#define USE_THE_REPOSITORY_VARIABLE #include "git-compat-util.h" #include "gettext.h" #include "hash.h" #include "mem-pool.h" #include "read-cache-ll.h" #include "split-index.h" #include "strbuf.h" #include "ewah/ewok.h" struct split_index *init_split_index(struct index_state *istate) { if (!istate->split_index) { if (istate->sparse_index) die(_("cannot use split index with a sparse index")); CALLOC_ARRAY(istate->split_index, 1); istate->split_index->refcount = 1; } return istate->split_index; } int read_link_extension(struct index_state *istate, const void *data_, unsigned long sz) { const unsigned char *data = data_; struct split_index *si; int ret; if (sz < the_hash_algo->rawsz) return error("corrupt link extension (too short)"); si = init_split_index(istate); oidread(&si->base_oid, data, the_repository->hash_algo); data += the_hash_algo->rawsz; sz -= the_hash_algo->rawsz; if (!sz) return 0; si->delete_bitmap = ewah_new(); ret = ewah_read_mmap(si->delete_bitmap, data, sz); if (ret < 0) return error("corrupt delete bitmap in link extension"); data += ret; sz -= ret; si->replace_bitmap = ewah_new(); ret = ewah_read_mmap(si->replace_bitmap, data, sz); if (ret < 0) return error("corrupt replace bitmap in link extension"); if (ret != sz) return error("garbage at the end of link extension"); return 0; } int write_link_extension(struct strbuf *sb, struct index_state *istate) { struct split_index *si = istate->split_index; strbuf_add(sb, si->base_oid.hash, the_hash_algo->rawsz); if (!si->delete_bitmap && !si->replace_bitmap) return 0; ewah_serialize_strbuf(si->delete_bitmap, sb); ewah_serialize_strbuf(si->replace_bitmap, sb); return 0; } static void mark_base_index_entries(struct index_state *base) { int i; /* * To keep track of the shared entries between * istate->base->cache[] and istate->cache[], base entry * position is stored in each base entry. All positions start * from 1 instead of 0, which is reserved to say "this is a new * entry". */ for (i = 0; i < base->cache_nr; i++) base->cache[i]->index = i + 1; } void move_cache_to_base_index(struct index_state *istate) { struct split_index *si = istate->split_index; int i; /* * If there was a previous base index, then transfer ownership of allocated * entries to the parent index. */ if (si->base && si->base->ce_mem_pool) { if (!istate->ce_mem_pool) { istate->ce_mem_pool = xmalloc(sizeof(struct mem_pool)); mem_pool_init(istate->ce_mem_pool, 0); } mem_pool_combine(istate->ce_mem_pool, istate->split_index->base->ce_mem_pool); } if (si->base) release_index(si->base); else ALLOC_ARRAY(si->base, 1); index_state_init(si->base, istate->repo); si->base->version = istate->version; /* zero timestamp disables racy test in ce_write_index() */ si->base->timestamp = istate->timestamp; ALLOC_GROW(si->base->cache, istate->cache_nr, si->base->cache_alloc); si->base->cache_nr = istate->cache_nr; /* * The mem_pool needs to move with the allocated entries. */ si->base->ce_mem_pool = istate->ce_mem_pool; istate->ce_mem_pool = NULL; COPY_ARRAY(si->base->cache, istate->cache, istate->cache_nr); mark_base_index_entries(si->base); for (i = 0; i < si->base->cache_nr; i++) si->base->cache[i]->ce_flags &= ~CE_UPDATE_IN_BASE; } static void mark_entry_for_delete(size_t pos, void *data) { struct index_state *istate = data; if (pos >= istate->cache_nr) die("position for delete %d exceeds base index size %d", (int)pos, istate->cache_nr); istate->cache[pos]->ce_flags |= CE_REMOVE; istate->split_index->nr_deletions++; } static void replace_entry(size_t pos, void *data) { struct index_state *istate = data; struct split_index *si = istate->split_index; struct cache_entry *dst, *src; if (pos >= istate->cache_nr) die("position for replacement %d exceeds base index size %d", (int)pos, istate->cache_nr); if (si->nr_replacements >= si->saved_cache_nr) die("too many replacements (%d vs %d)", si->nr_replacements, si->saved_cache_nr); dst = istate->cache[pos]; if (dst->ce_flags & CE_REMOVE) die("entry %d is marked as both replaced and deleted", (int)pos); src = si->saved_cache[si->nr_replacements]; if (ce_namelen(src)) die("corrupt link extension, entry %d should have " "zero length name", (int)pos); src->index = pos + 1; src->ce_flags |= CE_UPDATE_IN_BASE; src->ce_namelen = dst->ce_namelen; copy_cache_entry(dst, src); discard_cache_entry(src); si->nr_replacements++; } void merge_base_index(struct index_state *istate) { struct split_index *si = istate->split_index; unsigned int i; mark_base_index_entries(si->base); si->saved_cache = istate->cache; si->saved_cache_nr = istate->cache_nr; istate->cache_nr = si->base->cache_nr; istate->cache = NULL; istate->cache_alloc = 0; ALLOC_GROW(istate->cache, istate->cache_nr, istate->cache_alloc); COPY_ARRAY(istate->cache, si->base->cache, istate->cache_nr); si->nr_deletions = 0; si->nr_replacements = 0; ewah_each_bit(si->replace_bitmap, replace_entry, istate); ewah_each_bit(si->delete_bitmap, mark_entry_for_delete, istate); if (si->nr_deletions) remove_marked_cache_entries(istate, 0); for (i = si->nr_replacements; i < si->saved_cache_nr; i++) { if (!ce_namelen(si->saved_cache[i])) die("corrupt link extension, entry %d should " "have non-zero length name", i); add_index_entry(istate, si->saved_cache[i], ADD_CACHE_OK_TO_ADD | ADD_CACHE_KEEP_CACHE_TREE | /* * we may have to replay what * merge-recursive.c:update_stages() * does, which has this flag on */ ADD_CACHE_SKIP_DFCHECK); si->saved_cache[i] = NULL; } ewah_free(si->delete_bitmap); ewah_free(si->replace_bitmap); FREE_AND_NULL(si->saved_cache); si->delete_bitmap = NULL; si->replace_bitmap = NULL; si->saved_cache_nr = 0; } /* * Compare most of the fields in two cache entries, i.e. all except the * hashmap_entry and the name. */ static int compare_ce_content(struct cache_entry *a, struct cache_entry *b) { const unsigned int ondisk_flags = CE_STAGEMASK | CE_VALID | CE_EXTENDED_FLAGS; unsigned int ce_flags = a->ce_flags; unsigned int base_flags = b->ce_flags; int ret; /* only on-disk flags matter */ a->ce_flags &= ondisk_flags; b->ce_flags &= ondisk_flags; ret = memcmp(&a->ce_stat_data, &b->ce_stat_data, offsetof(struct cache_entry, name) - offsetof(struct cache_entry, oid)) || !oideq(&a->oid, &b->oid); a->ce_flags = ce_flags; b->ce_flags = base_flags; return ret; } void prepare_to_write_split_index(struct index_state *istate) { struct split_index *si = init_split_index(istate); struct cache_entry **entries = NULL, *ce; int i, nr_entries = 0, nr_alloc = 0; si->delete_bitmap = ewah_new(); si->replace_bitmap = ewah_new(); if (si->base) { /* Go through istate->cache[] and mark CE_MATCHED to * entry with positive index. We'll go through * base->cache[] later to delete all entries in base * that are not marked with either CE_MATCHED or * CE_UPDATE_IN_BASE. If istate->cache[i] is a * duplicate, deduplicate it. */ for (i = 0; i < istate->cache_nr; i++) { struct cache_entry *base; ce = istate->cache[i]; if (!ce->index) { /* * During simple update index operations this * is a cache entry that is not present in * the shared index. It will be added to the * split index. * * However, it might also represent a file * that already has a cache entry in the * shared index, but a new index has just * been constructed by unpack_trees(), and * this entry now refers to different content * than what was recorded in the original * index, e.g. during 'read-tree -m HEAD^' or * 'checkout HEAD^'. In this case the * original entry in the shared index will be * marked as deleted, and this entry will be * added to the split index. */ continue; } if (ce->index > si->base->cache_nr) { BUG("ce refers to a shared ce at %d, which is beyond the shared index size %d", ce->index, si->base->cache_nr); } ce->ce_flags |= CE_MATCHED; /* or "shared" */ base = si->base->cache[ce->index - 1]; if (ce == base) { /* The entry is present in the shared index. */ if (ce->ce_flags & CE_UPDATE_IN_BASE) { /* * Already marked for inclusion in * the split index, either because * the corresponding file was * modified and the cached stat data * was refreshed, or because there * is already a replacement entry in * the split index. * Nothing more to do here. */ } else if (!ce_uptodate(ce) && is_racy_timestamp(istate, ce)) { /* * A racily clean cache entry stored * only in the shared index: it must * be added to the split index, so * the subsequent do_write_index() * can smudge its stat data. */ ce->ce_flags |= CE_UPDATE_IN_BASE; } else { /* * The entry is only present in the * shared index and it was not * refreshed. * Just leave it there. */ } continue; } if (ce->ce_namelen != base->ce_namelen || strcmp(ce->name, base->name)) { ce->index = 0; continue; } /* * This is the copy of a cache entry that is present * in the shared index, created by unpack_trees() * while it constructed a new index. */ if (ce->ce_flags & CE_UPDATE_IN_BASE) { /* * Already marked for inclusion in the split * index, either because the corresponding * file was modified and the cached stat data * was refreshed, or because the original * entry already had a replacement entry in * the split index. * Nothing to do. */ } else if (!ce_uptodate(ce) && is_racy_timestamp(istate, ce)) { /* * A copy of a racily clean cache entry from * the shared index. It must be added to * the split index, so the subsequent * do_write_index() can smudge its stat data. */ ce->ce_flags |= CE_UPDATE_IN_BASE; } else { /* * Thoroughly compare the cached data to see * whether it should be marked for inclusion * in the split index. * * This comparison might be unnecessary, as * code paths modifying the cached data do * set CE_UPDATE_IN_BASE as well. */ if (compare_ce_content(ce, base)) ce->ce_flags |= CE_UPDATE_IN_BASE; } discard_cache_entry(base); si->base->cache[ce->index - 1] = ce; } for (i = 0; i < si->base->cache_nr; i++) { ce = si->base->cache[i]; if ((ce->ce_flags & CE_REMOVE) || !(ce->ce_flags & CE_MATCHED)) ewah_set(si->delete_bitmap, i); else if (ce->ce_flags & CE_UPDATE_IN_BASE) { ewah_set(si->replace_bitmap, i); ce->ce_flags |= CE_STRIP_NAME; ALLOC_GROW(entries, nr_entries+1, nr_alloc); entries[nr_entries++] = ce; } if (is_null_oid(&ce->oid)) istate->drop_cache_tree = 1; } } for (i = 0; i < istate->cache_nr; i++) { ce = istate->cache[i]; if ((!si->base || !ce->index) && !(ce->ce_flags & CE_REMOVE)) { assert(!(ce->ce_flags & CE_STRIP_NAME)); ALLOC_GROW(entries, nr_entries+1, nr_alloc); entries[nr_entries++] = ce; } ce->ce_flags &= ~CE_MATCHED; } /* * take cache[] out temporarily, put entries[] in its place * for writing */ si->saved_cache = istate->cache; si->saved_cache_nr = istate->cache_nr; istate->cache = entries; istate->cache_nr = nr_entries; } void finish_writing_split_index(struct index_state *istate) { struct split_index *si = init_split_index(istate); ewah_free(si->delete_bitmap); ewah_free(si->replace_bitmap); si->delete_bitmap = NULL; si->replace_bitmap = NULL; free(istate->cache); istate->cache = si->saved_cache; istate->cache_nr = si->saved_cache_nr; } void discard_split_index(struct index_state *istate) { struct split_index *si = istate->split_index; if (!si) return; istate->split_index = NULL; si->refcount--; if (si->refcount) return; if (si->base) { discard_index(si->base); free(si->base); } free(si); } void save_or_free_index_entry(struct index_state *istate, struct cache_entry *ce) { if (ce->index && istate->split_index && istate->split_index->base && ce->index <= istate->split_index->base->cache_nr && ce == istate->split_index->base->cache[ce->index - 1]) ce->ce_flags |= CE_REMOVE; else discard_cache_entry(ce); } void replace_index_entry_in_base(struct index_state *istate, struct cache_entry *old_entry, struct cache_entry *new_entry) { if (old_entry->index && istate->split_index && istate->split_index->base && old_entry->index <= istate->split_index->base->cache_nr) { new_entry->index = old_entry->index; if (old_entry != istate->split_index->base->cache[new_entry->index - 1]) discard_cache_entry(istate->split_index->base->cache[new_entry->index - 1]); istate->split_index->base->cache[new_entry->index - 1] = new_entry; } } void add_split_index(struct index_state *istate) { if (!istate->split_index) { init_split_index(istate); istate->cache_changed |= SPLIT_INDEX_ORDERED; } } void remove_split_index(struct index_state *istate) { if (istate->split_index) { if (istate->split_index->base) { /* * When removing the split index, we need to move * ownership of the mem_pool associated with the * base index to the main index. There may be cache entries * allocated from the base's memory pool that are shared with * the_index.cache[]. */ mem_pool_combine(istate->ce_mem_pool, istate->split_index->base->ce_mem_pool); /* * The split index no longer owns the mem_pool backing * its cache array. As we are discarding this index, * mark the index as having no cache entries, so it * will not attempt to clean up the cache entries or * validate them. */ istate->split_index->base->cache_nr = 0; } /* * We can discard the split index because its * memory pool has been incorporated into the * memory pool associated with the the_index. */ discard_split_index(istate); istate->cache_changed |= SOMETHING_CHANGED; } }