summaryrefslogtreecommitdiffstats
path: root/run-command.h
blob: 07bed6c31b4e9f065b9ae0a4490cfd56adada0c7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
#ifndef RUN_COMMAND_H
#define RUN_COMMAND_H

#include "thread-utils.h"

#include "strvec.h"

/**
 * The run-command API offers a versatile tool to run sub-processes with
 * redirected input and output as well as with a modified environment
 * and an alternate current directory.
 *
 * A similar API offers the capability to run a function asynchronously,
 * which is primarily used to capture the output that the function
 * produces in the caller in order to process it.
 */


/**
 * This describes the arguments, redirections, and environment of a
 * command to run in a sub-process.
 *
 * The caller:
 *
 * 1. allocates and clears (using child_process_init() or
 *    CHILD_PROCESS_INIT) a struct child_process variable;
 * 2. initializes the members;
 * 3. calls start_command();
 * 4. processes the data;
 * 5. closes file descriptors (if necessary; see below);
 * 6. calls finish_command().
 *
 * Special forms of redirection are available by setting these members
 * to 1:
 *
 *  .no_stdin, .no_stdout, .no_stderr: The respective channel is
 *		redirected to /dev/null.
 *
 *	.stdout_to_stderr: stdout of the child is redirected to its
 *		stderr. This happens after stderr is itself redirected.
 *		So stdout will follow stderr to wherever it is
 *		redirected.
 */
struct child_process {

	/**
	 * The .args is a `struct strvec', use that API to manipulate
	 * it, e.g. strvec_pushv() to add an existing "const char **"
	 * vector.
	 *
	 * If the command to run is a git command, set the first
	 * element in the strvec to the command name without the
	 * 'git-' prefix and set .git_cmd = 1.
	 *
	 * The memory in .args will be cleaned up automatically during
	 * `finish_command` (or during `start_command` when it is unsuccessful).
	 */
	struct strvec args;

	/**
	 * Like .args the .env_array is a `struct strvec'.
	 *
	 * To modify the environment of the sub-process, specify an array of
	 * environment settings. Each string in the array manipulates the
	 * environment.
	 *
	 * - If the string is of the form "VAR=value", i.e. it contains '='
	 *   the variable is added to the child process's environment.
	 *
	 * - If the string does not contain '=', it names an environment
	 *   variable that will be removed from the child process's environment.
	 *
	 * The memory in .env_array will be cleaned up automatically during
	 * `finish_command` (or during `start_command` when it is unsuccessful).
	 */
	struct strvec env_array;
	pid_t pid;

	int trace2_child_id;
	uint64_t trace2_child_us_start;
	const char *trace2_child_class;
	const char *trace2_hook_name;

	/*
	 * Using .in, .out, .err:
	 * - Specify 0 for no redirections. No new file descriptor is allocated.
	 * (child inherits stdin, stdout, stderr from parent).
	 * - Specify -1 to have a pipe allocated as follows:
	 *     .in: returns the writable pipe end; parent writes to it,
	 *          the readable pipe end becomes child's stdin
	 *     .out, .err: returns the readable pipe end; parent reads from
	 *          it, the writable pipe end becomes child's stdout/stderr
	 *   The caller of start_command() must close the returned FDs
	 *   after it has completed reading from/writing to it!
	 * - Specify > 0 to set a channel to a particular FD as follows:
	 *     .in: a readable FD, becomes child's stdin
	 *     .out: a writable FD, becomes child's stdout/stderr
	 *     .err: a writable FD, becomes child's stderr
	 *   The specified FD is closed by start_command(), even in case
	 *   of errors!
	 */
	int in;
	int out;
	int err;

	/**
	 * To specify a new initial working directory for the sub-process,
	 * specify it in the .dir member.
	 */
	const char *dir;

	unsigned no_stdin:1;
	unsigned no_stdout:1;
	unsigned no_stderr:1;
	unsigned git_cmd:1; /* if this is to be git sub-command */

	/**
	 * If the program cannot be found, the functions return -1 and set
	 * errno to ENOENT. Normally, an error message is printed, but if
	 * .silent_exec_failure is set to 1, no message is printed for this
	 * special error condition.
	 */
	unsigned silent_exec_failure:1;

	/**
	 * Run the command from argv[0] using a shell (but note that we may
	 * still optimize out the shell call if the command contains no
	 * metacharacters). Note that further arguments to the command in
	 * argv[1], etc, do not need to be shell-quoted.
	 */
	unsigned use_shell:1;

	/**
	 * Release any open file handles to the object store before running
	 * the command; This is necessary e.g. when the spawned process may
	 * want to repack because that would delete `.pack` files (and on
	 * Windows, you cannot delete files that are still in use).
	 */
	unsigned close_object_store:1;

	unsigned stdout_to_stderr:1;
	unsigned clean_on_exit:1;
	unsigned wait_after_clean:1;
	void (*clean_on_exit_handler)(struct child_process *process);
	void *clean_on_exit_handler_cbdata;
};

#define CHILD_PROCESS_INIT { \
	.args = STRVEC_INIT, \
	.env_array = STRVEC_INIT, \
}

/**
 * The functions: child_process_init, start_command, finish_command,
 * run_command, run_command_v_opt, run_command_v_opt_cd_env, child_process_clear
 * do the following:
 *
 * - If a system call failed, errno is set and -1 is returned. A diagnostic
 *   is printed.
 *
 * - If the program was not found, then -1 is returned and errno is set to
 *   ENOENT; a diagnostic is printed only if .silent_exec_failure is 0.
 *
 * - Otherwise, the program is run. If it terminates regularly, its exit
 *   code is returned. No diagnostic is printed, even if the exit code is
 *   non-zero.
 *
 * - If the program terminated due to a signal, then the return value is the
 *   signal number + 128, ie. the same value that a POSIX shell's $? would
 *   report.  A diagnostic is printed.
 *
 */

/**
 * Initialize a struct child_process variable.
 */
void child_process_init(struct child_process *);

/**
 * Release the memory associated with the struct child_process.
 * Most users of the run-command API don't need to call this
 * function explicitly because `start_command` invokes it on
 * failure and `finish_command` calls it automatically already.
 */
void child_process_clear(struct child_process *);

int is_executable(const char *name);

/**
 * Check if the command exists on $PATH. This emulates the path search that
 * execvp would perform, without actually executing the command so it
 * can be used before fork() to prepare to run a command using
 * execve() or after execvp() to diagnose why it failed.
 *
 * The caller should ensure that command contains no directory separators.
 *
 * Returns 1 if it is found in $PATH or 0 if the command could not be found.
 */
int exists_in_PATH(const char *command);

/**
 * Start a sub-process. Takes a pointer to a `struct child_process`
 * that specifies the details and returns pipe FDs (if requested).
 * See below for details.
 */
int start_command(struct child_process *);

/**
 * Wait for the completion of a sub-process that was started with
 * start_command().
 */
int finish_command(struct child_process *);

int finish_command_in_signal(struct child_process *);

/**
 * A convenience function that encapsulates a sequence of
 * start_command() followed by finish_command(). Takes a pointer
 * to a `struct child_process` that specifies the details.
 */
int run_command(struct child_process *);

/*
 * Trigger an auto-gc
 */
int run_auto_maintenance(int quiet);

#define RUN_COMMAND_NO_STDIN		(1<<0)
#define RUN_GIT_CMD			(1<<1)
#define RUN_COMMAND_STDOUT_TO_STDERR	(1<<2)
#define RUN_SILENT_EXEC_FAILURE		(1<<3)
#define RUN_USING_SHELL			(1<<4)
#define RUN_CLEAN_ON_EXIT		(1<<5)
#define RUN_WAIT_AFTER_CLEAN		(1<<6)
#define RUN_CLOSE_OBJECT_STORE		(1<<7)

/**
 * Convenience functions that encapsulate a sequence of
 * start_command() followed by finish_command(). The argument argv
 * specifies the program and its arguments. The argument opt is zero
 * or more of the flags `RUN_COMMAND_NO_STDIN`, `RUN_GIT_CMD`,
 * `RUN_COMMAND_STDOUT_TO_STDERR`, or `RUN_SILENT_EXEC_FAILURE`
 * that correspond to the members .no_stdin, .git_cmd,
 * .stdout_to_stderr, .silent_exec_failure of `struct child_process`.
 * The argument dir corresponds the member .dir. The argument env
 * corresponds to the member .env.
 */
int run_command_v_opt(const char **argv, int opt);
int run_command_v_opt_tr2(const char **argv, int opt, const char *tr2_class);
/*
 * env (the environment) is to be formatted like environ: "VAR=VALUE".
 * To unset an environment variable use just "VAR".
 */
int run_command_v_opt_cd_env(const char **argv, int opt, const char *dir, const char *const *env);
int run_command_v_opt_cd_env_tr2(const char **argv, int opt, const char *dir,
				 const char *const *env, const char *tr2_class);

/**
 * Execute the given command, sending "in" to its stdin, and capturing its
 * stdout and stderr in the "out" and "err" strbufs. Any of the three may
 * be NULL to skip processing.
 *
 * Returns -1 if starting the command fails or reading fails, and otherwise
 * returns the exit code of the command. Any output collected in the
 * buffers is kept even if the command returns a non-zero exit. The hint fields
 * gives starting sizes for the strbuf allocations.
 *
 * The fields of "cmd" should be set up as they would for a normal run_command
 * invocation. But note that there is no need to set the in, out, or err
 * fields; pipe_command handles that automatically.
 */
int pipe_command(struct child_process *cmd,
		 const char *in, size_t in_len,
		 struct strbuf *out, size_t out_hint,
		 struct strbuf *err, size_t err_hint);

/**
 * Convenience wrapper around pipe_command for the common case
 * of capturing only stdout.
 */
static inline int capture_command(struct child_process *cmd,
				  struct strbuf *out,
				  size_t hint)
{
	return pipe_command(cmd, NULL, 0, out, hint, NULL, 0);
}

/*
 * The purpose of the following functions is to feed a pipe by running
 * a function asynchronously and providing output that the caller reads.
 *
 * It is expected that no synchronization and mutual exclusion between
 * the caller and the feed function is necessary so that the function
 * can run in a thread without interfering with the caller.
 *
 * The caller:
 *
 * 1. allocates and clears (memset(&asy, 0, sizeof(asy));) a
 *    struct async variable;
 * 2. initializes .proc and .data;
 * 3. calls start_async();
 * 4. processes communicates with proc through .in and .out;
 * 5. closes .in and .out;
 * 6. calls finish_async().
 *
 * There are serious restrictions on what the asynchronous function can do
 * because this facility is implemented by a thread in the same address
 * space on most platforms (when pthreads is available), but by a pipe to
 * a forked process otherwise:
 *
 * - It cannot change the program's state (global variables, environment,
 *   etc.) in a way that the caller notices; in other words, .in and .out
 *   are the only communication channels to the caller.
 *
 * - It must not change the program's state that the caller of the
 *   facility also uses.
 *
 */
struct async {

	/**
	 * The function pointer in .proc has the following signature:
	 *
	 *	int proc(int in, int out, void *data);
	 *
	 * - in, out specifies a set of file descriptors to which the function
	 *  must read/write the data that it needs/produces.  The function
	 *  *must* close these descriptors before it returns.  A descriptor
	 *  may be -1 if the caller did not configure a descriptor for that
	 *  direction.
	 *
	 * - data is the value that the caller has specified in the .data member
	 *  of struct async.
	 *
	 * - The return value of the function is 0 on success and non-zero
	 *  on failure. If the function indicates failure, finish_async() will
	 *  report failure as well.
	 *
	 */
	int (*proc)(int in, int out, void *data);

	void *data;

	/**
	 * The members .in, .out are used to provide a set of fd's for
	 * communication between the caller and the callee as follows:
	 *
	 * - Specify 0 to have no file descriptor passed.  The callee will
	 *   receive -1 in the corresponding argument.
	 *
	 * - Specify < 0 to have a pipe allocated; start_async() replaces
	 *   with the pipe FD in the following way:
	 *
	 * 	.in: Returns the writable pipe end into which the caller
	 * 	writes; the readable end of the pipe becomes the function's
	 * 	in argument.
	 *
	 * 	.out: Returns the readable pipe end from which the caller
	 * 	reads; the writable end of the pipe becomes the function's
	 * 	out argument.
	 *
	 *   The caller of start_async() must close the returned FDs after it
	 *   has completed reading from/writing from them.
	 *
	 * - Specify a file descriptor > 0 to be used by the function:
	 *
	 * 	.in: The FD must be readable; it becomes the function's in.
	 * 	.out: The FD must be writable; it becomes the function's out.
	 *
	 *   The specified FD is closed by start_async(), even if it fails to
	 *   run the function.
	 */
	int in;		/* caller writes here and closes it */
	int out;	/* caller reads from here and closes it */
#ifdef NO_PTHREADS
	pid_t pid;
#else
	pthread_t tid;
	int proc_in;
	int proc_out;
#endif
	int isolate_sigpipe;
};

/**
 * Run a function asynchronously. Takes a pointer to a `struct
 * async` that specifies the details and returns a set of pipe FDs
 * for communication with the function. See below for details.
 */
int start_async(struct async *async);

/**
 * Wait for the completion of an asynchronous function that was
 * started with start_async().
 */
int finish_async(struct async *async);

int in_async(void);
int async_with_fork(void);
void check_pipe(int err);

/**
 * This callback should initialize the child process and preload the
 * error channel if desired. The preloading of is useful if you want to
 * have a message printed directly before the output of the child process.
 * pp_cb is the callback cookie as passed to run_processes_parallel.
 * You can store a child process specific callback cookie in pp_task_cb.
 *
 * Even after returning 0 to indicate that there are no more processes,
 * this function will be called again until there are no more running
 * child processes.
 *
 * Return 1 if the next child is ready to run.
 * Return 0 if there are currently no more tasks to be processed.
 * To send a signal to other child processes for abortion,
 * return the negative signal number.
 */
typedef int (*get_next_task_fn)(struct child_process *cp,
				struct strbuf *out,
				void *pp_cb,
				void **pp_task_cb);

/**
 * This callback is called whenever there are problems starting
 * a new process.
 *
 * You must not write to stdout or stderr in this function. Add your
 * message to the strbuf out instead, which will be printed without
 * messing up the output of the other parallel processes.
 *
 * pp_cb is the callback cookie as passed into run_processes_parallel,
 * pp_task_cb is the callback cookie as passed into get_next_task_fn.
 *
 * Return 0 to continue the parallel processing. To abort return non zero.
 * To send a signal to other child processes for abortion, return
 * the negative signal number.
 */
typedef int (*start_failure_fn)(struct strbuf *out,
				void *pp_cb,
				void *pp_task_cb);

/**
 * This callback is called on every child process that finished processing.
 *
 * You must not write to stdout or stderr in this function. Add your
 * message to the strbuf out instead, which will be printed without
 * messing up the output of the other parallel processes.
 *
 * pp_cb is the callback cookie as passed into run_processes_parallel,
 * pp_task_cb is the callback cookie as passed into get_next_task_fn.
 *
 * Return 0 to continue the parallel processing.  To abort return non zero.
 * To send a signal to other child processes for abortion, return
 * the negative signal number.
 */
typedef int (*task_finished_fn)(int result,
				struct strbuf *out,
				void *pp_cb,
				void *pp_task_cb);

/**
 * Runs up to n processes at the same time. Whenever a process can be
 * started, the callback get_next_task_fn is called to obtain the data
 * required to start another child process.
 *
 * The children started via this function run in parallel. Their output
 * (both stdout and stderr) is routed to stderr in a manner that output
 * from different tasks does not interleave.
 *
 * start_failure_fn and task_finished_fn can be NULL to omit any
 * special handling.
 */
int run_processes_parallel(int n,
			   get_next_task_fn,
			   start_failure_fn,
			   task_finished_fn,
			   void *pp_cb);
int run_processes_parallel_tr2(int n, get_next_task_fn, start_failure_fn,
			       task_finished_fn, void *pp_cb,
			       const char *tr2_category, const char *tr2_label);

/**
 * Convenience function which prepares env_array for a command to be run in a
 * new repo. This adds all GIT_* environment variables to env_array with the
 * exception of GIT_CONFIG_PARAMETERS and GIT_CONFIG_COUNT (which cause the
 * corresponding environment variables to be unset in the subprocess) and adds
 * an environment variable pointing to new_git_dir. See local_repo_env in
 * cache.h for more information.
 */
void prepare_other_repo_env(struct strvec *env_array, const char *new_git_dir);

/**
 * Possible return values for start_bg_command().
 */
enum start_bg_result {
	/* child process is "ready" */
	SBGR_READY = 0,

	/* child process could not be started */
	SBGR_ERROR,

	/* callback error when testing for "ready" */
	SBGR_CB_ERROR,

	/* timeout expired waiting for child to become "ready" */
	SBGR_TIMEOUT,

	/* child process exited or was signalled before becomming "ready" */
	SBGR_DIED,
};

/**
 * Callback used by start_bg_command() to ask whether the
 * child process is ready or needs more time to become "ready".
 *
 * The callback will receive the cmd and cb_data arguments given to
 * start_bg_command().
 *
 * Returns 1 is child needs more time (subject to the requested timeout).
 * Returns 0 if child is "ready".
 * Returns -1 on any error and cause start_bg_command() to also error out.
 */
typedef int(start_bg_wait_cb)(const struct child_process *cmd, void *cb_data);

/**
 * Start a command in the background.  Wait long enough for the child
 * to become "ready" (as defined by the provided callback).  Capture
 * immediate errors (like failure to start) and any immediate exit
 * status (such as a shutdown/signal before the child became "ready")
 * and return this like start_command().
 *
 * We run a custom wait loop using the provided callback to wait for
 * the child to start and become "ready".  This is limited by the given
 * timeout value.
 *
 * If the child does successfully start and become "ready", we orphan
 * it into the background.
 *
 * The caller must not call finish_command().
 *
 * The opaque cb_data argument will be forwarded to the callback for
 * any instance data that it might require.  This may be NULL.
 */
enum start_bg_result start_bg_command(struct child_process *cmd,
				      start_bg_wait_cb *wait_cb,
				      void *cb_data,
				      unsigned int timeout_sec);

#endif