/* * Various trivial helper wrappers around standard functions */ #include "cache.h" #include "config.h" #include "gettext.h" static intmax_t count_fsync_writeout_only; static intmax_t count_fsync_hardware_flush; #ifdef HAVE_RTLGENRANDOM /* This is required to get access to RtlGenRandom. */ #define SystemFunction036 NTAPI SystemFunction036 #include #undef SystemFunction036 #endif static int memory_limit_check(size_t size, int gentle) { static size_t limit = 0; if (!limit) { limit = git_env_ulong("GIT_ALLOC_LIMIT", 0); if (!limit) limit = SIZE_MAX; } if (size > limit) { if (gentle) { error("attempting to allocate %"PRIuMAX" over limit %"PRIuMAX, (uintmax_t)size, (uintmax_t)limit); return -1; } else die("attempting to allocate %"PRIuMAX" over limit %"PRIuMAX, (uintmax_t)size, (uintmax_t)limit); } return 0; } char *xstrdup(const char *str) { char *ret = strdup(str); if (!ret) die("Out of memory, strdup failed"); return ret; } static void *do_xmalloc(size_t size, int gentle) { void *ret; if (memory_limit_check(size, gentle)) return NULL; ret = malloc(size); if (!ret && !size) ret = malloc(1); if (!ret) { if (!gentle) die("Out of memory, malloc failed (tried to allocate %lu bytes)", (unsigned long)size); else { error("Out of memory, malloc failed (tried to allocate %lu bytes)", (unsigned long)size); return NULL; } } #ifdef XMALLOC_POISON memset(ret, 0xA5, size); #endif return ret; } void *xmalloc(size_t size) { return do_xmalloc(size, 0); } static void *do_xmallocz(size_t size, int gentle) { void *ret; if (unsigned_add_overflows(size, 1)) { if (gentle) { error("Data too large to fit into virtual memory space."); return NULL; } else die("Data too large to fit into virtual memory space."); } ret = do_xmalloc(size + 1, gentle); if (ret) ((char*)ret)[size] = 0; return ret; } void *xmallocz(size_t size) { return do_xmallocz(size, 0); } void *xmallocz_gently(size_t size) { return do_xmallocz(size, 1); } /* * xmemdupz() allocates (len + 1) bytes of memory, duplicates "len" bytes of * "data" to the allocated memory, zero terminates the allocated memory, * and returns a pointer to the allocated memory. If the allocation fails, * the program dies. */ void *xmemdupz(const void *data, size_t len) { return memcpy(xmallocz(len), data, len); } char *xstrndup(const char *str, size_t len) { char *p = memchr(str, '\0', len); return xmemdupz(str, p ? p - str : len); } int xstrncmpz(const char *s, const char *t, size_t len) { int res = strncmp(s, t, len); if (res) return res; return s[len] == '\0' ? 0 : 1; } void *xrealloc(void *ptr, size_t size) { void *ret; if (!size) { free(ptr); return xmalloc(0); } memory_limit_check(size, 0); ret = realloc(ptr, size); if (!ret) die("Out of memory, realloc failed"); return ret; } void *xcalloc(size_t nmemb, size_t size) { void *ret; if (unsigned_mult_overflows(nmemb, size)) die("data too large to fit into virtual memory space"); memory_limit_check(size * nmemb, 0); ret = calloc(nmemb, size); if (!ret && (!nmemb || !size)) ret = calloc(1, 1); if (!ret) die("Out of memory, calloc failed"); return ret; } void xsetenv(const char *name, const char *value, int overwrite) { if (setenv(name, value, overwrite)) die_errno(_("could not setenv '%s'"), name ? name : "(null)"); } /** * xopen() is the same as open(), but it die()s if the open() fails. */ int xopen(const char *path, int oflag, ...) { mode_t mode = 0; va_list ap; /* * va_arg() will have undefined behavior if the specified type is not * compatible with the argument type. Since integers are promoted to * ints, we fetch the next argument as an int, and then cast it to a * mode_t to avoid undefined behavior. */ va_start(ap, oflag); if (oflag & O_CREAT) mode = va_arg(ap, int); va_end(ap); for (;;) { int fd = open(path, oflag, mode); if (fd >= 0) return fd; if (errno == EINTR) continue; if ((oflag & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL)) die_errno(_("unable to create '%s'"), path); else if ((oflag & O_RDWR) == O_RDWR) die_errno(_("could not open '%s' for reading and writing"), path); else if ((oflag & O_WRONLY) == O_WRONLY) die_errno(_("could not open '%s' for writing"), path); else die_errno(_("could not open '%s' for reading"), path); } } static int handle_nonblock(int fd, short poll_events, int err) { struct pollfd pfd; if (err != EAGAIN && err != EWOULDBLOCK) return 0; pfd.fd = fd; pfd.events = poll_events; /* * no need to check for errors, here; * a subsequent read/write will detect unrecoverable errors */ poll(&pfd, 1, -1); return 1; } /* * xread() is the same a read(), but it automatically restarts read() * operations with a recoverable error (EAGAIN and EINTR). xread() * DOES NOT GUARANTEE that "len" bytes is read even if the data is available. */ ssize_t xread(int fd, void *buf, size_t len) { ssize_t nr; if (len > MAX_IO_SIZE) len = MAX_IO_SIZE; while (1) { nr = read(fd, buf, len); if (nr < 0) { if (errno == EINTR) continue; if (handle_nonblock(fd, POLLIN, errno)) continue; } return nr; } } /* * xwrite() is the same a write(), but it automatically restarts write() * operations with a recoverable error (EAGAIN and EINTR). xwrite() DOES NOT * GUARANTEE that "len" bytes is written even if the operation is successful. */ ssize_t xwrite(int fd, const void *buf, size_t len) { ssize_t nr; if (len > MAX_IO_SIZE) len = MAX_IO_SIZE; while (1) { nr = write(fd, buf, len); if (nr < 0) { if (errno == EINTR) continue; if (handle_nonblock(fd, POLLOUT, errno)) continue; } return nr; } } /* * xpread() is the same as pread(), but it automatically restarts pread() * operations with a recoverable error (EAGAIN and EINTR). xpread() DOES * NOT GUARANTEE that "len" bytes is read even if the data is available. */ ssize_t xpread(int fd, void *buf, size_t len, off_t offset) { ssize_t nr; if (len > MAX_IO_SIZE) len = MAX_IO_SIZE; while (1) { nr = pread(fd, buf, len, offset); if ((nr < 0) && (errno == EAGAIN || errno == EINTR)) continue; return nr; } } ssize_t read_in_full(int fd, void *buf, size_t count) { char *p = buf; ssize_t total = 0; while (count > 0) { ssize_t loaded = xread(fd, p, count); if (loaded < 0) return -1; if (loaded == 0) return total; count -= loaded; p += loaded; total += loaded; } return total; } ssize_t write_in_full(int fd, const void *buf, size_t count) { const char *p = buf; ssize_t total = 0; while (count > 0) { ssize_t written = xwrite(fd, p, count); if (written < 0) return -1; if (!written) { errno = ENOSPC; return -1; } count -= written; p += written; total += written; } return total; } ssize_t pread_in_full(int fd, void *buf, size_t count, off_t offset) { char *p = buf; ssize_t total = 0; while (count > 0) { ssize_t loaded = xpread(fd, p, count, offset); if (loaded < 0) return -1; if (loaded == 0) return total; count -= loaded; p += loaded; total += loaded; offset += loaded; } return total; } int xdup(int fd) { int ret = dup(fd); if (ret < 0) die_errno("dup failed"); return ret; } /** * xfopen() is the same as fopen(), but it die()s if the fopen() fails. */ FILE *xfopen(const char *path, const char *mode) { for (;;) { FILE *fp = fopen(path, mode); if (fp) return fp; if (errno == EINTR) continue; if (*mode && mode[1] == '+') die_errno(_("could not open '%s' for reading and writing"), path); else if (*mode == 'w' || *mode == 'a') die_errno(_("could not open '%s' for writing"), path); else die_errno(_("could not open '%s' for reading"), path); } } FILE *xfdopen(int fd, const char *mode) { FILE *stream = fdopen(fd, mode); if (!stream) die_errno("Out of memory? fdopen failed"); return stream; } FILE *fopen_for_writing(const char *path) { FILE *ret = fopen(path, "w"); if (!ret && errno == EPERM) { if (!unlink(path)) ret = fopen(path, "w"); else errno = EPERM; } return ret; } static void warn_on_inaccessible(const char *path) { warning_errno(_("unable to access '%s'"), path); } int warn_on_fopen_errors(const char *path) { if (errno != ENOENT && errno != ENOTDIR) { warn_on_inaccessible(path); return -1; } return 0; } FILE *fopen_or_warn(const char *path, const char *mode) { FILE *fp = fopen(path, mode); if (fp) return fp; warn_on_fopen_errors(path); return NULL; } int xmkstemp(char *filename_template) { int fd; char origtemplate[PATH_MAX]; strlcpy(origtemplate, filename_template, sizeof(origtemplate)); fd = mkstemp(filename_template); if (fd < 0) { int saved_errno = errno; const char *nonrelative_template; if (strlen(filename_template) != strlen(origtemplate)) filename_template = origtemplate; nonrelative_template = absolute_path(filename_template); errno = saved_errno; die_errno("Unable to create temporary file '%s'", nonrelative_template); } return fd; } /* Adapted from libiberty's mkstemp.c. */ #undef TMP_MAX #define TMP_MAX 16384 int git_mkstemps_mode(char *pattern, int suffix_len, int mode) { static const char letters[] = "abcdefghijklmnopqrstuvwxyz" "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "0123456789"; static const int num_letters = ARRAY_SIZE(letters) - 1; static const char x_pattern[] = "XXXXXX"; static const int num_x = ARRAY_SIZE(x_pattern) - 1; char *filename_template; size_t len; int fd, count; len = strlen(pattern); if (len < num_x + suffix_len) { errno = EINVAL; return -1; } if (strncmp(&pattern[len - num_x - suffix_len], x_pattern, num_x)) { errno = EINVAL; return -1; } /* * Replace pattern's XXXXXX characters with randomness. * Try TMP_MAX different filenames. */ filename_template = &pattern[len - num_x - suffix_len]; for (count = 0; count < TMP_MAX; ++count) { int i; uint64_t v; if (csprng_bytes(&v, sizeof(v)) < 0) return error_errno("unable to get random bytes for temporary file"); /* Fill in the random bits. */ for (i = 0; i < num_x; i++) { filename_template[i] = letters[v % num_letters]; v /= num_letters; } fd = open(pattern, O_CREAT | O_EXCL | O_RDWR, mode); if (fd >= 0) return fd; /* * Fatal error (EPERM, ENOSPC etc). * It doesn't make sense to loop. */ if (errno != EEXIST) break; } /* We return the null string if we can't find a unique file name. */ pattern[0] = '\0'; return -1; } int git_mkstemp_mode(char *pattern, int mode) { /* mkstemp is just mkstemps with no suffix */ return git_mkstemps_mode(pattern, 0, mode); } int xmkstemp_mode(char *filename_template, int mode) { int fd; char origtemplate[PATH_MAX]; strlcpy(origtemplate, filename_template, sizeof(origtemplate)); fd = git_mkstemp_mode(filename_template, mode); if (fd < 0) { int saved_errno = errno; const char *nonrelative_template; if (!filename_template[0]) filename_template = origtemplate; nonrelative_template = absolute_path(filename_template); errno = saved_errno; die_errno("Unable to create temporary file '%s'", nonrelative_template); } return fd; } /* * Some platforms return EINTR from fsync. Since fsync is invoked in some * cases by a wrapper that dies on failure, do not expose EINTR to callers. */ static int fsync_loop(int fd) { int err; do { err = fsync(fd); } while (err < 0 && errno == EINTR); return err; } int git_fsync(int fd, enum fsync_action action) { switch (action) { case FSYNC_WRITEOUT_ONLY: count_fsync_writeout_only += 1; #ifdef __APPLE__ /* * On macOS, fsync just causes filesystem cache writeback but * does not flush hardware caches. */ return fsync_loop(fd); #endif #ifdef HAVE_SYNC_FILE_RANGE /* * On linux 2.6.17 and above, sync_file_range is the way to * issue a writeback without a hardware flush. An offset of * 0 and size of 0 indicates writeout of the entire file and the * wait flags ensure that all dirty data is written to the disk * (potentially in a disk-side cache) before we continue. */ return sync_file_range(fd, 0, 0, SYNC_FILE_RANGE_WAIT_BEFORE | SYNC_FILE_RANGE_WRITE | SYNC_FILE_RANGE_WAIT_AFTER); #endif #ifdef fsync_no_flush return fsync_no_flush(fd); #endif errno = ENOSYS; return -1; case FSYNC_HARDWARE_FLUSH: count_fsync_hardware_flush += 1; /* * On macOS, a special fcntl is required to really flush the * caches within the storage controller. As of this writing, * this is a very expensive operation on Apple SSDs. */ #ifdef __APPLE__ return fcntl(fd, F_FULLFSYNC); #else return fsync_loop(fd); #endif default: BUG("unexpected git_fsync(%d) call", action); } } static void log_trace_fsync_if(const char *key, intmax_t value) { if (value) trace2_data_intmax("fsync", the_repository, key, value); } void trace_git_fsync_stats(void) { log_trace_fsync_if("fsync/writeout-only", count_fsync_writeout_only); log_trace_fsync_if("fsync/hardware-flush", count_fsync_hardware_flush); } static int warn_if_unremovable(const char *op, const char *file, int rc) { int err; if (!rc || errno == ENOENT) return 0; err = errno; warning_errno("unable to %s '%s'", op, file); errno = err; return rc; } int unlink_or_msg(const char *file, struct strbuf *err) { int rc = unlink(file); assert(err); if (!rc || errno == ENOENT) return 0; strbuf_addf(err, "unable to unlink '%s': %s", file, strerror(errno)); return -1; } int unlink_or_warn(const char *file) { return warn_if_unremovable("unlink", file, unlink(file)); } int rmdir_or_warn(const char *file) { return warn_if_unremovable("rmdir", file, rmdir(file)); } int remove_or_warn(unsigned int mode, const char *file) { return S_ISGITLINK(mode) ? rmdir_or_warn(file) : unlink_or_warn(file); } static int access_error_is_ok(int err, unsigned flag) { return (is_missing_file_error(err) || ((flag & ACCESS_EACCES_OK) && err == EACCES)); } int access_or_warn(const char *path, int mode, unsigned flag) { int ret = access(path, mode); if (ret && !access_error_is_ok(errno, flag)) warn_on_inaccessible(path); return ret; } int access_or_die(const char *path, int mode, unsigned flag) { int ret = access(path, mode); if (ret && !access_error_is_ok(errno, flag)) die_errno(_("unable to access '%s'"), path); return ret; } char *xgetcwd(void) { struct strbuf sb = STRBUF_INIT; if (strbuf_getcwd(&sb)) die_errno(_("unable to get current working directory")); return strbuf_detach(&sb, NULL); } int xsnprintf(char *dst, size_t max, const char *fmt, ...) { va_list ap; int len; va_start(ap, fmt); len = vsnprintf(dst, max, fmt, ap); va_end(ap); if (len < 0) BUG("your snprintf is broken"); if (len >= max) BUG("attempt to snprintf into too-small buffer"); return len; } void write_file_buf(const char *path, const char *buf, size_t len) { int fd = xopen(path, O_WRONLY | O_CREAT | O_TRUNC, 0666); if (write_in_full(fd, buf, len) < 0) die_errno(_("could not write to '%s'"), path); if (close(fd)) die_errno(_("could not close '%s'"), path); } void write_file(const char *path, const char *fmt, ...) { va_list params; struct strbuf sb = STRBUF_INIT; va_start(params, fmt); strbuf_vaddf(&sb, fmt, params); va_end(params); strbuf_complete_line(&sb); write_file_buf(path, sb.buf, sb.len); strbuf_release(&sb); } void sleep_millisec(int millisec) { poll(NULL, 0, millisec); } int xgethostname(char *buf, size_t len) { /* * If the full hostname doesn't fit in buf, POSIX does not * specify whether the buffer will be null-terminated, so to * be safe, do it ourselves. */ int ret = gethostname(buf, len); if (!ret) buf[len - 1] = 0; return ret; } int is_empty_or_missing_file(const char *filename) { struct stat st; if (stat(filename, &st) < 0) { if (errno == ENOENT) return 1; die_errno(_("could not stat %s"), filename); } return !st.st_size; } int open_nofollow(const char *path, int flags) { #ifdef O_NOFOLLOW return open(path, flags | O_NOFOLLOW); #else struct stat st; if (lstat(path, &st) < 0) return -1; if (S_ISLNK(st.st_mode)) { errno = ELOOP; return -1; } return open(path, flags); #endif } int csprng_bytes(void *buf, size_t len) { #if defined(HAVE_ARC4RANDOM) || defined(HAVE_ARC4RANDOM_LIBBSD) /* This function never returns an error. */ arc4random_buf(buf, len); return 0; #elif defined(HAVE_GETRANDOM) ssize_t res; char *p = buf; while (len) { res = getrandom(p, len, 0); if (res < 0) return -1; len -= res; p += res; } return 0; #elif defined(HAVE_GETENTROPY) int res; char *p = buf; while (len) { /* getentropy has a maximum size of 256 bytes. */ size_t chunk = len < 256 ? len : 256; res = getentropy(p, chunk); if (res < 0) return -1; len -= chunk; p += chunk; } return 0; #elif defined(HAVE_RTLGENRANDOM) if (!RtlGenRandom(buf, len)) return -1; return 0; #elif defined(HAVE_OPENSSL_CSPRNG) int res = RAND_bytes(buf, len); if (res == 1) return 0; if (res == -1) errno = ENOTSUP; else errno = EIO; return -1; #else ssize_t res; char *p = buf; int fd, err; fd = open("/dev/urandom", O_RDONLY); if (fd < 0) return -1; while (len) { res = xread(fd, p, len); if (res < 0) { err = errno; close(fd); errno = err; return -1; } len -= res; p += res; } close(fd); return 0; #endif }