1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
|
/* cvt-openpgp.c - Convert an OpenPGP key to our internal format.
* Copyright (C) 1998-2002, 2006, 2009, 2010 Free Software Foundation, Inc.
* Copyright (C) 2013, 2014 Werner Koch
*
* This file is part of GnuPG.
*
* GnuPG is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* GnuPG is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <https://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "agent.h"
#include "../common/i18n.h"
#include "cvt-openpgp.h"
#include "../common/host2net.h"
/* Helper to pass data via the callback to do_unprotect. */
struct try_do_unprotect_arg_s
{
int is_v4;
int is_protected;
int pubkey_algo;
const char *curve;
int protect_algo;
char *iv;
int ivlen;
int s2k_mode;
int s2k_algo;
byte *s2k_salt;
u32 s2k_count;
u16 desired_csum;
gcry_mpi_t *skey;
size_t skeysize;
int skeyidx;
gcry_sexp_t *r_key;
};
/* Compute the keygrip from the public key and store it at GRIP. */
static gpg_error_t
get_keygrip (int pubkey_algo, const char *curve, gcry_mpi_t *pkey,
unsigned char *grip)
{
gpg_error_t err;
gcry_sexp_t s_pkey = NULL;
switch (pubkey_algo)
{
case GCRY_PK_DSA:
err = gcry_sexp_build (&s_pkey, NULL,
"(public-key(dsa(p%m)(q%m)(g%m)(y%m)))",
pkey[0], pkey[1], pkey[2], pkey[3]);
break;
case GCRY_PK_ELG:
err = gcry_sexp_build (&s_pkey, NULL,
"(public-key(elg(p%m)(g%m)(y%m)))",
pkey[0], pkey[1], pkey[2]);
break;
case GCRY_PK_RSA:
err = gcry_sexp_build (&s_pkey, NULL,
"(public-key(rsa(n%m)(e%m)))", pkey[0], pkey[1]);
break;
case GCRY_PK_ECC:
if (!curve)
err = gpg_error (GPG_ERR_BAD_SECKEY);
else
{
const char *format;
if (!strcmp (curve, "Ed25519"))
format = "(public-key(ecc(curve %s)(flags eddsa)(q%m)))";
else if (!strcmp (curve, "Curve25519"))
format = "(public-key(ecc(curve %s)(flags djb-tweak)(q%m)))";
else
format = "(public-key(ecc(curve %s)(q%m)))";
err = gcry_sexp_build (&s_pkey, NULL, format, curve, pkey[0]);
}
break;
default:
err = gpg_error (GPG_ERR_PUBKEY_ALGO);
break;
}
if (!err && !gcry_pk_get_keygrip (s_pkey, grip))
err = gpg_error (GPG_ERR_INTERNAL);
gcry_sexp_release (s_pkey);
return err;
}
/* Convert a secret key given as algorithm id and an array of key
parameters into our s-expression based format. Note that
PUBKEY_ALGO has an gcrypt algorithm number. */
static gpg_error_t
convert_secret_key (gcry_sexp_t *r_key, int pubkey_algo, gcry_mpi_t *skey,
const char *curve)
{
gpg_error_t err;
gcry_sexp_t s_skey = NULL;
*r_key = NULL;
switch (pubkey_algo)
{
case GCRY_PK_DSA:
err = gcry_sexp_build (&s_skey, NULL,
"(private-key(dsa(p%m)(q%m)(g%m)(y%m)(x%m)))",
skey[0], skey[1], skey[2], skey[3], skey[4]);
break;
case GCRY_PK_ELG:
case GCRY_PK_ELG_E:
err = gcry_sexp_build (&s_skey, NULL,
"(private-key(elg(p%m)(g%m)(y%m)(x%m)))",
skey[0], skey[1], skey[2], skey[3]);
break;
case GCRY_PK_RSA:
case GCRY_PK_RSA_E:
case GCRY_PK_RSA_S:
err = gcry_sexp_build (&s_skey, NULL,
"(private-key(rsa(n%m)(e%m)(d%m)(p%m)(q%m)(u%m)))",
skey[0], skey[1], skey[2], skey[3], skey[4],
skey[5]);
break;
case GCRY_PK_ECC:
if (!curve)
err = gpg_error (GPG_ERR_BAD_SECKEY);
else
{
const char *format;
if (!strcmp (curve, "Ed25519"))
/* Do not store the OID as name but the real name and the
EdDSA flag. */
format = "(private-key(ecc(curve %s)(flags eddsa)(q%m)(d%m)))";
else if (!strcmp (curve, "Curve25519"))
format = "(private-key(ecc(curve %s)(flags djb-tweak)(q%m)(d%m)))";
else
format = "(private-key(ecc(curve %s)(q%m)(d%m)))";
err = gcry_sexp_build (&s_skey, NULL, format, curve, skey[0], skey[1]);
}
break;
default:
err = gpg_error (GPG_ERR_PUBKEY_ALGO);
break;
}
if (!err)
*r_key = s_skey;
return err;
}
/* Convert a secret key given as algorithm id, an array of key
parameters, and an S-expression of the original OpenPGP transfer
key into our s-expression based format. This is a variant of
convert_secret_key which is used for the openpgp-native protection
mode. Note that PUBKEY_ALGO has an gcrypt algorithm number. */
static gpg_error_t
convert_transfer_key (gcry_sexp_t *r_key, int pubkey_algo, gcry_mpi_t *skey,
const char *curve, gcry_sexp_t transfer_key)
{
gpg_error_t err;
gcry_sexp_t s_skey = NULL;
*r_key = NULL;
switch (pubkey_algo)
{
case GCRY_PK_DSA:
err = gcry_sexp_build
(&s_skey, NULL,
"(protected-private-key(dsa(p%m)(q%m)(g%m)(y%m)"
"(protected openpgp-native%S)))",
skey[0], skey[1], skey[2], skey[3], transfer_key);
break;
case GCRY_PK_ELG:
err = gcry_sexp_build
(&s_skey, NULL,
"(protected-private-key(elg(p%m)(g%m)(y%m)"
"(protected openpgp-native%S)))",
skey[0], skey[1], skey[2], transfer_key);
break;
case GCRY_PK_RSA:
err = gcry_sexp_build
(&s_skey, NULL,
"(protected-private-key(rsa(n%m)(e%m)"
"(protected openpgp-native%S)))",
skey[0], skey[1], transfer_key );
break;
case GCRY_PK_ECC:
if (!curve)
err = gpg_error (GPG_ERR_BAD_SECKEY);
else
{
const char *format;
if (!strcmp (curve, "Ed25519"))
/* Do not store the OID as name but the real name and the
EdDSA flag. */
format = "(protected-private-key(ecc(curve %s)(flags eddsa)(q%m)"
"(protected openpgp-native%S)))";
else if (!strcmp (curve, "Curve25519"))
format = "(protected-private-key(ecc(curve %s)(flags djb-tweak)(q%m)"
"(protected openpgp-native%S)))";
else
format = "(protected-private-key(ecc(curve %s)(q%m)"
"(protected openpgp-native%S)))";
err = gcry_sexp_build (&s_skey, NULL, format, curve, skey[0], transfer_key);
}
break;
default:
err = gpg_error (GPG_ERR_PUBKEY_ALGO);
break;
}
if (!err)
*r_key = s_skey;
return err;
}
/* Hash the passphrase and set the key. */
static gpg_error_t
hash_passphrase_and_set_key (const char *passphrase,
gcry_cipher_hd_t hd, int protect_algo,
int s2k_mode, int s2k_algo,
byte *s2k_salt, u32 s2k_count)
{
gpg_error_t err;
unsigned char *key;
size_t keylen;
keylen = gcry_cipher_get_algo_keylen (protect_algo);
if (!keylen)
return gpg_error (GPG_ERR_INTERNAL);
key = xtrymalloc_secure (keylen);
if (!key)
return gpg_error_from_syserror ();
err = s2k_hash_passphrase (passphrase,
s2k_algo, s2k_mode, s2k_salt, s2k_count,
key, keylen);
if (!err)
err = gcry_cipher_setkey (hd, key, keylen);
xfree (key);
return err;
}
static u16
checksum (const unsigned char *p, unsigned int n)
{
u16 a;
for (a=0; n; n-- )
a += *p++;
return a;
}
/* Return the number of expected key parameters. */
static void
get_npkey_nskey (int pubkey_algo, size_t *npkey, size_t *nskey)
{
switch (pubkey_algo)
{
case GCRY_PK_RSA: *npkey = 2; *nskey = 6; break;
case GCRY_PK_ELG: *npkey = 3; *nskey = 4; break;
case GCRY_PK_ELG_E: *npkey = 3; *nskey = 4; break;
case GCRY_PK_DSA: *npkey = 4; *nskey = 5; break;
case GCRY_PK_ECC: *npkey = 1; *nskey = 2; break;
default: *npkey = 0; *nskey = 0; break;
}
}
/* Helper for do_unprotect. PUBKEY_ALOGO is the gcrypt algo number.
On success R_NPKEY and R_NSKEY receive the number or parameters for
the algorithm PUBKEY_ALGO and R_SKEYLEN the used length of
SKEY. */
static int
prepare_unprotect (int pubkey_algo, gcry_mpi_t *skey, size_t skeysize,
int s2k_mode,
unsigned int *r_npkey, unsigned int *r_nskey,
unsigned int *r_skeylen)
{
size_t npkey, nskey, skeylen;
int i;
/* Count the actual number of MPIs is in the array and set the
remainder to NULL for easier processing later on. */
for (skeylen = 0; skey[skeylen]; skeylen++)
;
for (i=skeylen; i < skeysize; i++)
skey[i] = NULL;
/* Check some args. */
if (s2k_mode == 1001)
{
/* Stub key. */
log_info (_("secret key parts are not available\n"));
return gpg_error (GPG_ERR_UNUSABLE_SECKEY);
}
if (gcry_pk_test_algo (pubkey_algo))
{
log_info (_("public key algorithm %d (%s) is not supported\n"),
pubkey_algo, gcry_pk_algo_name (pubkey_algo));
return gpg_error (GPG_ERR_PUBKEY_ALGO);
}
/* Get properties of the public key algorithm and do some
consistency checks. Note that we need at least NPKEY+1 elements
in the SKEY array. */
get_npkey_nskey (pubkey_algo, &npkey, &nskey);
if (!npkey || !nskey || npkey >= nskey)
return gpg_error (GPG_ERR_INTERNAL);
if (skeylen <= npkey)
return gpg_error (GPG_ERR_MISSING_VALUE);
if (nskey+1 >= skeysize)
return gpg_error (GPG_ERR_BUFFER_TOO_SHORT);
/* Check that the public key parameters are all available and not
encrypted. */
for (i=0; i < npkey; i++)
{
if (!skey[i] || gcry_mpi_get_flag (skey[i], GCRYMPI_FLAG_USER1))
return gpg_error (GPG_ERR_BAD_SECKEY);
}
if (r_npkey)
*r_npkey = npkey;
if (r_nskey)
*r_nskey = nskey;
if (r_skeylen)
*r_skeylen = skeylen;
return 0;
}
/* Scan octet string in the PGP format (length-in-two-octet octets) */
static int
scan_pgp_format (gcry_mpi_t *r_mpi, int pubkey_algo,
const unsigned char *buffer,
size_t buflen, size_t *r_nbytes)
{
/* Using gcry_mpi_scan with GCRYMPI_FLAG_PGP can be used if it is
MPI, but it will be "normalized" removing leading zeros. */
unsigned int nbits, nbytes;
if (pubkey_algo != GCRY_PK_ECC)
return gcry_mpi_scan (r_mpi, GCRYMPI_FMT_PGP, buffer, buflen, r_nbytes);
/* It's ECC, where we use SOS. */
if (buflen < 2)
return GPG_ERR_INV_OBJ;
nbits = (buffer[0] << 8) | buffer[1];
if (nbits >= 16384)
return GPG_ERR_INV_OBJ;
nbytes = (nbits + 7) / 8;
if (buflen < nbytes + 2)
return GPG_ERR_INV_OBJ;
*r_nbytes = nbytes + 2;
*r_mpi = gcry_mpi_set_opaque_copy (NULL, buffer+2, nbits);
return 0;
}
/* Note that this function modifies SKEY. SKEYSIZE is the allocated
size of the array including the NULL item; this is used for a
bounds check. On success a converted key is stored at R_KEY. */
static int
do_unprotect (const char *passphrase,
int pkt_version, int pubkey_algo, int is_protected,
const char *curve, gcry_mpi_t *skey, size_t skeysize,
int protect_algo, void *protect_iv, size_t protect_ivlen,
int s2k_mode, int s2k_algo, byte *s2k_salt, u32 s2k_count,
u16 desired_csum, gcry_sexp_t *r_key)
{
gpg_error_t err;
unsigned int npkey, nskey, skeylen;
gcry_cipher_hd_t cipher_hd = NULL;
u16 actual_csum;
size_t nbytes;
int i;
gcry_mpi_t tmpmpi;
*r_key = NULL;
err = prepare_unprotect (pubkey_algo, skey, skeysize, s2k_mode,
&npkey, &nskey, &skeylen);
if (err)
return err;
/* Check whether SKEY is at all protected. If it is not protected
merely verify the checksum. */
if (!is_protected)
{
actual_csum = 0;
for (i=npkey; i < nskey; i++)
{
unsigned char *buffer;
if (!skey[i] || gcry_mpi_get_flag (skey[i], GCRYMPI_FLAG_USER1))
return gpg_error (GPG_ERR_BAD_SECKEY);
if (gcry_mpi_get_flag (skey[i], GCRYMPI_FLAG_OPAQUE))
{
unsigned int nbits;
buffer = gcry_mpi_get_opaque (skey[i], &nbits);
nbytes = (nbits+7)/8;
nbits = nbytes * 8;
if (*buffer)
if (nbits >= 8 && !(*buffer & 0x80))
if (--nbits >= 7 && !(*buffer & 0x40))
if (--nbits >= 6 && !(*buffer & 0x20))
if (--nbits >= 5 && !(*buffer & 0x10))
if (--nbits >= 4 && !(*buffer & 0x08))
if (--nbits >= 3 && !(*buffer & 0x04))
if (--nbits >= 2 && !(*buffer & 0x02))
if (--nbits >= 1 && !(*buffer & 0x01))
--nbits;
actual_csum += (nbits >> 8);
actual_csum += (nbits & 0xff);
actual_csum += checksum (buffer, nbytes);
}
else
{
err = gcry_mpi_aprint (GCRYMPI_FMT_PGP, &buffer, &nbytes,
skey[i]);
if (err)
return err;
actual_csum += checksum (buffer, nbytes);
xfree (buffer);
}
}
if (actual_csum != desired_csum)
return gpg_error (GPG_ERR_CHECKSUM);
goto do_convert;
}
if (gcry_cipher_test_algo (protect_algo))
{
/* The algorithm numbers are Libgcrypt numbers but fortunately
the OpenPGP algorithm numbers map one-to-one to the Libgcrypt
numbers. */
log_info (_("protection algorithm %d (%s) is not supported\n"),
protect_algo, gnupg_cipher_algo_name (protect_algo));
return gpg_error (GPG_ERR_CIPHER_ALGO);
}
if (gcry_md_test_algo (s2k_algo))
{
log_info (_("protection hash algorithm %d (%s) is not supported\n"),
s2k_algo, gcry_md_algo_name (s2k_algo));
return gpg_error (GPG_ERR_DIGEST_ALGO);
}
err = gcry_cipher_open (&cipher_hd, protect_algo,
GCRY_CIPHER_MODE_CFB,
(GCRY_CIPHER_SECURE
| (protect_algo >= 100 ?
0 : GCRY_CIPHER_ENABLE_SYNC)));
if (err)
{
log_error ("failed to open cipher_algo %d: %s\n",
protect_algo, gpg_strerror (err));
return err;
}
err = hash_passphrase_and_set_key (passphrase, cipher_hd, protect_algo,
s2k_mode, s2k_algo, s2k_salt, s2k_count);
if (err)
{
gcry_cipher_close (cipher_hd);
return err;
}
gcry_cipher_setiv (cipher_hd, protect_iv, protect_ivlen);
actual_csum = 0;
if (pkt_version >= 4)
{
int ndata;
unsigned int ndatabits;
const unsigned char *p;
unsigned char *data;
u16 csum_pgp7 = 0;
gcry_mpi_t skey_encrypted = skey[npkey];
if (!gcry_mpi_get_flag (skey_encrypted, GCRYMPI_FLAG_USER1))
{
gcry_cipher_close (cipher_hd);
return gpg_error (GPG_ERR_BAD_SECKEY);
}
p = gcry_mpi_get_opaque (skey_encrypted, &ndatabits);
ndata = (ndatabits+7)/8;
if (ndata > 1)
csum_pgp7 = buf16_to_u16 (p+ndata-2);
data = xtrymalloc_secure (ndata);
if (!data)
{
err = gpg_error_from_syserror ();
gcry_cipher_close (cipher_hd);
return err;
}
gcry_cipher_decrypt (cipher_hd, data, ndata, p, ndata);
p = data;
if (is_protected == 2)
{
/* This is the new SHA1 checksum method to detect tampering
with the key as used by the Klima/Rosa attack. */
desired_csum = 0;
actual_csum = 1; /* Default to bad checksum. */
if (ndata < 20)
log_error ("not enough bytes for SHA-1 checksum\n");
else
{
gcry_md_hd_t h;
if (gcry_md_open (&h, GCRY_MD_SHA1, 1))
BUG(); /* Algo not available. */
gcry_md_write (h, data, ndata - 20);
gcry_md_final (h);
if (!memcmp (gcry_md_read (h, GCRY_MD_SHA1), data+ndata-20, 20))
actual_csum = 0; /* Digest does match. */
gcry_md_close (h);
}
}
else
{
/* Old 16 bit checksum method. */
if (ndata < 2)
{
log_error ("not enough bytes for checksum\n");
desired_csum = 0;
actual_csum = 1; /* Mark checksum bad. */
}
else
{
desired_csum = buf16_to_u16 (data+ndata-2);
actual_csum = checksum (data, ndata-2);
if (desired_csum != actual_csum)
{
/* This is a PGP 7.0.0 workaround */
desired_csum = csum_pgp7; /* Take the encrypted one. */
}
}
}
/* Better check it here. Otherwise the gcry_mpi_scan would fail
because the length may have an arbitrary value. */
if (desired_csum == actual_csum)
{
for (i = npkey; i < nskey; i++)
{
if (scan_pgp_format (&tmpmpi, pubkey_algo, p, ndata, &nbytes))
break;
skey[i] = tmpmpi;
ndata -= nbytes;
p += nbytes;
}
if (i == nskey)
{
skey[nskey] = NULL;
skeylen = nskey;
gcry_mpi_release (skey_encrypted);
log_assert (skeylen <= skeysize);
/* Note: at this point NDATA should be 2 for a simple
checksum or 20 for the sha1 digest. */
}
else
{
/* Checksum was okay, but not correctly decrypted. */
desired_csum = 0;
actual_csum = 1; /* Mark checksum bad. */
/* Recover encrypted SKEY. */
for (--i; i >= npkey; i--)
{
gcry_mpi_release (skey[i]);
skey[i] = NULL;
}
skey[npkey] = skey_encrypted;
}
}
xfree(data);
}
else /* Packet version <= 3. */
{
unsigned char *buffer;
gcry_mpi_t skey_tmpmpi[10];
log_assert (nskey - npkey <= 10);
for (i = npkey; i < nskey; i++)
{
const unsigned char *p;
size_t ndata;
unsigned int ndatabits;
if (!skey[i] || !gcry_mpi_get_flag (skey[i], GCRYMPI_FLAG_USER1))
{
gcry_cipher_close (cipher_hd);
return gpg_error (GPG_ERR_BAD_SECKEY);
}
p = gcry_mpi_get_opaque (skey[i], &ndatabits);
ndata = (ndatabits+7)/8;
if (!(ndata >= 2) || !(ndata == (buf16_to_ushort (p) + 7)/8 + 2))
{
gcry_cipher_close (cipher_hd);
return gpg_error (GPG_ERR_BAD_SECKEY);
}
buffer = xtrymalloc_secure (ndata);
if (!buffer)
{
err = gpg_error_from_syserror ();
gcry_cipher_close (cipher_hd);
return err;
}
gcry_cipher_sync (cipher_hd);
buffer[0] = p[0];
buffer[1] = p[1];
gcry_cipher_decrypt (cipher_hd, buffer+2, ndata-2, p+2, ndata-2);
actual_csum += checksum (buffer, ndata);
err = scan_pgp_format (&tmpmpi, pubkey_algo, buffer, ndata, &nbytes);
xfree (buffer);
if (err)
break;
skey_tmpmpi[i - npkey] = tmpmpi;
}
if (i == nskey)
{
for (i = npkey; i < nskey; i++)
{
gcry_mpi_release (skey[i]);
skey[i] = skey_tmpmpi[i - npkey];
}
}
else
{
/* Checksum was okay, but not correctly decrypted. */
desired_csum = 0;
actual_csum = 1; /* Mark checksum bad. */
for (--i; i >= npkey; i--)
gcry_mpi_release (skey_tmpmpi[i - npkey]);
}
}
gcry_cipher_close (cipher_hd);
/* Now let's see whether we have used the correct passphrase. */
if (actual_csum != desired_csum)
return gpg_error (GPG_ERR_BAD_PASSPHRASE);
do_convert:
if (nskey != skeylen)
err = gpg_error (GPG_ERR_BAD_SECKEY);
else
err = convert_secret_key (r_key, pubkey_algo, skey, curve);
if (err)
return err;
/* The checksum may fail, thus we also check the key itself. */
err = gcry_pk_testkey (*r_key);
if (err)
{
gcry_sexp_release (*r_key);
*r_key = NULL;
return gpg_error (GPG_ERR_BAD_PASSPHRASE);
}
return 0;
}
/* Callback function to try the unprotection from the passphrase query
code. */
static gpg_error_t
try_do_unprotect_cb (struct pin_entry_info_s *pi)
{
gpg_error_t err;
struct try_do_unprotect_arg_s *arg = pi->check_cb_arg;
err = do_unprotect (pi->pin,
arg->is_v4? 4:3,
arg->pubkey_algo, arg->is_protected,
arg->curve,
arg->skey, arg->skeysize,
arg->protect_algo, arg->iv, arg->ivlen,
arg->s2k_mode, arg->s2k_algo,
arg->s2k_salt, arg->s2k_count,
arg->desired_csum, arg->r_key);
/* SKEY may be modified now, thus we need to re-compute SKEYIDX. */
for (arg->skeyidx = 0; (arg->skeyidx < arg->skeysize
&& arg->skey[arg->skeyidx]); arg->skeyidx++)
;
return err;
}
/* See convert_from_openpgp for the core of the description. This
function adds an optional PASSPHRASE argument and uses this to
silently decrypt the key; CACHE_NONCE and R_PASSPHRASE must both be
NULL in this mode. */
static gpg_error_t
convert_from_openpgp_main (ctrl_t ctrl, gcry_sexp_t s_pgp, int dontcare_exist,
unsigned char *grip, const char *prompt,
const char *cache_nonce, const char *passphrase,
unsigned char **r_key, char **r_passphrase)
{
gpg_error_t err;
int unattended;
int from_native;
gcry_sexp_t top_list;
gcry_sexp_t list = NULL;
const char *value;
size_t valuelen;
char *string;
int idx;
int is_v4, is_protected;
int pubkey_algo;
int protect_algo = 0;
char iv[16];
int ivlen = 0;
int s2k_mode = 0;
int s2k_algo = 0;
byte s2k_salt[8];
u32 s2k_count = 0;
size_t npkey, nskey;
gcry_mpi_t skey[10]; /* We support up to 9 parameters. */
char *curve = NULL;
u16 desired_csum;
int skeyidx = 0;
gcry_sexp_t s_skey = NULL;
*r_key = NULL;
if (r_passphrase)
*r_passphrase = NULL;
unattended = !r_passphrase;
from_native = (!cache_nonce && passphrase && !r_passphrase);
top_list = gcry_sexp_find_token (s_pgp, "openpgp-private-key", 0);
if (!top_list)
goto bad_seckey;
list = gcry_sexp_find_token (top_list, "version", 0);
if (!list)
goto bad_seckey;
value = gcry_sexp_nth_data (list, 1, &valuelen);
if (!value || valuelen != 1
|| !(value[0] == '3' || value[0] == '4' || value[0] == '5'))
goto bad_seckey;
is_v4 = (value[0] == '4' || value[0] == '5');
gcry_sexp_release (list);
list = gcry_sexp_find_token (top_list, "protection", 0);
if (!list)
goto bad_seckey;
value = gcry_sexp_nth_data (list, 1, &valuelen);
if (!value)
goto bad_seckey;
if (valuelen == 4 && !memcmp (value, "sha1", 4))
is_protected = 2;
else if (valuelen == 3 && !memcmp (value, "sum", 3))
is_protected = 1;
else if (valuelen == 4 && !memcmp (value, "none", 4))
is_protected = 0;
else
goto bad_seckey;
if (is_protected)
{
string = gcry_sexp_nth_string (list, 2);
if (!string)
goto bad_seckey;
protect_algo = gcry_cipher_map_name (string);
xfree (string);
value = gcry_sexp_nth_data (list, 3, &valuelen);
if (!value || !valuelen || valuelen > sizeof iv)
goto bad_seckey;
memcpy (iv, value, valuelen);
ivlen = valuelen;
string = gcry_sexp_nth_string (list, 4);
if (!string)
goto bad_seckey;
s2k_mode = strtol (string, NULL, 10);
xfree (string);
string = gcry_sexp_nth_string (list, 5);
if (!string)
goto bad_seckey;
s2k_algo = gcry_md_map_name (string);
xfree (string);
value = gcry_sexp_nth_data (list, 6, &valuelen);
if (!value || !valuelen || valuelen > sizeof s2k_salt)
goto bad_seckey;
memcpy (s2k_salt, value, valuelen);
string = gcry_sexp_nth_string (list, 7);
if (!string)
goto bad_seckey;
s2k_count = strtoul (string, NULL, 10);
xfree (string);
}
gcry_sexp_release (list);
list = gcry_sexp_find_token (top_list, "algo", 0);
if (!list)
goto bad_seckey;
string = gcry_sexp_nth_string (list, 1);
if (!string)
goto bad_seckey;
pubkey_algo = gcry_pk_map_name (string);
xfree (string);
get_npkey_nskey (pubkey_algo, &npkey, &nskey);
if (!npkey || !nskey || npkey >= nskey)
goto bad_seckey;
if (npkey == 1) /* This is ECC */
{
gcry_sexp_release (list);
list = gcry_sexp_find_token (top_list, "curve", 0);
if (!list)
goto bad_seckey;
curve = gcry_sexp_nth_string (list, 1);
if (!curve)
goto bad_seckey;
}
gcry_sexp_release (list);
list = gcry_sexp_find_token (top_list, "skey", 0);
if (!list)
goto bad_seckey;
for (idx=0;;)
{
int is_enc;
value = gcry_sexp_nth_data (list, ++idx, &valuelen);
if (!value && skeyidx >= npkey)
break; /* Ready. */
/* Check for too many parameters. Note that depending on the
protection mode and version number we may see less than NSKEY
(but at least NPKEY+1) parameters. */
if (idx >= 2*nskey)
goto bad_seckey;
if (skeyidx >= DIM (skey)-1)
goto bad_seckey;
if (!value || valuelen != 1 || !(value[0] == '_' || value[0] == 'e'))
goto bad_seckey;
is_enc = (value[0] == 'e');
value = gcry_sexp_nth_data (list, ++idx, &valuelen);
if (!value || !valuelen)
goto bad_seckey;
if (is_enc || npkey == 1 /* This is ECC */)
{
skey[skeyidx] = gcry_mpi_set_opaque_copy (NULL, value, valuelen*8);
if (!skey[skeyidx])
goto outofmem;
if (is_enc)
/* Encrypted parameters need to have a USER1 flag. */
gcry_mpi_set_flag (skey[skeyidx], GCRYMPI_FLAG_USER1);
}
else
{
if (gcry_mpi_scan (skey + skeyidx, GCRYMPI_FMT_STD,
value, valuelen, NULL))
goto bad_seckey;
}
skeyidx++;
}
skey[skeyidx++] = NULL;
gcry_sexp_release (list);
list = gcry_sexp_find_token (top_list, "csum", 0);
if (list)
{
string = gcry_sexp_nth_string (list, 1);
if (!string)
goto bad_seckey;
desired_csum = strtoul (string, NULL, 10);
xfree (string);
}
else
desired_csum = 0;
gcry_sexp_release (list); list = NULL;
gcry_sexp_release (top_list); top_list = NULL;
#if 0
log_debug ("XXX is v4_or_later=%d\n", is_v4);
log_debug ("XXX pubkey_algo=%d\n", pubkey_algo);
log_debug ("XXX is_protected=%d\n", is_protected);
log_debug ("XXX protect_algo=%d\n", protect_algo);
log_printhex (iv, ivlen, "XXX iv");
log_debug ("XXX ivlen=%d\n", ivlen);
log_debug ("XXX s2k_mode=%d\n", s2k_mode);
log_debug ("XXX s2k_algo=%d\n", s2k_algo);
log_printhex (s2k_salt, sizeof s2k_salt, "XXX s2k_salt");
log_debug ("XXX s2k_count=%lu\n", (unsigned long)s2k_count);
log_debug ("XXX curve='%s'\n", curve);
for (idx=0; skey[idx]; idx++)
gcry_log_debugmpi (gcry_mpi_get_flag (skey[idx], GCRYMPI_FLAG_USER1)
? "skey(e)" : "skey(_)", skey[idx]);
#endif /*0*/
err = get_keygrip (pubkey_algo, curve, skey, grip);
if (err)
goto leave;
if (!dontcare_exist && !from_native && !agent_key_available (grip))
{
err = gpg_error (GPG_ERR_EEXIST);
goto leave;
}
if (unattended && !from_native)
{
err = prepare_unprotect (pubkey_algo, skey, DIM(skey), s2k_mode,
NULL, NULL, NULL);
if (err)
goto leave;
err = convert_transfer_key (&s_skey, pubkey_algo, skey, curve, s_pgp);
if (err)
goto leave;
}
else
{
struct pin_entry_info_s *pi;
struct try_do_unprotect_arg_s pi_arg;
pi = xtrycalloc_secure (1, sizeof (*pi) + MAX_PASSPHRASE_LEN + 1);
if (!pi)
{
err = gpg_error_from_syserror ();
goto leave;
}
pi->max_length = MAX_PASSPHRASE_LEN + 1;
pi->min_digits = 0; /* We want a real passphrase. */
pi->max_digits = 16;
pi->max_tries = 3;
pi->check_cb = try_do_unprotect_cb;
pi->check_cb_arg = &pi_arg;
pi_arg.is_v4 = is_v4;
pi_arg.is_protected = is_protected;
pi_arg.pubkey_algo = pubkey_algo;
pi_arg.curve = curve;
pi_arg.protect_algo = protect_algo;
pi_arg.iv = iv;
pi_arg.ivlen = ivlen;
pi_arg.s2k_mode = s2k_mode;
pi_arg.s2k_algo = s2k_algo;
pi_arg.s2k_salt = s2k_salt;
pi_arg.s2k_count = s2k_count;
pi_arg.desired_csum = desired_csum;
pi_arg.skey = skey;
pi_arg.skeysize = DIM (skey);
pi_arg.skeyidx = skeyidx;
pi_arg.r_key = &s_skey;
err = gpg_error (GPG_ERR_BAD_PASSPHRASE);
if (!is_protected)
{
err = try_do_unprotect_cb (pi);
if (gpg_err_code (err) == GPG_ERR_BAD_PASSPHRASE)
err = gpg_error (GPG_ERR_BAD_SECKEY);
}
else if (cache_nonce)
{
char *cache_value;
cache_value = agent_get_cache (ctrl, cache_nonce, CACHE_MODE_NONCE);
if (cache_value)
{
if (strlen (cache_value) < pi->max_length)
strcpy (pi->pin, cache_value);
xfree (cache_value);
}
if (*pi->pin)
err = try_do_unprotect_cb (pi);
}
else if (from_native)
{
if (strlen (passphrase) < pi->max_length)
strcpy (pi->pin, passphrase);
err = try_do_unprotect_cb (pi);
}
if (gpg_err_code (err) == GPG_ERR_BAD_PASSPHRASE && !from_native)
err = agent_askpin (ctrl, prompt, NULL, NULL, pi, NULL, 0);
skeyidx = pi_arg.skeyidx;
if (!err && r_passphrase && is_protected)
{
*r_passphrase = xtrystrdup (pi->pin);
if (!*r_passphrase)
err = gpg_error_from_syserror ();
}
xfree (pi);
if (err)
goto leave;
}
/* Save some memory and get rid of the SKEY array now. */
for (idx=0; idx < skeyidx; idx++)
gcry_mpi_release (skey[idx]);
skeyidx = 0;
/* Note that the padding is not required - we use it only because
that function allows us to create the result in secure memory. */
err = make_canon_sexp_pad (s_skey, 1, r_key, NULL);
leave:
xfree (curve);
gcry_sexp_release (s_skey);
gcry_sexp_release (list);
gcry_sexp_release (top_list);
for (idx=0; idx < skeyidx; idx++)
gcry_mpi_release (skey[idx]);
if (err && r_passphrase)
{
xfree (*r_passphrase);
*r_passphrase = NULL;
}
return err;
bad_seckey:
err = gpg_error (GPG_ERR_BAD_SECKEY);
goto leave;
outofmem:
err = gpg_error (GPG_ERR_ENOMEM);
goto leave;
}
/* Convert an OpenPGP transfer key into our internal format. Before
asking for a passphrase we check whether the key already exists in
our key storage. S_PGP is the OpenPGP key in transfer format. If
CACHE_NONCE is given the passphrase will be looked up in the cache.
On success R_KEY will receive a canonical encoded S-expression with
the unprotected key in our internal format; the caller needs to
release that memory. The passphrase used to decrypt the OpenPGP
key will be returned at R_PASSPHRASE; the caller must release this
passphrase. If R_PASSPHRASE is NULL the unattended conversion mode
will be used which uses the openpgp-native protection format for
the key. The keygrip will be stored at the 20 byte buffer pointed
to by GRIP. On error NULL is stored at all return arguments. */
gpg_error_t
convert_from_openpgp (ctrl_t ctrl, gcry_sexp_t s_pgp, int dontcare_exist,
unsigned char *grip, const char *prompt,
const char *cache_nonce,
unsigned char **r_key, char **r_passphrase)
{
return convert_from_openpgp_main (ctrl, s_pgp, dontcare_exist, grip, prompt,
cache_nonce, NULL,
r_key, r_passphrase);
}
/* This function is called by agent_unprotect to re-protect an
openpgp-native protected private-key into the standard private-key
protection format. */
gpg_error_t
convert_from_openpgp_native (ctrl_t ctrl,
gcry_sexp_t s_pgp, const char *passphrase,
unsigned char **r_key)
{
gpg_error_t err;
unsigned char grip[20];
if (!passphrase)
return gpg_error (GPG_ERR_INTERNAL);
err = convert_from_openpgp_main (ctrl, s_pgp, 0, grip, NULL,
NULL, passphrase,
r_key, NULL);
/* On success try to re-write the key. */
if (!err)
{
if (*passphrase)
{
unsigned char *protectedkey = NULL;
size_t protectedkeylen;
if (!agent_protect (*r_key, passphrase,
&protectedkey, &protectedkeylen,
ctrl->s2k_count))
agent_write_private_key (grip, protectedkey, protectedkeylen, 1,
NULL, NULL, 0);
xfree (protectedkey);
}
else
{
/* Empty passphrase: write key without protection. */
agent_write_private_key (grip,
*r_key,
gcry_sexp_canon_len (*r_key, 0, NULL,NULL),
1, NULL, NULL, 0);
}
}
return err;
}
/* Given an ARRAY of mpis with the key parameters, protect the secret
parameters in that array and replace them by one opaque encoded
mpi. NPKEY is the number of public key parameters and NSKEY is
the number of secret key parameters (including the public ones).
On success the array will have NPKEY+1 elements. */
static gpg_error_t
apply_protection (gcry_mpi_t *array, int npkey, int nskey,
const char *passphrase,
int protect_algo, void *protect_iv, size_t protect_ivlen,
int s2k_mode, int s2k_algo, byte *s2k_salt, u32 s2k_count)
{
gpg_error_t err;
int i, j;
gcry_cipher_hd_t cipherhd;
unsigned char *bufarr[10];
size_t narr[10];
unsigned int nbits[10];
int ndata;
unsigned char *p, *data;
log_assert (npkey < nskey);
log_assert (nskey < DIM (bufarr));
/* Collect only the secret key parameters into BUFARR et al and
compute the required size of the data buffer. */
ndata = 20; /* Space for the SHA-1 checksum. */
for (i = npkey, j = 0; i < nskey; i++, j++ )
{
if (gcry_mpi_get_flag (array[i], GCRYMPI_FLAG_OPAQUE))
{
p = gcry_mpi_get_opaque (array[i], &nbits[j]);
narr[j] = (nbits[j] + 7)/8;
data = xtrymalloc_secure (narr[j]);
if (!data)
err = gpg_error_from_syserror ();
else
{
memcpy (data, p, narr[j]);
bufarr[j] = data;
err = 0;
}
}
else
{
err = gcry_mpi_aprint (GCRYMPI_FMT_USG, bufarr+j, narr+j, array[i]);
nbits[j] = gcry_mpi_get_nbits (array[i]);
}
if (err)
{
for (i = 0; i < j; i++)
xfree (bufarr[i]);
return err;
}
ndata += 2 + narr[j];
}
/* Allocate data buffer and stuff it with the secret key parameters. */
data = xtrymalloc_secure (ndata);
if (!data)
{
err = gpg_error_from_syserror ();
for (i = 0; i < (nskey-npkey); i++ )
xfree (bufarr[i]);
return err;
}
p = data;
for (i = 0; i < (nskey-npkey); i++ )
{
*p++ = nbits[i] >> 8 ;
*p++ = nbits[i];
memcpy (p, bufarr[i], narr[i]);
p += narr[i];
xfree (bufarr[i]);
bufarr[i] = NULL;
}
log_assert (p == data + ndata - 20);
/* Append a hash of the secret key parameters. */
gcry_md_hash_buffer (GCRY_MD_SHA1, p, data, ndata - 20);
/* Encrypt it. */
err = gcry_cipher_open (&cipherhd, protect_algo,
GCRY_CIPHER_MODE_CFB, GCRY_CIPHER_SECURE);
if (!err)
err = hash_passphrase_and_set_key (passphrase, cipherhd, protect_algo,
s2k_mode, s2k_algo, s2k_salt, s2k_count);
if (!err)
err = gcry_cipher_setiv (cipherhd, protect_iv, protect_ivlen);
if (!err)
err = gcry_cipher_encrypt (cipherhd, data, ndata, NULL, 0);
gcry_cipher_close (cipherhd);
if (err)
{
xfree (data);
return err;
}
/* Replace the secret key parameters in the array by one opaque value. */
for (i = npkey; i < nskey; i++ )
{
gcry_mpi_release (array[i]);
array[i] = NULL;
}
array[npkey] = gcry_mpi_set_opaque (NULL, data, ndata*8);
gcry_mpi_set_flag (array[npkey], GCRYMPI_FLAG_USER1);
return 0;
}
/*
* Examining S_KEY in S-Expression and extract data.
* When REQ_PRIVATE_KEY_DATA == 1, S_KEY's CAR should be 'private-key',
* but it also allows shadowed or protected versions.
* On success, it returns 0, otherwise error number.
* R_ALGONAME is static string which is no need to free by caller.
* R_NPKEY is pointer to number of public key data.
* R_NSKEY is pointer to number of private key data.
* R_ELEMS is static string which is no need to free by caller.
* ARRAY contains public and private key data.
* ARRAYSIZE is the allocated size of the array for cross-checking.
* R_CURVE is pointer to S-Expression of the curve (can be NULL).
* R_FLAGS is pointer to S-Expression of the flags (can be NULL).
*/
gpg_error_t
extract_private_key (gcry_sexp_t s_key, int req_private_key_data,
const char **r_algoname, int *r_npkey, int *r_nskey,
const char **r_elems,
gcry_mpi_t *array, int arraysize,
gcry_sexp_t *r_curve, gcry_sexp_t *r_flags)
{
gpg_error_t err;
gcry_sexp_t list, l2;
char *name;
const char *algoname, *format, *elems;
int npkey, nskey;
gcry_sexp_t curve = NULL;
gcry_sexp_t flags = NULL;
*r_curve = NULL;
*r_flags = NULL;
if (!req_private_key_data)
{
list = gcry_sexp_find_token (s_key, "shadowed-private-key", 0 );
if (!list)
list = gcry_sexp_find_token (s_key, "protected-private-key", 0 );
if (!list)
list = gcry_sexp_find_token (s_key, "private-key", 0 );
}
else
list = gcry_sexp_find_token (s_key, "private-key", 0);
if (!list)
{
log_error ("invalid private key format\n");
return gpg_error (GPG_ERR_BAD_SECKEY);
}
l2 = gcry_sexp_cadr (list);
gcry_sexp_release (list);
list = l2;
name = gcry_sexp_nth_string (list, 0);
if (!name)
{
gcry_sexp_release (list);
return gpg_error (GPG_ERR_INV_OBJ); /* Invalid structure of object. */
}
if (arraysize < 7)
BUG ();
/* Map NAME to a name as used by Libgcrypt. We do not use the
Libgcrypt function here because we need a lowercase name and
require special treatment for some algorithms. */
strlwr (name);
if (!strcmp (name, "rsa"))
{
algoname = "rsa";
format = elems = "ned?p?q?u?";
npkey = 2;
nskey = 6;
err = gcry_sexp_extract_param (list, NULL, format,
array+0, array+1, array+2, array+3,
array+4, array+5, NULL);
}
else if (!strcmp (name, "elg"))
{
algoname = "elg";
format = elems = "pgyx?";
npkey = 3;
nskey = 4;
err = gcry_sexp_extract_param (list, NULL, format,
array+0, array+1, array+2, array+3,
NULL);
}
else if (!strcmp (name, "dsa"))
{
algoname = "dsa";
format = elems = "pqgyx?";
npkey = 4;
nskey = 5;
err = gcry_sexp_extract_param (list, NULL, format,
array+0, array+1, array+2, array+3,
array+4, NULL);
}
else if (!strcmp (name, "ecc") || !strcmp (name, "ecdsa"))
{
algoname = "ecc";
format = "/qd?";
elems = "qd?";
npkey = 1;
nskey = 2;
curve = gcry_sexp_find_token (list, "curve", 0);
flags = gcry_sexp_find_token (list, "flags", 0);
err = gcry_sexp_extract_param (list, NULL, format,
array+0, array+1, NULL);
}
else
{
err = gpg_error (GPG_ERR_PUBKEY_ALGO);
}
xfree (name);
gcry_sexp_release (list);
if (err)
{
gcry_sexp_release (curve);
gcry_sexp_release (flags);
return err;
}
else
{
*r_algoname = algoname;
if (r_elems)
*r_elems = elems;
*r_npkey = npkey;
if (r_nskey)
*r_nskey = nskey;
*r_curve = curve;
*r_flags = flags;
return 0;
}
}
/* Convert our key S_KEY into an OpenPGP key transfer format. On
success a canonical encoded S-expression is stored at R_TRANSFERKEY
and its length at R_TRANSFERKEYLEN; this S-expression is also
padded to a multiple of 64 bits. */
gpg_error_t
convert_to_openpgp (ctrl_t ctrl, gcry_sexp_t s_key, const char *passphrase,
unsigned char **r_transferkey, size_t *r_transferkeylen)
{
gpg_error_t err;
const char *algoname;
int npkey, nskey;
gcry_mpi_t array[10];
gcry_sexp_t curve = NULL;
gcry_sexp_t flags = NULL;
char protect_iv[16];
char salt[8];
unsigned long s2k_count;
int i, j;
(void)ctrl;
*r_transferkey = NULL;
for (i=0; i < DIM (array); i++)
array[i] = NULL;
err = extract_private_key (s_key, 1, &algoname, &npkey, &nskey, NULL,
array, DIM (array), &curve, &flags);
if (err)
return err;
gcry_create_nonce (protect_iv, sizeof protect_iv);
gcry_create_nonce (salt, sizeof salt);
/* We need to use the encoded S2k count. It is not possible to
encode it after it has been used because the encoding procedure
may round the value up. */
s2k_count = get_standard_s2k_count_rfc4880 ();
err = apply_protection (array, npkey, nskey, passphrase,
GCRY_CIPHER_AES, protect_iv, sizeof protect_iv,
3, GCRY_MD_SHA1, salt, s2k_count);
/* Turn it into the transfer key S-expression. Note that we always
return a protected key. */
if (!err)
{
char countbuf[35];
membuf_t mbuf;
void *format_args[10+2];
gcry_sexp_t tmpkey;
gcry_sexp_t tmpsexp = NULL;
snprintf (countbuf, sizeof countbuf, "%lu", s2k_count);
init_membuf (&mbuf, 50);
put_membuf_str (&mbuf, "(skey");
for (i=j=0; i < npkey; i++)
{
put_membuf_str (&mbuf, " _ %m");
format_args[j++] = array + i;
}
put_membuf_str (&mbuf, " e %m");
format_args[j++] = array + npkey;
put_membuf_str (&mbuf, ")\n");
put_membuf (&mbuf, "", 1);
tmpkey = NULL;
{
char *format = get_membuf (&mbuf, NULL);
if (!format)
err = gpg_error_from_syserror ();
else
err = gcry_sexp_build_array (&tmpkey, NULL, format, format_args);
xfree (format);
}
if (!err)
err = gcry_sexp_build (&tmpsexp, NULL,
"(openpgp-private-key\n"
" (version 1:4)\n"
" (algo %s)\n"
" %S%S\n"
" (protection sha1 aes %b 1:3 sha1 %b %s))\n",
algoname,
curve,
tmpkey,
(int)sizeof protect_iv, protect_iv,
(int)sizeof salt, salt,
countbuf);
gcry_sexp_release (tmpkey);
if (!err)
err = make_canon_sexp_pad (tmpsexp, 0, r_transferkey, r_transferkeylen);
gcry_sexp_release (tmpsexp);
}
for (i=0; i < DIM (array); i++)
gcry_mpi_release (array[i]);
gcry_sexp_release (curve);
gcry_sexp_release (flags);
return err;
}
|