// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2018 NetDEF, Inc. * Renato Westphal */ #include #include "darr.h" #include "log.h" #include "lib_errors.h" #include "yang.h" #include "yang_translator.h" #include "northbound.h" DEFINE_MTYPE_STATIC(LIB, YANG_MODULE, "YANG module"); DEFINE_MTYPE_STATIC(LIB, YANG_DATA, "YANG data structure"); /* libyang container. */ struct ly_ctx *ly_native_ctx; static struct yang_module_embed *embeds, **embedupd = &embeds; void yang_module_embed(struct yang_module_embed *embed) { embed->next = NULL; *embedupd = embed; embedupd = &embed->next; } static LY_ERR yang_module_imp_clb(const char *mod_name, const char *mod_rev, const char *submod_name, const char *submod_rev, void *user_data, LYS_INFORMAT *format, const char **module_data, void (**free_module_data)(void *, void *)) { struct yang_module_embed *e; if (!strcmp(mod_name, "ietf-inet-types") || !strcmp(mod_name, "ietf-yang-types")) /* libyang has these built in, don't try finding them here */ return LY_ENOTFOUND; for (e = embeds; e; e = e->next) { if (e->sub_mod_name && submod_name) { if (strcmp(e->sub_mod_name, submod_name)) continue; if (submod_rev && strcmp(e->sub_mod_rev, submod_rev)) continue; } else { if (strcmp(e->mod_name, mod_name)) continue; if (mod_rev && strcmp(e->mod_rev, mod_rev)) continue; } *format = e->format; *module_data = e->data; return LY_SUCCESS; } /* We get here for indirect modules like ietf-inet-types */ zlog_debug( "YANG model \"%s@%s\" \"%s@%s\"not embedded, trying external file", mod_name, mod_rev ? mod_rev : "*", submod_name ? submod_name : "*", submod_rev ? submod_rev : "*"); return LY_ENOTFOUND; } /* clang-format off */ static const char *const frr_native_modules[] = { "frr-interface", "frr-vrf", "frr-routing", "frr-affinity-map", "frr-route-map", "frr-nexthop", "frr-ripd", "frr-ripngd", "frr-isisd", "frr-vrrpd", "frr-zebra", "frr-pathd", }; /* clang-format on */ /* Generate the yang_modules tree. */ static inline int yang_module_compare(const struct yang_module *a, const struct yang_module *b) { return strcmp(a->name, b->name); } RB_GENERATE(yang_modules, yang_module, entry, yang_module_compare) struct yang_modules yang_modules = RB_INITIALIZER(&yang_modules); struct yang_module *yang_module_load(const char *module_name) { struct yang_module *module; const struct lys_module *module_info; module_info = ly_ctx_load_module(ly_native_ctx, module_name, NULL, NULL); if (!module_info) { flog_err(EC_LIB_YANG_MODULE_LOAD, "%s: failed to load data model: %s", __func__, module_name); exit(1); } module = XCALLOC(MTYPE_YANG_MODULE, sizeof(*module)); module->name = module_name; module->info = module_info; if (RB_INSERT(yang_modules, &yang_modules, module) != NULL) { flog_err(EC_LIB_YANG_MODULE_LOADED_ALREADY, "%s: YANG module is loaded already: %s", __func__, module_name); exit(1); } return module; } void yang_module_load_all(void) { for (size_t i = 0; i < array_size(frr_native_modules); i++) yang_module_load(frr_native_modules[i]); } struct yang_module *yang_module_find(const char *module_name) { struct yang_module s; s.name = module_name; return RB_FIND(yang_modules, &yang_modules, &s); } int yang_snodes_iterate_subtree(const struct lysc_node *snode, const struct lys_module *module, yang_iterate_cb cb, uint16_t flags, void *arg) { const struct lysc_node *child; int ret = YANG_ITER_CONTINUE; if (module && snode->module != module) goto next; switch (snode->nodetype) { case LYS_CONTAINER: if (CHECK_FLAG(flags, YANG_ITER_FILTER_NPCONTAINERS)) { if (!CHECK_FLAG(snode->flags, LYS_PRESENCE)) goto next; } break; case LYS_LEAF: if (CHECK_FLAG(flags, YANG_ITER_FILTER_LIST_KEYS)) { /* Ignore list keys. */ if (lysc_is_key(snode)) goto next; } break; case LYS_INPUT: case LYS_OUTPUT: if (CHECK_FLAG(flags, YANG_ITER_FILTER_INPUT_OUTPUT)) goto next; break; default: assert(snode->nodetype != LYS_AUGMENT && snode->nodetype != LYS_GROUPING && snode->nodetype != LYS_USES); break; } ret = (*cb)(snode, arg); if (ret == YANG_ITER_STOP) return ret; next: /* * YANG leafs and leaf-lists can't have child nodes. */ if (CHECK_FLAG(snode->nodetype, LYS_LEAF | LYS_LEAFLIST)) return YANG_ITER_CONTINUE; LY_LIST_FOR (lysc_node_child(snode), child) { ret = yang_snodes_iterate_subtree(child, module, cb, flags, arg); if (ret == YANG_ITER_STOP) return ret; } return ret; } int yang_snodes_iterate(const struct lys_module *module, yang_iterate_cb cb, uint16_t flags, void *arg) { const struct lys_module *module_iter; uint32_t idx = 0; int ret = YANG_ITER_CONTINUE; idx = ly_ctx_internal_modules_count(ly_native_ctx); while ((module_iter = ly_ctx_get_module_iter(ly_native_ctx, &idx))) { struct lysc_node *snode; if (!module_iter->implemented) continue; LY_LIST_FOR (module_iter->compiled->data, snode) { ret = yang_snodes_iterate_subtree(snode, module, cb, flags, arg); if (ret == YANG_ITER_STOP) return ret; } LY_LIST_FOR (&module_iter->compiled->rpcs->node, snode) { ret = yang_snodes_iterate_subtree(snode, module, cb, flags, arg); if (ret == YANG_ITER_STOP) return ret; } LY_LIST_FOR (&module_iter->compiled->notifs->node, snode) { ret = yang_snodes_iterate_subtree(snode, module, cb, flags, arg); if (ret == YANG_ITER_STOP) return ret; } } return ret; } void yang_snode_get_path(const struct lysc_node *snode, enum yang_path_type type, char *xpath, size_t xpath_len) { switch (type) { case YANG_PATH_SCHEMA: (void)lysc_path(snode, LYSC_PATH_LOG, xpath, xpath_len); break; case YANG_PATH_DATA: (void)lysc_path(snode, LYSC_PATH_DATA, xpath, xpath_len); break; default: flog_err(EC_LIB_DEVELOPMENT, "%s: unknown yang path type: %u", __func__, type); exit(1); } } LY_ERR yang_resolve_snode_xpath(struct ly_ctx *ly_ctx, const char *xpath, struct lysc_node ***snodes, bool *simple) { struct lysc_node *snode; struct ly_set *set; LY_ERR err; /* lys_find_path will not resolve complex xpaths */ snode = (struct lysc_node *)lys_find_path(ly_ctx, NULL, xpath, 0); if (snode) { *darr_append(*snodes) = snode; *simple = true; return LY_SUCCESS; } /* Try again to catch complex query cases */ err = lys_find_xpath(ly_native_ctx, NULL, xpath, 0, &set); if (err) return err; if (!set->count) { ly_set_free(set, NULL); return LY_ENOTFOUND; } *simple = false; darr_ensure_i(*snodes, set->count - 1); memcpy(*snodes, set->snodes, set->count * sizeof(set->snodes[0])); ly_set_free(set, NULL); return LY_SUCCESS; } struct lysc_node *yang_find_snode(struct ly_ctx *ly_ctx, const char *xpath, uint32_t options) { struct lysc_node *snode; snode = (struct lysc_node *)lys_find_path(ly_ctx, NULL, xpath, 0); return snode; } struct lysc_node *yang_snode_real_parent(const struct lysc_node *snode) { struct lysc_node *parent = snode->parent; while (parent) { switch (parent->nodetype) { case LYS_CONTAINER: if (CHECK_FLAG(parent->flags, LYS_PRESENCE)) return parent; break; case LYS_LIST: return parent; default: break; } parent = parent->parent; } return NULL; } struct lysc_node *yang_snode_parent_list(const struct lysc_node *snode) { struct lysc_node *parent = snode->parent; while (parent) { switch (parent->nodetype) { case LYS_LIST: return parent; default: break; } parent = parent->parent; } return NULL; } bool yang_snode_is_typeless_data(const struct lysc_node *snode) { const struct lysc_node_leaf *sleaf; switch (snode->nodetype) { case LYS_LEAF: sleaf = (struct lysc_node_leaf *)snode; if (sleaf->type->basetype == LY_TYPE_EMPTY) return true; return false; case LYS_LEAFLIST: return false; default: return true; } } const char *yang_snode_get_default(const struct lysc_node *snode) { const struct lysc_node_leaf *sleaf; switch (snode->nodetype) { case LYS_LEAF: sleaf = (const struct lysc_node_leaf *)snode; return sleaf->dflt ? lyd_value_get_canonical(sleaf->module->ctx, sleaf->dflt) : NULL; case LYS_LEAFLIST: /* TODO: check leaf-list default values */ return NULL; default: return NULL; } } const struct lysc_type *yang_snode_get_type(const struct lysc_node *snode) { struct lysc_node_leaf *sleaf = (struct lysc_node_leaf *)snode; struct lysc_type *type; if (!CHECK_FLAG(sleaf->nodetype, LYS_LEAF | LYS_LEAFLIST)) return NULL; type = sleaf->type; while (type->basetype == LY_TYPE_LEAFREF) type = ((struct lysc_type_leafref *)type)->realtype; return type; } unsigned int yang_snode_num_keys(const struct lysc_node *snode) { const struct lysc_node_leaf *skey; uint count = 0; if (!CHECK_FLAG(snode->nodetype, LYS_LIST)) return 0; /* Walk list of children */ LY_FOR_KEYS (snode, skey) { count++; } return count; } char *yang_dnode_get_path(const struct lyd_node *dnode, char *xpath, size_t xpath_len) { return lyd_path(dnode, LYD_PATH_STD, xpath, xpath_len); } struct lyd_node *yang_dnode_get(const struct lyd_node *dnode, const char *xpath) { struct ly_set *set = NULL; struct lyd_node *dnode_ret = NULL; /* * XXX a lot of the code uses this for style I guess. It shouldn't, as * it adds to the xpath parsing complexity in libyang. */ if (xpath[0] == '.' && xpath[1] == '/') xpath += 2; if (lyd_find_xpath(dnode, xpath, &set)) { /* * Commenting out the below assert failure as it crashes mgmtd * when bad xpath is passed. * * assert(0); XXX replicates old libyang1 base code */ goto exit; } if (set->count == 0) goto exit; if (set->count > 1) { flog_warn(EC_LIB_YANG_DNODE_NOT_FOUND, "%s: found %u elements (expected 0 or 1) [xpath %s]", __func__, set->count, xpath); goto exit; } dnode_ret = set->dnodes[0]; exit: ly_set_free(set, NULL); return dnode_ret; } struct lyd_node *yang_dnode_getf(const struct lyd_node *dnode, const char *xpath_fmt, ...) { va_list ap; char xpath[XPATH_MAXLEN]; va_start(ap, xpath_fmt); vsnprintf(xpath, sizeof(xpath), xpath_fmt, ap); va_end(ap); return yang_dnode_get(dnode, xpath); } bool yang_dnode_exists(const struct lyd_node *dnode, const char *xpath) { struct ly_set *set = NULL; bool exists = false; if (xpath[0] == '.' && xpath[1] == '/') xpath += 2; if (lyd_find_xpath(dnode, xpath, &set)) return false; exists = set->count > 0; ly_set_free(set, NULL); return exists; } bool yang_dnode_existsf(const struct lyd_node *dnode, const char *xpath_fmt, ...) { va_list ap; char xpath[XPATH_MAXLEN]; va_start(ap, xpath_fmt); vsnprintf(xpath, sizeof(xpath), xpath_fmt, ap); va_end(ap); return yang_dnode_exists(dnode, xpath); } void yang_dnode_iterate(yang_dnode_iter_cb cb, void *arg, const struct lyd_node *dnode, const char *xpath_fmt, ...) { va_list ap; char xpath[XPATH_MAXLEN]; struct ly_set *set; va_start(ap, xpath_fmt); vsnprintf(xpath, sizeof(xpath), xpath_fmt, ap); va_end(ap); if (lyd_find_xpath(dnode, xpath, &set)) { assert(0); /* XXX libyang2: ly1 code asserted success */ return; } for (unsigned int i = 0; i < set->count; i++) { int ret; ret = (*cb)(set->dnodes[i], arg); if (ret == YANG_ITER_STOP) break; } ly_set_free(set, NULL); } bool yang_dnode_is_default(const struct lyd_node *dnode, const char *xpath) { const struct lysc_node *snode; struct lysc_node_leaf *sleaf; if (xpath) dnode = yang_dnode_get(dnode, xpath); assert(dnode); snode = dnode->schema; switch (snode->nodetype) { case LYS_LEAF: sleaf = (struct lysc_node_leaf *)snode; if (sleaf->type->basetype == LY_TYPE_EMPTY) return false; return lyd_is_default(dnode); case LYS_LEAFLIST: /* TODO: check leaf-list default values */ return false; case LYS_CONTAINER: if (CHECK_FLAG(snode->flags, LYS_PRESENCE)) return false; return true; default: return false; } } bool yang_dnode_is_defaultf(const struct lyd_node *dnode, const char *xpath_fmt, ...) { if (!xpath_fmt) return yang_dnode_is_default(dnode, NULL); else { va_list ap; char xpath[XPATH_MAXLEN]; va_start(ap, xpath_fmt); vsnprintf(xpath, sizeof(xpath), xpath_fmt, ap); va_end(ap); return yang_dnode_is_default(dnode, xpath); } } bool yang_dnode_is_default_recursive(const struct lyd_node *dnode) { struct lyd_node *root, *dnode_iter; if (!yang_dnode_is_default(dnode, NULL)) return false; if (CHECK_FLAG(dnode->schema->nodetype, LYS_LEAF | LYS_LEAFLIST)) return true; LY_LIST_FOR (lyd_child(dnode), root) { LYD_TREE_DFS_BEGIN (root, dnode_iter) { if (!yang_dnode_is_default(dnode_iter, NULL)) return false; LYD_TREE_DFS_END(root, dnode_iter); } } return true; } void yang_dnode_change_leaf(struct lyd_node *dnode, const char *value) { assert(dnode->schema->nodetype == LYS_LEAF); lyd_change_term(dnode, value); } struct lyd_node *yang_dnode_new(struct ly_ctx *ly_ctx, bool config_only) { struct lyd_node *dnode = NULL; int options = config_only ? LYD_VALIDATE_NO_STATE : 0; if (lyd_validate_all(&dnode, ly_ctx, options, NULL) != 0) { /* Should never happen. */ flog_err(EC_LIB_LIBYANG, "%s: lyd_validate() failed", __func__); exit(1); } return dnode; } struct lyd_node *yang_dnode_dup(const struct lyd_node *dnode) { struct lyd_node *dup = NULL; LY_ERR err; err = lyd_dup_siblings(dnode, NULL, LYD_DUP_RECURSIVE, &dup); assert(!err); return dup; } void yang_dnode_free(struct lyd_node *dnode) { while (dnode->parent) dnode = lyd_parent(dnode); lyd_free_all(dnode); } struct yang_data *yang_data_new(const char *xpath, const char *value) { struct yang_data *data; data = XCALLOC(MTYPE_YANG_DATA, sizeof(*data)); strlcpy(data->xpath, xpath, sizeof(data->xpath)); if (value) data->value = strdup(value); return data; } void yang_data_free(struct yang_data *data) { if (data->value) free(data->value); XFREE(MTYPE_YANG_DATA, data); } struct list *yang_data_list_new(void) { struct list *list; list = list_new(); list->del = (void (*)(void *))yang_data_free; return list; } struct yang_data *yang_data_list_find(const struct list *list, const char *xpath_fmt, ...) { char xpath[XPATH_MAXLEN]; struct yang_data *data; struct listnode *node; va_list ap; va_start(ap, xpath_fmt); vsnprintf(xpath, sizeof(xpath), xpath_fmt, ap); va_end(ap); for (ALL_LIST_ELEMENTS_RO(list, node, data)) if (strmatch(data->xpath, xpath)) return data; return NULL; } /* Make libyang log its errors using FRR logging infrastructure. */ static void ly_log_cb(LY_LOG_LEVEL level, const char *msg, const char *path) { int priority = LOG_ERR; switch (level) { case LY_LLERR: priority = LOG_ERR; break; case LY_LLWRN: priority = LOG_WARNING; break; case LY_LLVRB: case LY_LLDBG: priority = LOG_DEBUG; break; } if (path) zlog(priority, "libyang: %s (%s)", msg, path); else zlog(priority, "libyang: %s", msg); } static ssize_t yang_print_darr(void *arg, const void *buf, size_t count) { uint8_t *dst = darr_append_n(*(uint8_t **)arg, count); memcpy(dst, buf, count); return count; } LY_ERR yang_print_tree_append(uint8_t **darr, const struct lyd_node *root, LYD_FORMAT format, uint32_t options) { LY_ERR err; err = lyd_print_clb(yang_print_darr, darr, root, format, options); if (err) zlog_err("Failed to save yang tree: %s", ly_last_errmsg()); else if (format != LYD_LYB) *darr_append(*darr) = 0; return err; } uint8_t *yang_print_tree(const struct lyd_node *root, LYD_FORMAT format, uint32_t options) { uint8_t *darr = NULL; if (yang_print_tree_append(&darr, root, format, options)) return NULL; return darr; } const char *yang_print_errors(struct ly_ctx *ly_ctx, char *buf, size_t buf_len) { struct ly_err_item *ei; ei = ly_err_first(ly_ctx); if (!ei) return ""; strlcpy(buf, "YANG error(s):\n", buf_len); for (; ei; ei = ei->next) { if (ei->path) { strlcat(buf, " Path: ", buf_len); strlcat(buf, ei->path, buf_len); strlcat(buf, "\n", buf_len); } strlcat(buf, " Error: ", buf_len); strlcat(buf, ei->msg, buf_len); strlcat(buf, "\n", buf_len); } ly_err_clean(ly_ctx, NULL); return buf; } void yang_debugging_set(bool enable) { if (enable) { ly_log_level(LY_LLDBG); ly_log_dbg_groups(0xFF); } else { ly_log_level(LY_LLERR); ly_log_dbg_groups(0); } } struct ly_ctx *yang_ctx_new_setup(bool embedded_modules, bool explicit_compile) { struct ly_ctx *ctx = NULL; const char *yang_models_path = YANG_MODELS_PATH; uint options; LY_ERR err; if (access(yang_models_path, R_OK | X_OK)) { yang_models_path = NULL; if (errno == ENOENT) zlog_info("yang model directory \"%s\" does not exist", YANG_MODELS_PATH); else flog_err_sys(EC_LIB_LIBYANG, "cannot access yang model directory \"%s\"", YANG_MODELS_PATH); } options = LY_CTX_NO_YANGLIBRARY | LY_CTX_DISABLE_SEARCHDIR_CWD; if (explicit_compile) options |= LY_CTX_EXPLICIT_COMPILE; err = ly_ctx_new(yang_models_path, options, &ctx); if (err) return NULL; if (embedded_modules) ly_ctx_set_module_imp_clb(ctx, yang_module_imp_clb, NULL); return ctx; } void yang_init(bool embedded_modules, bool defer_compile) { /* Initialize libyang global parameters that affect all containers. */ ly_set_log_clb(ly_log_cb, 1); ly_log_options(LY_LOLOG | LY_LOSTORE); /* Initialize libyang container for native models. */ ly_native_ctx = yang_ctx_new_setup(embedded_modules, defer_compile); if (!ly_native_ctx) { flog_err(EC_LIB_LIBYANG, "%s: ly_ctx_new() failed", __func__); exit(1); } yang_translator_init(); } void yang_init_loading_complete(void) { /* Compile everything */ if (ly_ctx_compile(ly_native_ctx) != LY_SUCCESS) { flog_err(EC_LIB_YANG_MODULE_LOAD, "%s: failed to compile loaded modules: %s", __func__, ly_errmsg(ly_native_ctx)); exit(1); } } void yang_terminate(void) { struct yang_module *module; yang_translator_terminate(); while (!RB_EMPTY(yang_modules, &yang_modules)) { module = RB_ROOT(yang_modules, &yang_modules); /* * We shouldn't call ly_ctx_remove_module() here because this * function also removes other modules that depend on it. * * ly_ctx_destroy() will release all memory for us. */ RB_REMOVE(yang_modules, &yang_modules, module); XFREE(MTYPE_YANG_MODULE, module); } ly_ctx_destroy(ly_native_ctx); } const struct lyd_node *yang_dnode_get_parent(const struct lyd_node *dnode, const char *name) { const struct lyd_node *orig_dnode = dnode; while (orig_dnode) { switch (orig_dnode->schema->nodetype) { case LYS_LIST: case LYS_CONTAINER: if (!strcmp(orig_dnode->schema->name, name)) return orig_dnode; break; default: break; } orig_dnode = lyd_parent(orig_dnode); } return NULL; } bool yang_is_last_list_dnode(const struct lyd_node *dnode) { return (((dnode->next == NULL) || (dnode->next && (strcmp(dnode->next->schema->name, dnode->schema->name) != 0))) && dnode->prev && ((dnode->prev == dnode) || (strcmp(dnode->prev->schema->name, dnode->schema->name) != 0))); } bool yang_is_last_level_dnode(const struct lyd_node *dnode) { const struct lyd_node *parent; const struct lyd_node *key_leaf; uint8_t keys_size; switch (dnode->schema->nodetype) { case LYS_LIST: assert(dnode->parent); parent = lyd_parent(dnode); uint snode_num_keys = yang_snode_num_keys(parent->schema); /* XXX libyang2: q: really don't understand this code. */ key_leaf = dnode->prev; for (keys_size = 1; keys_size < snode_num_keys; keys_size++) key_leaf = key_leaf->prev; if (key_leaf->prev == dnode) return true; break; case LYS_CONTAINER: return true; default: break; } return false; } const struct lyd_node * yang_get_subtree_with_no_sibling(const struct lyd_node *dnode) { bool parent = true; const struct lyd_node *node; node = dnode; if (node->schema->nodetype != LYS_LIST) return node; while (parent) { switch (node->schema->nodetype) { case LYS_CONTAINER: if (!CHECK_FLAG(node->schema->flags, LYS_PRESENCE)) { if (node->parent && (node->parent->schema->module == dnode->schema->module)) node = lyd_parent(node); else parent = false; } else parent = false; break; case LYS_LIST: if (yang_is_last_list_dnode(node) && yang_is_last_level_dnode(node)) { if (node->parent && (node->parent->schema->module == dnode->schema->module)) node = lyd_parent(node); else parent = false; } else parent = false; break; default: parent = false; break; } } return node; } uint32_t yang_get_list_pos(const struct lyd_node *node) { return lyd_list_pos(node); } uint32_t yang_get_list_elements_count(const struct lyd_node *node) { unsigned int count; const struct lysc_node *schema; if (!node || ((node->schema->nodetype != LYS_LIST) && (node->schema->nodetype != LYS_LEAFLIST))) { return 0; } schema = node->schema; count = 0; do { if (node->schema == schema) ++count; node = node->next; } while (node); return count; } int yang_get_key_preds(char *s, const struct lysc_node *snode, struct yang_list_keys *keys, ssize_t space) { const struct lysc_node_leaf *skey; ssize_t len2, len = 0; ssize_t i = 0; LY_FOR_KEYS (snode, skey) { assert(i < keys->num); len2 = snprintf(s + len, space - len, "[%s='%s']", skey->name, keys->key[i]); if (len2 > space - len) len = space; else len += len2; i++; } assert(i == keys->num); return i; } int yang_get_node_keys(struct lyd_node *node, struct yang_list_keys *keys) { struct lyd_node *child = lyd_child(node); keys->num = 0; for (; child && lysc_is_key(child->schema); child = child->next) { const char *value = lyd_get_value(child); if (!value) return NB_ERR; strlcpy(keys->key[keys->num], value, sizeof(keys->key[keys->num])); keys->num++; } return NB_OK; } /* * ------------------------ * Libyang Future Functions * ------------------------ * * All these functions are implemented in libyang versions (perhaps unreleased) * beyond what we require currently so we must supply the functionality. */ /* * Safe to remove after libyang v2.1.xxx is required (.144 has a bug so * something > .144) https://github.com/CESNET/libyang/issues/2149 */ LY_ERR yang_lyd_new_list(struct lyd_node_inner *parent, const struct lysc_node *snode, const struct yang_list_keys *list_keys, struct lyd_node **node) { #if defined(HAVE_LYD_NEW_LIST3) && 0 LY_ERR err; const char *keys[LIST_MAXKEYS]; assert(list_keys->num <= LIST_MAXKEYS); for (int i = 0; i < list_keys->num; i++) keys[i] = list_keys->key[i]; err = lyd_new_list3(&parent->node, snode->module, snode->name, keys, NULL, 0, node); return err; #else struct lyd_node *pnode = &parent->node; const char(*keys)[LIST_MAXKEYLEN] = list_keys->key; assert(list_keys->num <= 8); switch (list_keys->num) { case 0: return lyd_new_list(pnode, snode->module, snode->name, false, node); case 1: return lyd_new_list(pnode, snode->module, snode->name, false, node, keys[0]); case 2: return lyd_new_list(pnode, snode->module, snode->name, false, node, keys[0], keys[1]); case 3: return lyd_new_list(pnode, snode->module, snode->name, false, node, keys[0], keys[1], keys[2]); case 4: return lyd_new_list(pnode, snode->module, snode->name, false, node, keys[0], keys[1], keys[2], keys[3]); case 5: return lyd_new_list(pnode, snode->module, snode->name, false, node, keys[0], keys[1], keys[2], keys[3], keys[4]); case 6: return lyd_new_list(pnode, snode->module, snode->name, false, node, keys[0], keys[1], keys[2], keys[3], keys[4], keys[5]); case 7: return lyd_new_list(pnode, snode->module, snode->name, false, node, keys[0], keys[1], keys[2], keys[3], keys[4], keys[5], keys[6]); case 8: return lyd_new_list(pnode, snode->module, snode->name, false, node, keys[0], keys[1], keys[2], keys[3], keys[4], keys[5], keys[6], keys[7]); } _Static_assert(LIST_MAXKEYS == 8, "max key mismatch in switch unroll"); /*NOTREACHED*/ return LY_EINVAL; #endif } /* * Safe to remove after libyang v2.1.144 is required */ LY_ERR yang_lyd_trim_xpath(struct lyd_node **root, const char *xpath) { LY_ERR err; #ifdef HAVE_LYD_TRIM_XPATH err = lyd_trim_xpath(root, xpath, NULL); if (err) { flog_err_sys(EC_LIB_LIBYANG, "cannot obtain specific result for xpath \"%s\": %s", xpath, yang_ly_strerrcode(err)); return err; } return LY_SUCCESS; #else struct lyd_node *node; struct lyd_node **remove = NULL; struct ly_set *set = NULL; uint32_t i; *root = lyd_first_sibling(*root); err = lyd_find_xpath3(NULL, *root, xpath, NULL, &set); if (err) { flog_err_sys(EC_LIB_LIBYANG, "cannot obtain specific result for xpath \"%s\": %s", xpath, yang_ly_strerrcode(err)); return err; } /* * Mark keepers and sweep deleting non-keepers. * * NOTE: We assume the data-nodes have NULL priv pointers and use that * for our mark. */ /* Mark */ for (i = 0; i < set->count; i++) { for (node = set->dnodes[i]; node; node = &node->parent->node) { if (node->priv) break; if (node == set->dnodes[i]) node->priv = (void *)2; else node->priv = (void *)1; } } darr_ensure_cap(remove, 128); LYD_TREE_DFS_BEGIN (*root, node) { /* * If this is a direct matching node then include it's subtree * which won't be marked and would otherwise be removed. */ if (node->priv == (void *)2) LYD_TREE_DFS_continue = 1; else if (!node->priv) { *darr_append(remove) = node; LYD_TREE_DFS_continue = 1; } LYD_TREE_DFS_END(*root, node); } darr_foreach_i (remove, i) { if (remove[i] == *root) *root = (*root)->next; lyd_free_tree(remove[i]); } darr_free(remove); if (set) ly_set_free(set, NULL); return LY_SUCCESS; #endif } /* * Safe to remove after libyang v2.1.128 is required */ const char *yang_ly_strerrcode(LY_ERR err) { #ifdef HAVE_LY_STRERRCODE return ly_strerrcode(err); #else switch (err) { case LY_SUCCESS: return "ok"; case LY_EMEM: return "out of memory"; case LY_ESYS: return "system error"; case LY_EINVAL: return "invalid value given"; case LY_EEXIST: return "item exists"; case LY_ENOTFOUND: return "item not found"; case LY_EINT: return "operation interrupted"; case LY_EVALID: return "validation failed"; case LY_EDENIED: return "access denied"; case LY_EINCOMPLETE: return "incomplete"; case LY_ERECOMPILE: return "compile error"; case LY_ENOT: return "not"; case LY_EPLUGIN: case LY_EOTHER: return "other"; default: return "unknown"; } #endif } /* * Safe to remove after libyang v2.1.128 is required */ const char *yang_ly_strvecode(LY_VECODE vecode) { #ifdef HAVE_LY_STRVECODE return ly_strvecode(vecode); #else switch (vecode) { case LYVE_SUCCESS: return ""; case LYVE_SYNTAX: return "syntax"; case LYVE_SYNTAX_YANG: return "yang-syntax"; case LYVE_SYNTAX_YIN: return "yin-syntax"; case LYVE_REFERENCE: return "reference"; case LYVE_XPATH: return "xpath"; case LYVE_SEMANTICS: return "semantics"; case LYVE_SYNTAX_XML: return "xml-syntax"; case LYVE_SYNTAX_JSON: return "json-syntax"; case LYVE_DATA: return "data"; case LYVE_OTHER: return "other"; default: return "unknown"; } #endif }