/* * Code for encoding/decoding FPM messages that are in netlink format. * * Copyright (C) 1997, 98, 99 Kunihiro Ishiguro * Copyright (C) 2012 by Open Source Routing. * Copyright (C) 2012 by Internet Systems Consortium, Inc. ("ISC") * * This file is part of GNU Zebra. * * GNU Zebra is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2, or (at your option) any * later version. * * GNU Zebra is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; see the file COPYING; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include "log.h" #include "rib.h" #include "vty.h" #include "prefix.h" #include "zebra/zserv.h" #include "zebra/zebra_ns.h" #include "zebra/zebra_vrf.h" #include "zebra/kernel_netlink.h" #include "zebra/rt_netlink.h" #include "nexthop.h" #include "zebra/zebra_fpm_private.h" /* * addr_to_a * * Returns string representation of an address of the given AF. */ static inline const char *addr_to_a(u_char af, void *addr) { if (!addr) return ""; switch (af) { case AF_INET: return inet_ntoa(*((struct in_addr *)addr)); break; case AF_INET6: return inet6_ntoa(*((struct in6_addr *)addr)); break; default: return ""; break; } } /* * prefix_addr_to_a * * Convience wrapper that returns a human-readable string for the * address in a prefix. */ static const char *prefix_addr_to_a(struct prefix *prefix) { if (!prefix) return ""; return addr_to_a(prefix->family, &prefix->u.prefix); } /* * af_addr_size * * The size of an address in a given address family. */ static size_t af_addr_size(u_char af) { switch (af) { case AF_INET: return 4; break; case AF_INET6: return 16; break; default: assert(0); return 16; } } /* * netlink_nh_info_t * * Holds information about a single nexthop for netlink. These info * structures are transient and may contain pointers into rib * data structures for convenience. */ typedef struct netlink_nh_info_t_ { uint32_t if_index; union g_addr *gateway; /* * Information from the struct nexthop from which this nh was * derived. For debug purposes only. */ int recursive; enum nexthop_types_t type; } netlink_nh_info_t; /* * netlink_route_info_t * * A structure for holding information for a netlink route message. */ typedef struct netlink_route_info_t_ { uint16_t nlmsg_type; u_char rtm_type; uint32_t rtm_table; u_char rtm_protocol; u_char af; struct prefix *prefix; uint32_t *metric; unsigned int num_nhs; /* * Nexthop structures */ netlink_nh_info_t nhs[MULTIPATH_NUM]; union g_addr *pref_src; } netlink_route_info_t; /* * netlink_route_info_add_nh * * Add information about the given nexthop to the given route info * structure. * * Returns TRUE if a nexthop was added, FALSE otherwise. */ static int netlink_route_info_add_nh(netlink_route_info_t *ri, struct nexthop *nexthop) { netlink_nh_info_t nhi; union g_addr *src; memset(&nhi, 0, sizeof(nhi)); src = NULL; if (ri->num_nhs >= (int)ZEBRA_NUM_OF(ri->nhs)) return 0; nhi.recursive = nexthop->rparent ? 1 : 0; nhi.type = nexthop->type; nhi.if_index = nexthop->ifindex; if (nexthop->type == NEXTHOP_TYPE_IPV4 || nexthop->type == NEXTHOP_TYPE_IPV4_IFINDEX) { nhi.gateway = &nexthop->gate; if (nexthop->src.ipv4.s_addr) src = &nexthop->src; } if (nexthop->type == NEXTHOP_TYPE_IPV6 || nexthop->type == NEXTHOP_TYPE_IPV6_IFINDEX) { nhi.gateway = &nexthop->gate; } if (nexthop->type == NEXTHOP_TYPE_IFINDEX) { if (nexthop->src.ipv4.s_addr) src = &nexthop->src; } if (!nhi.gateway && nhi.if_index == 0) return 0; /* * We have a valid nhi. Copy the structure over to the route_info. */ ri->nhs[ri->num_nhs] = nhi; ri->num_nhs++; if (src && !ri->pref_src) ri->pref_src = src; return 1; } /* * netlink_proto_from_route_type */ static u_char netlink_proto_from_route_type(int type) { switch (type) { case ZEBRA_ROUTE_KERNEL: case ZEBRA_ROUTE_CONNECT: return RTPROT_KERNEL; default: return RTPROT_ZEBRA; } } /* * netlink_route_info_fill * * Fill out the route information object from the given route. * * Returns TRUE on success and FALSE on failure. */ static int netlink_route_info_fill(netlink_route_info_t *ri, int cmd, rib_dest_t *dest, struct route_entry *re) { struct nexthop *nexthop; int discard; memset(ri, 0, sizeof(*ri)); ri->prefix = rib_dest_prefix(dest); ri->af = rib_dest_af(dest); ri->nlmsg_type = cmd; ri->rtm_table = zvrf_id(rib_dest_vrf(dest)); ri->rtm_protocol = RTPROT_UNSPEC; /* * An RTM_DELROUTE need not be accompanied by any nexthops, * particularly in our communication with the FPM. */ if (cmd == RTM_DELROUTE && !re) return 1; if (!re) { zfpm_debug("%s: Expected non-NULL re pointer", __PRETTY_FUNCTION__); return 0; } ri->rtm_protocol = netlink_proto_from_route_type(re->type); if ((re->flags & ZEBRA_FLAG_BLACKHOLE) || (re->flags & ZEBRA_FLAG_REJECT)) discard = 1; else discard = 0; if (cmd == RTM_NEWROUTE) { if (discard) { if (re->flags & ZEBRA_FLAG_BLACKHOLE) ri->rtm_type = RTN_BLACKHOLE; else if (re->flags & ZEBRA_FLAG_REJECT) ri->rtm_type = RTN_UNREACHABLE; else assert(0); } else ri->rtm_type = RTN_UNICAST; } ri->metric = &re->metric; if (discard) return 1; for (ALL_NEXTHOPS(re->nexthop, nexthop)) { if (ri->num_nhs >= multipath_num) break; if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_RECURSIVE)) continue; if ((cmd == RTM_NEWROUTE && CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE)) || (cmd == RTM_DELROUTE && CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB))) { netlink_route_info_add_nh(ri, nexthop); } } /* If there is no useful nexthop then return. */ if (ri->num_nhs == 0) { zfpm_debug("netlink_encode_route(): No useful nexthop."); return 0; } return 1; } /* * netlink_route_info_encode * * Returns the number of bytes written to the buffer. 0 or a negative * value indicates an error. */ static int netlink_route_info_encode(netlink_route_info_t *ri, char *in_buf, size_t in_buf_len) { size_t bytelen; unsigned int nexthop_num = 0; size_t buf_offset; netlink_nh_info_t *nhi; struct { struct nlmsghdr n; struct rtmsg r; char buf[1]; } * req; req = (void *)in_buf; buf_offset = ((char *)req->buf) - ((char *)req); if (in_buf_len < buf_offset) { assert(0); return 0; } memset(req, 0, buf_offset); bytelen = af_addr_size(ri->af); req->n.nlmsg_len = NLMSG_LENGTH(sizeof(struct rtmsg)); req->n.nlmsg_flags = NLM_F_CREATE | NLM_F_REQUEST; req->n.nlmsg_type = ri->nlmsg_type; req->r.rtm_family = ri->af; req->r.rtm_table = ri->rtm_table; req->r.rtm_dst_len = ri->prefix->prefixlen; req->r.rtm_protocol = ri->rtm_protocol; req->r.rtm_scope = RT_SCOPE_UNIVERSE; addattr_l(&req->n, in_buf_len, RTA_DST, &ri->prefix->u.prefix, bytelen); req->r.rtm_type = ri->rtm_type; /* Metric. */ if (ri->metric) addattr32(&req->n, in_buf_len, RTA_PRIORITY, *ri->metric); if (ri->num_nhs == 0) goto done; if (ri->num_nhs == 1) { nhi = &ri->nhs[0]; if (nhi->gateway) { addattr_l(&req->n, in_buf_len, RTA_GATEWAY, nhi->gateway, bytelen); } if (nhi->if_index) { addattr32(&req->n, in_buf_len, RTA_OIF, nhi->if_index); } goto done; } /* * Multipath case. */ char buf[NL_PKT_BUF_SIZE]; struct rtattr *rta = (void *)buf; struct rtnexthop *rtnh; rta->rta_type = RTA_MULTIPATH; rta->rta_len = RTA_LENGTH(0); rtnh = RTA_DATA(rta); for (nexthop_num = 0; nexthop_num < ri->num_nhs; nexthop_num++) { nhi = &ri->nhs[nexthop_num]; rtnh->rtnh_len = sizeof(*rtnh); rtnh->rtnh_flags = 0; rtnh->rtnh_hops = 0; rtnh->rtnh_ifindex = 0; rta->rta_len += rtnh->rtnh_len; if (nhi->gateway) { rta_addattr_l(rta, sizeof(buf), RTA_GATEWAY, nhi->gateway, bytelen); rtnh->rtnh_len += sizeof(struct rtattr) + bytelen; } if (nhi->if_index) { rtnh->rtnh_ifindex = nhi->if_index; } rtnh = RTNH_NEXT(rtnh); } assert(rta->rta_len > RTA_LENGTH(0)); addattr_l(&req->n, in_buf_len, RTA_MULTIPATH, RTA_DATA(rta), RTA_PAYLOAD(rta)); done: if (ri->pref_src) { addattr_l(&req->n, in_buf_len, RTA_PREFSRC, &ri->pref_src, bytelen); } assert(req->n.nlmsg_len < in_buf_len); return req->n.nlmsg_len; } /* * zfpm_log_route_info * * Helper function to log the information in a route_info structure. */ static void zfpm_log_route_info(netlink_route_info_t *ri, const char *label) { netlink_nh_info_t *nhi; unsigned int i; zfpm_debug("%s : %s %s/%d, Proto: %s, Metric: %u", label, nl_msg_type_to_str(ri->nlmsg_type), prefix_addr_to_a(ri->prefix), ri->prefix->prefixlen, nl_rtproto_to_str(ri->rtm_protocol), ri->metric ? *ri->metric : 0); for (i = 0; i < ri->num_nhs; i++) { nhi = &ri->nhs[i]; zfpm_debug(" Intf: %u, Gateway: %s, Recursive: %s, Type: %s", nhi->if_index, addr_to_a(ri->af, nhi->gateway), nhi->recursive ? "yes" : "no", nexthop_type_to_str(nhi->type)); } } /* * zfpm_netlink_encode_route * * Create a netlink message corresponding to the given route in the * given buffer space. * * Returns the number of bytes written to the buffer. 0 or a negative * value indicates an error. */ int zfpm_netlink_encode_route(int cmd, rib_dest_t *dest, struct route_entry *re, char *in_buf, size_t in_buf_len) { netlink_route_info_t ri_space, *ri; ri = &ri_space; if (!netlink_route_info_fill(ri, cmd, dest, re)) return 0; zfpm_log_route_info(ri, __FUNCTION__); return netlink_route_info_encode(ri, in_buf, in_buf_len); }