#include "cache.h" #include "object.h" #include "blob.h" #include "tree.h" #include "commit.h" #include "tag.h" static struct object **obj_hash; static int nr_objs, obj_hash_size; unsigned int get_max_object_index(void) { return obj_hash_size; } struct object *get_indexed_object(unsigned int idx) { return obj_hash[idx]; } static const char *object_type_strings[] = { NULL, /* OBJ_NONE = 0 */ "commit", /* OBJ_COMMIT = 1 */ "tree", /* OBJ_TREE = 2 */ "blob", /* OBJ_BLOB = 3 */ "tag", /* OBJ_TAG = 4 */ }; const char *typename(unsigned int type) { if (type >= ARRAY_SIZE(object_type_strings)) return NULL; return object_type_strings[type]; } int type_from_string(const char *str) { int i; for (i = 1; i < ARRAY_SIZE(object_type_strings); i++) if (!strcmp(str, object_type_strings[i])) return i; die("invalid object type \"%s\"", str); } /* * Return a numerical hash value between 0 and n-1 for the object with * the specified sha1. n must be a power of 2. Please note that the * return value is *not* consistent across computer architectures. */ static unsigned int hash_obj(const unsigned char *sha1, unsigned int n) { unsigned int hash; /* * Since the sha1 is essentially random, we just take the * required number of bits directly from the first * sizeof(unsigned int) bytes of sha1. First we have to copy * the bytes into a properly aligned integer. If we cared * about getting consistent results across architectures, we * would have to call ntohl() here, too. */ memcpy(&hash, sha1, sizeof(unsigned int)); return hash & (n - 1); } /* * Insert obj into the hash table hash, which has length size (which * must be a power of 2). On collisions, simply overflow to the next * empty bucket. */ static void insert_obj_hash(struct object *obj, struct object **hash, unsigned int size) { unsigned int j = hash_obj(obj->sha1, size); while (hash[j]) { j++; if (j >= size) j = 0; } hash[j] = obj; } /* * Look up the record for the given sha1 in the hash map stored in * obj_hash. Return NULL if it was not found. */ struct object *lookup_object(const unsigned char *sha1) { unsigned int i, first; struct object *obj; if (!obj_hash) return NULL; first = i = hash_obj(sha1, obj_hash_size); while ((obj = obj_hash[i]) != NULL) { if (!hashcmp(sha1, obj->sha1)) break; i++; if (i == obj_hash_size) i = 0; } if (obj && i != first) { /* * Move object to where we started to look for it so * that we do not need to walk the hash table the next * time we look for it. */ struct object *tmp = obj_hash[i]; obj_hash[i] = obj_hash[first]; obj_hash[first] = tmp; } return obj; } /* * Increase the size of the hash map stored in obj_hash to the next * power of 2 (but at least 32). Copy the existing values to the new * hash map. */ static void grow_object_hash(void) { int i; /* * Note that this size must always be power-of-2 to match hash_obj * above. */ int new_hash_size = obj_hash_size < 32 ? 32 : 2 * obj_hash_size; struct object **new_hash; new_hash = xcalloc(new_hash_size, sizeof(struct object *)); for (i = 0; i < obj_hash_size; i++) { struct object *obj = obj_hash[i]; if (!obj) continue; insert_obj_hash(obj, new_hash, new_hash_size); } free(obj_hash); obj_hash = new_hash; obj_hash_size = new_hash_size; } void *create_object(const unsigned char *sha1, int type, void *o) { struct object *obj = o; obj->parsed = 0; obj->used = 0; obj->type = type; obj->flags = 0; hashcpy(obj->sha1, sha1); if (obj_hash_size - 1 <= nr_objs * 2) grow_object_hash(); insert_obj_hash(obj, obj_hash, obj_hash_size); nr_objs++; return obj; } struct object *lookup_unknown_object(const unsigned char *sha1) { struct object *obj = lookup_object(sha1); if (!obj) obj = create_object(sha1, OBJ_NONE, alloc_object_node()); return obj; } struct object *parse_object_buffer(const unsigned char *sha1, enum object_type type, unsigned long size, void *buffer, int *eaten_p) { struct object *obj; *eaten_p = 0; obj = NULL; if (type == OBJ_BLOB) { struct blob *blob = lookup_blob(sha1); if (blob) { if (parse_blob_buffer(blob, buffer, size)) return NULL; obj = &blob->object; } } else if (type == OBJ_TREE) { struct tree *tree = lookup_tree(sha1); if (tree) { obj = &tree->object; if (!tree->buffer) tree->object.parsed = 0; if (!tree->object.parsed) { if (parse_tree_buffer(tree, buffer, size)) return NULL; *eaten_p = 1; } } } else if (type == OBJ_COMMIT) { struct commit *commit = lookup_commit(sha1); if (commit) { if (parse_commit_buffer(commit, buffer, size)) return NULL; if (!commit->buffer) { set_commit_buffer(commit, buffer); *eaten_p = 1; } obj = &commit->object; } } else if (type == OBJ_TAG) { struct tag *tag = lookup_tag(sha1); if (tag) { if (parse_tag_buffer(tag, buffer, size)) return NULL; obj = &tag->object; } } else { warning("object %s has unknown type id %d", sha1_to_hex(sha1), type); obj = NULL; } if (obj && obj->type == OBJ_NONE) obj->type = type; return obj; } struct object *parse_object_or_die(const unsigned char *sha1, const char *name) { struct object *o = parse_object(sha1); if (o) return o; die(_("unable to parse object: %s"), name ? name : sha1_to_hex(sha1)); } struct object *parse_object(const unsigned char *sha1) { unsigned long size; enum object_type type; int eaten; const unsigned char *repl = lookup_replace_object(sha1); void *buffer; struct object *obj; obj = lookup_object(sha1); if (obj && obj->parsed) return obj; if ((obj && obj->type == OBJ_BLOB) || (!obj && has_sha1_file(sha1) && sha1_object_info(sha1, NULL) == OBJ_BLOB)) { if (check_sha1_signature(repl, NULL, 0, NULL) < 0) { error("sha1 mismatch %s", sha1_to_hex(repl)); return NULL; } parse_blob_buffer(lookup_blob(sha1), NULL, 0); return lookup_object(sha1); } buffer = read_sha1_file(sha1, &type, &size); if (buffer) { if (check_sha1_signature(repl, buffer, size, typename(type)) < 0) { free(buffer); error("sha1 mismatch %s", sha1_to_hex(repl)); return NULL; } obj = parse_object_buffer(sha1, type, size, buffer, &eaten); if (!eaten) free(buffer); return obj; } return NULL; } struct object_list *object_list_insert(struct object *item, struct object_list **list_p) { struct object_list *new_list = xmalloc(sizeof(struct object_list)); new_list->item = item; new_list->next = *list_p; *list_p = new_list; return new_list; } int object_list_contains(struct object_list *list, struct object *obj) { while (list) { if (list->item == obj) return 1; list = list->next; } return 0; } /* * A zero-length string to which object_array_entry::name can be * initialized without requiring a malloc/free. */ static char object_array_slopbuf[1]; static void add_object_array_with_mode_context(struct object *obj, const char *name, struct object_array *array, unsigned mode, struct object_context *context) { unsigned nr = array->nr; unsigned alloc = array->alloc; struct object_array_entry *objects = array->objects; struct object_array_entry *entry; if (nr >= alloc) { alloc = (alloc + 32) * 2; objects = xrealloc(objects, alloc * sizeof(*objects)); array->alloc = alloc; array->objects = objects; } entry = &objects[nr]; entry->item = obj; if (!name) entry->name = NULL; else if (!*name) /* Use our own empty string instead of allocating one: */ entry->name = object_array_slopbuf; else entry->name = xstrdup(name); entry->mode = mode; entry->context = context; array->nr = ++nr; } void add_object_array(struct object *obj, const char *name, struct object_array *array) { add_object_array_with_mode(obj, name, array, S_IFINVALID); } void add_object_array_with_mode(struct object *obj, const char *name, struct object_array *array, unsigned mode) { add_object_array_with_mode_context(obj, name, array, mode, NULL); } void add_object_array_with_context(struct object *obj, const char *name, struct object_array *array, struct object_context *context) { if (context) add_object_array_with_mode_context(obj, name, array, context->mode, context); else add_object_array_with_mode_context(obj, name, array, S_IFINVALID, context); } void object_array_filter(struct object_array *array, object_array_each_func_t want, void *cb_data) { unsigned nr = array->nr, src, dst; struct object_array_entry *objects = array->objects; for (src = dst = 0; src < nr; src++) { if (want(&objects[src], cb_data)) { if (src != dst) objects[dst] = objects[src]; dst++; } else { if (objects[src].name != object_array_slopbuf) free(objects[src].name); } } array->nr = dst; } /* * Return true iff array already contains an entry with name. */ static int contains_name(struct object_array *array, const char *name) { unsigned nr = array->nr, i; struct object_array_entry *object = array->objects; for (i = 0; i < nr; i++, object++) if (!strcmp(object->name, name)) return 1; return 0; } void object_array_remove_duplicates(struct object_array *array) { unsigned nr = array->nr, src; struct object_array_entry *objects = array->objects; array->nr = 0; for (src = 0; src < nr; src++) { if (!contains_name(array, objects[src].name)) { if (src != array->nr) objects[array->nr] = objects[src]; array->nr++; } else { if (objects[src].name != object_array_slopbuf) free(objects[src].name); } } } void clear_object_flags(unsigned flags) { int i; for (i=0; i < obj_hash_size; i++) { struct object *obj = obj_hash[i]; if (obj) obj->flags &= ~flags; } }