *p1, char *p2) { unsigned int l1, l2; long int x1, x2; int res; while (*p1 && *p2) { /* look up to any number */ l1 = strcspn(p1, "0123456789"); l2 = strcspn(p2, "0123456789"); /* name lengths are different -> compare names */ if (l1 != l2) return (strcmp(p1, p2)); /* Note that this relies on all numbers being less than all * letters, so * that de0 < del0. */ res = strncmp(p1, p2, l1); /* names are different -> compare them */ if (res) return res; /* with identical name part, go to numeric part */ p1 += l1; p2 += l1; if (!*p1 && !*p2) return 0; if (!*p1) return -1; if (!*p2) return 1; x1 = strtol(p1, &p1, 10); x2 = strtol(p2, &p2, 10); /* let's compare numbers now */ if (x1 < x2) return -1; if (x1 > x2) return 1; /* numbers were equal, lets do it again.. (it happens with name like "eth123.456:789") */ } if (*p1) return 1; if (*p2) return -1; return 0; } static int if_cmp_func(const struct interface *ifp1, const struct interface *ifp2) { return if_cmp_name_func((char *)ifp1->name, (char *)ifp2->name); } static int if_cmp_index_func(const struct interface *ifp1, const struct interface *ifp2) { return ifp1->ifindex - ifp2->ifindex; } /* Create new interface structure. */ struct interface *if_create(const char *name, vrf_id_t vrf_id) { struct vrf *vrf = vrf_get(vrf_id, NULL); struct interface *ifp; ifp = XCALLOC(MTYPE_IF, sizeof(struct interface)); ifp->ifindex = IFINDEX_INTERNAL; assert(name); strlcpy(ifp->name, name, sizeof(ifp->name)); ifp->vrf_id = vrf_id; IFNAME_RB_INSERT(vrf, ifp); ifp->connected = list_new(); ifp->connected->del = (void (*)(void *))connected_free; ifp->nbr_connected = list_new(); ifp->nbr_connected->del = (void (*)(void *))nbr_connected_free; /* Enable Link-detection by default */ SET_FLAG(ifp->status, ZEBRA_INTERFACE_LINKDETECTION); QOBJ_REG(ifp, interface); hook_call(if_add, ifp); return ifp; } /* Create new interface structure. */ void if_update_to_new_vrf(struct interface *ifp, vrf_id_t vrf_id) { struct vrf *vrf; /* remove interface from old master vrf list */ vrf = vrf_lookup_by_id(ifp->vrf_id); if (vrf) { IFNAME_RB_REMOVE(vrf, ifp); if (ifp->ifindex != IFINDEX_INTERNAL) IFINDEX_RB_REMOVE(vrf, ifp); } ifp->vrf_id = vrf_id; vrf = vrf_get(ifp->vrf_id, NULL); IFNAME_RB_INSERT(vrf, ifp); if (ifp->ifindex != IFINDEX_INTERNAL) IFINDEX_RB_INSERT(vrf, ifp); } /* Delete interface structure. */ void if_delete_retain(struct interface *ifp) { hook_call(if_del, ifp); QOBJ_UNREG(ifp); /* Free connected address list */ list_delete_all_node(ifp->connected); /* Free connected nbr address list */ list_delete_all_node(ifp->nbr_connected); } /* Delete and free interface structure. */ void if_delete(struct interface *ifp) { struct vrf *vrf; vrf = vrf_lookup_by_id(ifp->vrf_id); assert(vrf); IFNAME_RB_REMOVE(vrf, ifp); if (ifp->ifindex != IFINDEX_INTERNAL) IFINDEX_RB_REMOVE(vrf, ifp); if_delete_retain(ifp); list_delete_and_null(&ifp->connected); list_delete_and_null(&ifp->nbr_connected); if_link_params_free(ifp); if (ifp->desc) XFREE(MTYPE_TMP, ifp->desc); XFREE(MTYPE_IF, ifp); } /* Interface existance check by index. */ struct interface *if_lookup_by_index(ifindex_t ifindex, vrf_id_t vrf_id) { struct vrf *vrf; struct interface if_tmp; vrf = vrf_lookup_by_id(vrf_id); if (!vrf) return NULL; if_tmp.ifindex = ifindex; return RB_FIND(if_index_head, &vrf->ifaces_by_index, &if_tmp); } const char *ifindex2ifname(ifindex_t ifindex, vrf_id_t vrf_id) { struct interface *ifp; return ((ifp = if_lookup_by_index(ifindex, vrf_id)) != NULL) ? ifp->name : "unknown"; } ifindex_t ifname2ifindex(const char *name, vrf_id_t vrf_id) { struct interface *ifp; return ((ifp = if_lookup_by_name(name, vrf_id)) != NULL) ? ifp->ifindex : IFINDEX_INTERNAL; } /* Interface existance check by interface name. */ struct interface *if_lookup_by_name(const char *name, vrf_id_t vrf_id) { struct vrf *vrf = vrf_lookup_by_id(vrf_id); struct interface if_tmp; if (!vrf || !name || strnlen(name, INTERFACE_NAMSIZ) == INTERFACE_NAMSIZ) return NULL; strlcpy(if_tmp.name, name, sizeof(if_tmp.name)); return RB_FIND(if_name_head, &vrf->ifaces_by_name, &if_tmp); } struct interface *if_lookup_by_name_all_vrf(const char *name) { struct vrf *vrf; struct interface *ifp; if (!name || strnlen(name, INTERFACE_NAMSIZ) == INTERFACE_NAMSIZ) return NULL; RB_FOREACH (vrf, vrf_id_head, &vrfs_by_id) { ifp = if_lookup_by_name(name, vrf->vrf_id); if (ifp) return ifp; } return NULL; } /* Lookup interface by IPv4 address. */ struct interface *if_lookup_exact_address(void *src, int family, vrf_id_t vrf_id) { struct vrf *vrf = vrf_lookup_by_id(vrf_id); struct listnode *cnode; struct interface *ifp; struct prefix *p; struct connected *c; FOR_ALL_INTERFACES (vrf, ifp) { for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, c)) { p = c->address; if (p && (p->family == family)) { if (family == AF_INET) { if (IPV4_ADDR_SAME( &p->u.prefix4, (struct in_addr *)src)) return ifp; } else if (family == AF_INET6) { if (IPV6_ADDR_SAME( &p->u.prefix6, (struct in6_addr *)src)) return ifp; } } } } return NULL; } /* Lookup interface by IPv4 address. */ struct connected *if_lookup_address(void *matchaddr, int family, vrf_id_t vrf_id) { struct vrf *vrf = vrf_lookup_by_id(vrf_id); struct prefix addr; int bestlen = 0; struct listnode *cnode; struct interface *ifp; struct connected *c; struct connected *match; if (family == AF_INET) { addr.family = AF_INET; addr.u.prefix4 = *((struct in_addr *)matchaddr); addr.prefixlen = IPV4_MAX_BITLEN; } else if (family == AF_INET6) { addr.family = AF_INET6; addr.u.prefix6 = *((struct in6_addr *)matchaddr); addr.prefixlen = IPV6_MAX_BITLEN; } match = NULL; FOR_ALL_INTERFACES (vrf, ifp) { for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, c)) { if (c->address && (c->address->family == AF_INET) && prefix_match(CONNECTED_PREFIX(c), &addr) && (c->address->prefixlen > bestlen)) { bestlen = c->address->prefixlen; match = c; } } } return match; } /* Lookup interface by prefix */ struct interface *if_lookup_prefix(struct prefix *prefix, vrf_id_t vrf_id) { struct vrf *vrf = vrf_lookup_by_id(vrf_id); struct listnode *cnode; struct interface *ifp; struct connected *c; FOR_ALL_INTERFACES (vrf, ifp) { for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, c)) { if (prefix_cmp(c->address, prefix) == 0) { return ifp; } } } return NULL; } /* Get interface by name if given name interface doesn't exist create one. */ struct interface *if_get_by_name(const char *name, vrf_id_t vrf_id, int vty) { struct interface *ifp = NULL; if (vrf_is_mapped_on_netns(vrf_lookup_by_id(vrf_id))) { ifp = if_lookup_by_name(name, vrf_id); if (ifp) return ifp; if (vty) { /* If the interface command was entered in vty without a * VRF (passed as VRF_DEFAULT), search an interface with * this name in all VRs */ if (vrf_id == VRF_DEFAULT) return if_lookup_by_name_all_vrf(name); return NULL; } return if_create(name, vrf_id); } /* vrf is based on vrf-lite */ ifp = if_lookup_by_name_all_vrf(name); if (ifp) { if (ifp->vrf_id == vrf_id) return ifp; /* Found a match on a different VRF. If the interface command * was entered in vty without a VRF (passed as VRF_DEFAULT), * accept the ifp we found. If a vrf was entered and there is a * mismatch, reject it if from vty. If it came from the kernel * or by way of zclient, believe it and update the ifp * accordingly. */ if (vty) { if (vrf_id == VRF_DEFAULT) return ifp; return NULL; } /* If it came from the kernel or by way of zclient, believe it * and update the ifp accordingly. */ if_update_to_new_vrf(ifp, vrf_id); return ifp; } return if_create(name, vrf_id); } void if_set_index(struct interface *ifp, ifindex_t ifindex) { struct vrf *vrf; vrf = vrf_lookup_by_id(ifp->vrf_id); assert(vrf); if (ifp->ifindex == ifindex) return; if (ifp->ifindex != IFINDEX_INTERNAL) IFINDEX_RB_REMOVE(vrf, ifp) ifp->ifindex = ifindex; if (ifp->ifindex != IFINDEX_INTERNAL) IFINDEX_RB_INSERT(vrf, ifp) } /* Does interface up ? */ int if_is_up(struct interface *ifp) { return ifp->flags & IFF_UP; } /* Is interface running? */ int if_is_running(struct interface *ifp) { return ifp->flags & IFF_RUNNING; } /* Is the interface operative, eg. either UP & RUNNING or UP & !ZEBRA_INTERFACE_LINK_DETECTION and if ptm checking is enabled, then ptm check has passed */ int if_is_operative(struct interface *ifp) { return ((ifp->flags & IFF_UP) && (((ifp->flags & IFF_RUNNING) && (ifp->ptm_status || !ifp->ptm_enable)) || !CHECK_FLAG(ifp->status, ZEBRA_INTERFACE_LINKDETECTION))); } /* Is the interface operative, eg. either UP & RUNNING or UP & !ZEBRA_INTERFACE_LINK_DETECTION, without PTM check */ int if_is_no_ptm_operative(struct interface *ifp) { return ((ifp->flags & IFF_UP) && ((ifp->flags & IFF_RUNNING) || !CHECK_FLAG(ifp->status, ZEBRA_INTERFACE_LINKDETECTION))); } /* Is this loopback interface ? */ int if_is_loopback(struct interface *ifp) { /* XXX: Do this better, eg what if IFF_WHATEVER means X on platform M * but Y on platform N? */ return (ifp->flags & (IFF_LOOPBACK | IFF_NOXMIT | IFF_VIRTUAL)); } /* Check interface is VRF */ int if_is_vrf(struct interface *ifp) { return CHECK_FLAG(ifp->status, ZEBRA_INTERFACE_VRF_LOOPBACK); } bool if_is_loopback_or_vrf(struct interface *ifp) { if (if_is_loopback(ifp) || if_is_vrf(ifp)) return true; return false; } /* Does this interface support broadcast ? */ int if_is_broadcast(struct interface *ifp) { return ifp->flags & IFF_BROADCAST; } /* Does this interface support broadcast ? */ int if_is_pointopoint(struct interface *ifp) { return ifp->flags & IFF_POINTOPOINT; } /* Does this interface support multicast ? */ int if_is_multicast(struct interface *ifp) { return ifp->flags & IFF_MULTICAST; } /* Printout flag information into log */ const char *if_flag_dump(unsigned long flag) { int separator = 0; static char logbuf[BUFSIZ]; #define IFF_OUT_LOG(X, STR) \ if (flag & (X)) { \ if (separator) \ strlcat(logbuf, ",", BUFSIZ); \ else \ separator = 1; \ strlcat(logbuf, STR, BUFSIZ); \ } strlcpy(logbuf, "<", BUFSIZ); IFF_OUT_LOG(IFF_UP, "UP"); IFF_OUT_LOG(IFF_BROADCAST, "BROADCAST"); IFF_OUT_LOG(IFF_DEBUG, "DEBUG"); IFF_OUT_LOG(IFF_LOOPBACK, "LOOPBACK"); IFF_OUT_LOG(IFF_POINTOPOINT, "POINTOPOINT"); IFF_OUT_LOG(IFF_NOTRAILERS, "NOTRAILERS"); IFF_OUT_LOG(IFF_RUNNING, "RUNNING"); IFF_OUT_LOG(IFF_NOARP, "NOARP"); IFF_OUT_LOG(IFF_PROMISC, "PROMISC"); IFF_OUT_LOG(IFF_ALLMULTI, "ALLMULTI"); IFF_OUT_LOG(IFF_OACTIVE, "OACTIVE"); IFF_OUT_LOG(IFF_SIMPLEX, "SIMPLEX"); IFF_OUT_LOG(IFF_LINK0, "LINK0"); IFF_OUT_LOG(IFF_LINK1, "LINK1"); IFF_OUT_LOG(IFF_LINK2, "LINK2"); IFF_OUT_LOG(IFF_MULTICAST, "MULTICAST"); IFF_OUT_LOG(IFF_NOXMIT, "NOXMIT"); IFF_OUT_LOG(IFF_NORTEXCH, "NORTEXCH"); IFF_OUT_LOG(IFF_VIRTUAL, "VIRTUAL"); IFF_OUT_LOG(IFF_IPV4, "IPv4"); IFF_OUT_LOG(IFF_IPV6, "IPv6"); strlcat(logbuf, ">", BUFSIZ); return logbuf; #undef IFF_OUT_LOG } /* For debugging */ static void if_dump(const struct interface *ifp) { struct listnode *node; struct connected *c __attribute__((unused)); for (ALL_LIST_ELEMENTS_RO(ifp->connected, node, c)) zlog_info( "Interface %s vrf %u index %d metric %d mtu %d " "mtu6 %d %s", ifp->name, ifp->vrf_id, ifp->ifindex, ifp->metric, ifp->mtu, ifp->mtu6, if_flag_dump(ifp->flags)); } /* Interface printing for all interface. */ void if_dump_all(void) { struct vrf *vrf; void *ifp; RB_FOREACH (vrf, vrf_id_head, &vrfs_by_id) FOR_ALL_INTERFACES (vrf, ifp) if_dump(ifp); } DEFUN (interface_desc, interface_desc_cmd, "description LINE...", "Interface specific description\n" "Characters describing this interface\n") { int idx_line = 1; VTY_DECLVAR_CONTEXT(interface, ifp); if (ifp->desc) XFREE(MTYPE_TMP, ifp->desc); ifp->desc = argv_concat(argv, argc, idx_line); return CMD_SUCCESS; } DEFUN (no_interface_desc, no_interface_desc_cmd, "no description", NO_STR "Interface specific description\n") { VTY_DECLVAR_CONTEXT(interface, ifp); if (ifp->desc) XFREE(MTYPE_TMP, ifp->desc); ifp->desc = NULL; return CMD_SUCCESS; } #ifdef SUNOS_5 /* Need to handle upgrade from SUNWzebra to Quagga. SUNWzebra created * a seperate struct interface for each logical interface, so config * file may be full of 'interface fooX:Y'. Solaris however does not * expose logical interfaces via PF_ROUTE, so trying to track logical * interfaces can be fruitless, for that reason Quagga only tracks * the primary IP interface. * * We try accomodate SUNWzebra by: * - looking up the interface name, to see whether it exists, if so * its useable * - for protocol daemons, this could only because zebra told us of * the interface * - for zebra, only because it learnt from kernel * - if not: * - search the name to see if it contains a sub-ipif / logical interface * seperator, the ':' char. If it does: * - text up to that char must be the primary name - get that name. * if not: * - no idea, just get the name in its entirety. */ static struct interface *if_sunwzebra_get(const char *name, vrf_id_t vrf_id) { struct interface *ifp; char *cp; if ((ifp = if_lookup_by_name(name, vrf_id)) != NULL) return ifp; /* hunt the primary interface name... */ cp = strchr(name, ':'); if (cp) *cp = '\0'; return if_get_by_name(name, vrf_id, 1); } #endif /* SUNOS_5 */ DEFUN_NOSH (interface, interface_cmd, "interface IFNAME [vrf NAME]", "Select an interface to configure\n" "Interface's name\n" VRF_CMD_HELP_STR) { int idx_ifname = 1; int idx_vrf = 3; const char *ifname = argv[idx_ifname]->arg; const char *vrfname = (argc > 2) ? argv[idx_vrf]->arg : NULL; struct interface *ifp; vrf_id_t vrf_id = VRF_DEFAULT; if (strlen(ifname) > INTERFACE_NAMSIZ) { vty_out(vty, "%% Interface name %s is invalid: length exceeds " "%d characters\n", ifname, INTERFACE_NAMSIZ); return CMD_WARNING_CONFIG_FAILED; } /*Pending: need proper vrf name based lookup/(possible creation of VRF) Imagine forward reference of a vrf by name in this interface config */ if (vrfname) VRF_GET_ID(vrf_id, vrfname, false); #ifdef SUNOS_5 ifp = if_sunwzebra_get(ifname, vrf_id); #else ifp = if_get_by_name(ifname, vrf_id, 1); #endif /* SUNOS_5 */ if (!ifp) { vty_out(vty, "%% interface %s not in %s\n", ifname, vrfname); return CMD_WARNING_CONFIG_FAILED; } VTY_PUSH_CONTEXT(INTERFACE_NODE, ifp); return CMD_SUCCESS; } DEFUN (no_interface, no_interface_cmd, "no interface IFNAME [vrf NAME]", NO_STR "Delete a pseudo interface's configuration\n" "Interface's name\n" VRF_CMD_HELP_STR) { int idx_vrf = 4; const char *ifname = argv[2]->arg; const char *vrfname = (argc > 3) ? argv[idx_vrf]->arg : NULL; // deleting interface struct interface *ifp; vrf_id_t vrf_id = VRF_DEFAULT; if (argc > 3) VRF_GET_ID(vrf_id, vrfname, false); ifp = if_lookup_by_name(ifname, vrf_id); if (ifp == NULL) { vty_out(vty, "%% Interface %s does not exist\n", ifname); return CMD_WARNING_CONFIG_FAILED; } if (CHECK_FLAG(ifp->status, ZEBRA_INTERFACE_ACTIVE)) { vty_out(vty, "%% Only inactive interfaces can be deleted\n"); return CMD_WARNING_CONFIG_FAILED; } if_delete(ifp); return CMD_SUCCESS; } static void if_autocomplete(vector comps, struct cmd_token *token) { struct interface *ifp; struct vrf *vrf = NULL; RB_FOREACH (vrf, vrf_name_head, &vrfs_by_name) { FOR_ALL_INTERFACES (vrf, ifp) { vector_set(comps, XSTRDUP(MTYPE_COMPLETION, ifp->name)); } } } static const struct cmd_variable_handler if_var_handlers[] = { {/* "interface NAME" */ .varname = "interface", .completions = if_autocomplete}, {.tokenname = "IFNAME", .completions = if_autocomplete}, {.tokenname = "INTERFACE", .completions = if_autocomplete}, {.completions = NULL}}; void if_cmd_init(void) { cmd_variable_handler_register(if_var_handlers); install_element(CONFIG_NODE, &interface_cmd); install_element(CONFIG_NODE, &no_interface_cmd); install_default(INTERFACE_NODE); install_element(INTERFACE_NODE, &interface_desc_cmd); install_element(INTERFACE_NODE, &no_interface_desc_cmd); } #if 0 /* For debug purpose. */ DEFUN (show_address, show_address_cmd, "show address [vrf NAME]", SHOW_STR "address\n" VRF_CMD_HELP_STR) { int idx_vrf = 3; struct listnode *node; struct interface *ifp; struct connected *ifc; struct prefix *p; vrf_id_t vrf_id = VRF_DEFAULT; if (argc > 2) VRF_GET_ID (vrf_id, argv[idx_vrf]->arg); FOR_ALL_INTERFACES (vrf, ifp) { for (ALL_LIST_ELEMENTS_RO (ifp->connected, node, ifc)) { p = ifc->address; if (p->family == AF_INET) vty_out (vty, "%s/%d\n", inet_ntoa (p->u.prefix4), p->prefixlen); } } return CMD_SUCCESS; } DEFUN (show_address_vrf_all, show_address_vrf_all_cmd, "show address vrf all", SHOW_STR "address\n" VRF_ALL_CMD_HELP_STR) { struct vrf *vrf; struct listnode *node; struct interface *ifp; struct connected *ifc; struct prefix *p; RB_FOREACH (vrf, vrf_name_head, &vrfs_by_name) { if (RB_EMPTY (if_name_head, &vrf->ifaces_by_name)) continue; vty_out (vty, "\nVRF %u\n\n", vrf->vrf_id); FOR_ALL_INTERFACES (vrf, ifp) { for (ALL_LIST_ELEMENTS_RO (ifp->connected, node, ifc)) { p = ifc->address; if (p->family == AF_INET) vty_out (vty, "%s/%d\n", inet_ntoa (p->u.prefix4), p->prefixlen); } } } return CMD_SUCCESS; } #endif /* Allocate connected structure. */ struct connected *connected_new(void) { return XCALLOC(MTYPE_CONNECTED, sizeof(struct connected)); } /* Allocate nbr connected structure. */ struct nbr_connected *nbr_connected_new(void) { return XCALLOC(MTYPE_NBR_CONNECTED, sizeof(struct nbr_connected)); } /* Free connected structure. */ void connected_free(struct connected *connected) { if (connected->address) prefix_free(connected->address); if (connected->destination) prefix_free(connected->destination); if (connected->label) XFREE(MTYPE_CONNECTED_LABEL, connected->label); XFREE(MTYPE_CONNECTED, connected); } /* Free nbr connected structure. */ void nbr_connected_free(struct nbr_connected *connected) { if (connected->address) prefix_free(connected->address); XFREE(MTYPE_NBR_CONNECTED, connected); } /* If same interface nbr address already exists... */ struct nbr_connected *nbr_connected_check(struct interface *ifp, struct prefix *p) { struct nbr_connected *ifc; struct listnode *node; for (ALL_LIST_ELEMENTS_RO(ifp->nbr_connected, node, ifc)) if (prefix_same(ifc->address, p)) return ifc; return NULL; } /* Print if_addr structure. */ static void __attribute__((unused)) connected_log(struct connected *connected, char *str) { struct prefix *p; struct interface *ifp; char logbuf[BUFSIZ]; char buf[BUFSIZ]; ifp = connected->ifp; p = connected->address; snprintf(logbuf, BUFSIZ, "%s interface %s vrf %u %s %s/%d ", str, ifp->name, ifp->vrf_id, prefix_family_str(p), inet_ntop(p->family, &p->u.prefix, buf, BUFSIZ), p->prefixlen); p = connected->destination; if (p) { strncat(logbuf, inet_ntop(p->family, &p->u.prefix, buf, BUFSIZ), BUFSIZ - strlen(logbuf)); } zlog_info("%s", logbuf); } /* Print if_addr structure. */ static void __attribute__((unused)) nbr_connected_log(struct nbr_connected *connected, char *str) { struct prefix *p; struct interface *ifp; char logbuf[BUFSIZ]; char buf[BUFSIZ]; ifp = connected->ifp; p = connected->address; snprintf(logbuf, BUFSIZ, "%s interface %s %s %s/%d ", str, ifp->name, prefix_family_str(p), inet_ntop(p->family, &p->u.prefix, buf, BUFSIZ), p->prefixlen); zlog_info("%s", logbuf); } /* If two connected address has same prefix return 1. */ static int connected_same_prefix(struct prefix *p1, struct prefix *p2) { if (p1->family == p2->family) { if (p1->family == AF_INET && IPV4_ADDR_SAME(&p1->u.prefix4, &p2->u.prefix4)) return 1; if (p1->family == AF_INET6 && IPV6_ADDR_SAME(&p1->u.prefix6, &p2->u.prefix6)) return 1; } return 0; } struct connected *connected_lookup_prefix_exact(struct interface *ifp, struct prefix *p) { struct listnode *node; struct listnode *next; struct connected *ifc; for (node = listhead(ifp->connected); node; node = next) { ifc = listgetdata(node); next = node->next; if (connected_same_prefix(ifc->address, p)) return ifc; } return NULL; } struct connected *connected_delete_by_prefix(struct interface *ifp, struct prefix *p) { struct listnode *node; struct listnode *next; struct connected *ifc; /* In case of same prefix come, replace it with new one. */ for (node = listhead(ifp->connected); node; node = next) { ifc = listgetdata(node); next = node->next; if (connected_same_prefix(ifc->address, p)) { listnode_delete(ifp->connected, ifc); return ifc; } } return NULL; } /* Find the address on our side that will be used when packets are sent to dst. */ struct connected *connected_lookup_prefix(struct interface *ifp, struct prefix *addr) { struct listnode *cnode; struct connected *c; struct connected *match; match = NULL; for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, c)) { if (c->address && (c->address->family == addr->family) && prefix_match(CONNECTED_PREFIX(c), addr) && (!match || (c->address->prefixlen > match->address->prefixlen))) match = c; } return match; } struct connected *connected_add_by_prefix(struct interface *ifp, struct prefix *p, struct prefix *destination) { struct connected *ifc; /* Allocate new connected address. */ ifc = connected_new(); ifc->ifp = ifp; /* Fetch interface address */ ifc->address = prefix_new(); memcpy(ifc->address, p, sizeof(struct prefix)); /* Fetch dest address */ if (destination) { ifc->destination = prefix_new(); memcpy(ifc->destination, destination, sizeof(struct prefix)); } /* Add connected address to the interface. */ listnode_add(ifp->connected, ifc); return ifc; } #if 0 /* this route_table of struct connected's is unused \ * however, it would be good to use a route_table rather than \ * a list.. \ */ /* Interface looking up by interface's address. */ /* Interface's IPv4 address reverse lookup table. */ struct route_table *ifaddr_ipv4_table; /* struct route_table *ifaddr_ipv6_table; */ static void ifaddr_ipv4_add (struct in_addr *ifaddr, struct interface *ifp) { struct route_node *rn; struct prefix_ipv4 p; p.family = AF_INET; p.prefixlen = IPV4_MAX_PREFIXLEN; p.prefix = *ifaddr; rn = route_node_get (ifaddr_ipv4_table, (struct prefix *) &p); if (rn) { route_unlock_node (rn); zlog_info ("ifaddr_ipv4_add(): address %s is already added", inet_ntoa (*ifaddr)); return; } rn->info = ifp; } static void ifaddr_ipv4_delete (struct in_addr *ifaddr, struct interface *ifp) { struct route_node *rn; struct prefix_ipv4 p; p.family = AF_INET; p.prefixlen = IPV4_MAX_PREFIXLEN; p.prefix = *ifaddr; rn = route_node_lookup (ifaddr_ipv4_table, (struct prefix *) &p); if (! rn) { zlog_info ("ifaddr_ipv4_delete(): can't find address %s", inet_ntoa (*ifaddr)); return; } rn->info = NULL; route_unlock_node (rn); route_unlock_node (rn); } /* Lookup interface by interface's IP address or interface index. */ static struct interface * ifaddr_ipv4_lookup (struct in_addr *addr, ifindex_t ifindex) { struct prefix_ipv4 p; struct route_node *rn; struct interface *ifp; if (addr) { p.family = AF_INET; p.prefixlen = IPV4_MAX_PREFIXLEN; p.prefix = *addr; rn = route_node_lookup (ifaddr_ipv4_table, (struct prefix *) &p); if (! rn) return NULL; ifp = rn->info; route_unlock_node (rn); return ifp; } else return if_lookup_by_index(ifindex, VRF_DEFAULT); } #endif /* ifaddr_ipv4_table */ void if_terminate(struct vrf *vrf) { struct interface *ifp; while (!RB_EMPTY(if_name_head, &vrf->ifaces_by_name)) { ifp = RB_ROOT(if_name_head, &vrf->ifaces_by_name); if (ifp->node) { ifp->node->info = NULL; route_unlock_node(ifp->node); } if_delete(ifp); } } const char *if_link_type_str(enum zebra_link_type llt) { switch (llt) { #define llts(T,S) case (T): return (S) llts(ZEBRA_LLT_UNKNOWN, "Unknown"); llts(ZEBRA_LLT_ETHER, "Ethernet"); llts(ZEBRA_LLT_EETHER, "Experimental Ethernet"); llts(ZEBRA_LLT_AX25, "AX.25 Level 2"); llts(ZEBRA_LLT_PRONET, "PROnet token ring"); llts(ZEBRA_LLT_IEEE802, "IEEE 802.2 Ethernet/TR/TB"); llts(ZEBRA_LLT_ARCNET, "ARCnet"); llts(ZEBRA_LLT_APPLETLK, "AppleTalk"); llts(ZEBRA_LLT_DLCI, "Frame Relay DLCI"); llts(ZEBRA_LLT_ATM, "ATM"); llts(ZEBRA_LLT_METRICOM, "Metricom STRIP"); llts(ZEBRA_LLT_IEEE1394, "IEEE 1394 IPv4"); llts(ZEBRA_LLT_EUI64, "EUI-64"); llts(ZEBRA_LLT_INFINIBAND, "InfiniBand"); llts(ZEBRA_LLT_SLIP, "SLIP"); llts(ZEBRA_LLT_CSLIP, "Compressed SLIP"); llts(ZEBRA_LLT_SLIP6, "SLIPv6"); llts(ZEBRA_LLT_CSLIP6, "Compressed SLIPv6"); llts(ZEBRA_LLT_ROSE, "ROSE packet radio"); llts(ZEBRA_LLT_X25, "CCITT X.25"); llts(ZEBRA_LLT_PPP, "PPP"); llts(ZEBRA_LLT_CHDLC, "Cisco HDLC"); llts(ZEBRA_LLT_RAWHDLC, "Raw HDLC"); llts(ZEBRA_LLT_LAPB, "LAPB"); llts(ZEBRA_LLT_IPIP, "IPIP Tunnel"); llts(ZEBRA_LLT_IPIP6, "IPIP6 Tunnel"); llts(ZEBRA_LLT_FRAD, "FRAD"); llts(ZEBRA_LLT_SKIP, "SKIP vif"); llts(ZEBRA_LLT_LOOPBACK, "Loopback"); llts(ZEBRA_LLT_LOCALTLK, "Localtalk"); llts(ZEBRA_LLT_FDDI, "FDDI"); llts(ZEBRA_LLT_SIT, "IPv6-in-IPv4 SIT"); llts(ZEBRA_LLT_IPDDP, "IP-in-DDP tunnel"); llts(ZEBRA_LLT_IPGRE, "GRE over IP"); llts(ZEBRA_LLT_PIMREG, "PIMSM registration"); llts(ZEBRA_LLT_HIPPI, "HiPPI"); llts(ZEBRA_LLT_IRDA, "IrDA"); llts(ZEBRA_LLT_FCPP, "Fibre-Channel PtP"); llts(ZEBRA_LLT_FCAL, "Fibre-Channel Arbitrated Loop"); llts(ZEBRA_LLT_FCPL, "Fibre-Channel Public Loop"); llts(ZEBRA_LLT_FCFABRIC, "Fibre-Channel Fabric"); llts(ZEBRA_LLT_IEEE802_TR, "IEEE 802.2 Token Ring"); llts(ZEBRA_LLT_IEEE80211, "IEEE 802.11"); llts(ZEBRA_LLT_IEEE80211_RADIOTAP, "IEEE 802.11 Radiotap"); llts(ZEBRA_LLT_IEEE802154, "IEEE 802.15.4"); llts(ZEBRA_LLT_IEEE802154_PHY, "IEEE 802.15.4 Phy"); default: flog_err(LIB_ERR_DEVELOPMENT, "Unknown value %d", llt); return "Unknown type!"; #undef llts } return NULL; } struct if_link_params *if_link_params_get(struct interface *ifp) { int i; if (ifp->link_params != NULL) return ifp->link_params; struct if_link_params *iflp = XCALLOC(MTYPE_IF_LINK_PARAMS, sizeof(struct if_link_params)); if (iflp == NULL) return NULL; /* Set TE metric equal to standard metric */ iflp->te_metric = ifp->metric; /* Compute default bandwidth based on interface */ iflp->default_bw = ((ifp->bandwidth ? ifp->bandwidth : DEFAULT_BANDWIDTH) * TE_KILO_BIT / TE_BYTE); /* Set Max, Reservable and Unreserved Bandwidth */ iflp->max_bw = iflp->default_bw; iflp->max_rsv_bw = iflp->default_bw; for (i = 0; i < MAX_CLASS_TYPE; i++) iflp->unrsv_bw[i] = iflp->default_bw; /* Update Link parameters status */ iflp->lp_status = LP_TE_METRIC | LP_MAX_BW | LP_MAX_RSV_BW | LP_UNRSV_BW; /* Finally attach newly created Link Parameters */ ifp->link_params = iflp; return iflp; } void if_link_params_free(struct interface *ifp) { if (ifp->link_params == NULL) return; XFREE(MTYPE_IF_LINK_PARAMS, ifp->link_params); ifp->link_params = NULL; }