summaryrefslogtreecommitdiffstats
path: root/src/havegetest.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/havegetest.c')
-rw-r--r--src/havegetest.c1010
1 files changed, 1010 insertions, 0 deletions
diff --git a/src/havegetest.c b/src/havegetest.c
new file mode 100644
index 0000000..8cbb89a
--- /dev/null
+++ b/src/havegetest.c
@@ -0,0 +1,1010 @@
+/**
+ ** Simple entropy harvester based upon the havege RNG
+ **
+ ** Copyright 2012-2014 Gary Wuertz gary@issiweb.com
+ ** Copyright 2012 BenEleventh Consulting manolson@beneleventh.com
+ **
+ ** This program is free software: you can redistribute it and/or modify
+ ** it under the terms of the GNU General Public License as published by
+ ** the Free Software Foundation, either version 3 of the License, or
+ ** (at your option) any later version.
+ **
+ ** This program is distributed in the hope that it will be useful,
+ ** but WITHOUT ANY WARRANTY; without even the implied warranty of
+ ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ ** GNU General Public License for more details.
+ **
+ ** You should have received a copy of the GNU General Public License
+ ** along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+/**
+ * This compile unit implements online tests for haveged through the public functions tests*.
+ * Online tests are run directly against the contents of the collection buffer immediately after
+ * a buffer fill. Because collection buffer size does not have any direct relationship with
+ * the data requirements of the individual tests, all tests implement a state machine to
+ * handle segmented input.
+ *
+ * Note code directly related to the havege interface has been moved to a conditional
+ * in that unit for easier maintainability.
+ */
+#include "config.h"
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include "havegetest.h"
+
+#ifdef ONLINE_TESTS_ENABLE
+/**
+ * Final value for aisSeq() when no transition found. Originally, Initially this used
+ * INFINITY from <math.h> but definition is undefined some gcc versions - foo!
+ */
+#define NO_TRANSITION 999999
+/**
+ * This structure is used only to pack the test structures into a single memory allocation.
+ * This is necessary because some architectures have stringent alignment requirements that
+ * cannot be met unless (compiler generated) padding is included. On mips in particular
+ * double must be dword aligned or bus errors result.
+ */
+typedef struct {
+ onlineTests olt;
+ procA pa;
+ procB pb;
+} testsMemory;
+/**
+ * The tests and supporting methods
+ */
+static H_UINT aisProcedureA(H_COLLECT *h_ctxt, procShared *tps,
+ procA *context, H_UINT *buffer, H_UINT sz, H_UINT offs, H_UINT prod);
+static H_UINT aisProcedureB(H_COLLECT *h_ctxt, procShared *tps,
+ procB *context, H_UINT *buffer, H_UINT sz, H_UINT offs, H_UINT prod);
+static H_UINT aisSeq(procB *p, H_UINT offs, H_UINT id);
+static H_UINT aisTest(H_COLLECT * h_ctxt, H_UINT prod, H_UINT *buffer, H_UINT sz);
+static H_UINT copyBits(procA *p, H_UINT ct,H_UINT sz);
+static H_UINT fips140(procShared *tps, procA *p, H_UINT offs, H_UINT id);
+static H_UINT test0(procA *p, H_UINT offs, H_UINT id);
+static int test0cmp(const void *aa, const void *bb);
+static H_UINT test5(procA *p, H_UINT offs, H_UINT id);
+static H_UINT test5XOR(H_UINT8 *src, H_UINT shift);
+static H_UINT test6a(procB *p, H_UINT offs, H_UINT id);
+static H_UINT test8(procShared *tps, procB *p, H_UINT offs, H_UINT id);
+static int testsDiscard(H_COLLECT *rdr);
+static void testsMute(H_COLLECT * h_ctxt, H_UINT action, H_UINT prod, H_UINT state, H_UINT ct);
+static int testsRun(H_COLLECT *rdr, H_UINT prod);
+
+/**
+ * The following suite of macros encapsulate the major bit operations of the test suite.
+ * The intention is to write simple rather than clever code and let the optimizer strut
+ * it's sutff. Note bit index starts with MSB for direct comparison with the test suit'e
+ * Java reference implementation.
+ */
+#define BITSTREAM_BIT() ((*bitstream_src)&bitstream_in)==0? 0 : 1
+#define BITSTREAM_NEXT() {if (bitstream_in==1) {\
+ bitstream_src+=1;\
+ bitstream_in=0x80;\
+ }\
+ else bitstream_in>>=1;}
+#define BITSTREAM_OPEN(a,b) H_UINT8 *bitstream_src=(H_UINT8 *)(a);\
+ H_UINT bitstream_in=0x80>>((b)%8);\
+ bitstream_src+=(b)/8
+/**
+ * Setup shared resources for online tests by sorting the test options into "tot"
+ * and production groupings and allocating any resources used by the tests.
+ * Caller is responsible for initializing the procShared structure with the
+ * report, testsUsed, totTests[], runTests[], totText, and prodText fields.
+ */
+int havege_test( /* RETURN: nz on failure */
+ procShared *tps, /* IN-OUT: test anchor */
+ H_PARAMS *params) /* IN: app parameters */
+{
+ H_UINT i;
+
+ tps->discard = testsDiscard;
+ if (0==tps->report)
+ tps->report = testsMute;
+ tps->run = testsRun;
+ tps->options = params->options;
+
+ if (0!=(tps->testsUsed & A_RUN)) {
+ H_UINT low[6] = {FIPS_RUNS_LOW};
+ H_UINT high[6] = {FIPS_RUNS_HIGH};
+
+ tps->procReps = 1 + (5 * AIS_A_REPS);
+ for (i=0;i<6;i++) {
+ tps->fips_low[i] = low[i];
+ tps->fips_high[i] = high[i];
+ }
+ }
+ if (0!=(tps->testsUsed & B_RUN)) {
+ tps->G = (double *) malloc((Q+K+1)*sizeof(double));
+ if (0 == tps->G)
+ return 1;
+ tps->G[1] = 0.0;
+ for(i=1; i<=(K+Q-1); i++)
+ tps->G[i+1]=tps->G[i]+1.0/i;
+ for(i=1; i<=(K+Q); i++)
+ tps->G[i] /= LN2;
+ }
+ return 0;
+}
+/**
+ * Check if the current buffer should be released if continuous testing is
+ * being performed. The buffer must be discarded if it contains an
+ * uncompleted retry or an uncompleted procedure with a failed test
+ * or a failed procedure.
+ */
+static int testsDiscard( /* RETURN: non-zero to discard */
+ H_COLLECT * h_ctxt) /* IN-OUT: collector context */
+{
+ onlineTests *context = (onlineTests *) h_ctxt->havege_tests;
+ procShared *tps = TESTS_SHARED(h_ctxt);
+ procInst *p;
+ H_UINT i;
+
+ if (0==tps->testsUsed)
+ return 0;
+ if (context->result!=0)
+ return -1;
+ p = tps->runTests + context->runIdx;
+ switch(p->action) {
+ case A_RUN:
+ if (0 != context->pA->procRetry)
+ return 1;
+ for (i = 0;i<context->pA->testRun;i++)
+ if (0 !=(context->pA->results[i].testResult & 1))
+ return 1;
+ break;
+ case B_RUN:
+ if (0 != context->pB->procRetry)
+ return 1;
+ for (i=0;i<context->pB->testNbr;i++)
+ if (0!=(context->pB->results[i].testResult & 0xff))
+ return 1;
+ break;
+ }
+ return 0;
+}
+/**
+ * Place holder for when report is not configured
+ */
+static void testsMute(
+ H_COLLECT * h_ctxt, /* IN-OUT: collector context */
+ H_UINT action, /* IN: A_RUN or B_RUN */
+ H_UINT prod, /* IN: 0==tot, else continuous */
+ H_UINT state, /* IN: state variable */
+ H_UINT ct) /* IN: bytes consumed */
+{
+ ;
+}
+/**
+ * The public wrapper that runs the tests. On the first call, the necessary machinery is built.
+ * The calls to aisTest() actually run the tests. The test shared structure is read only in this
+ * case, since testsRun could be called in a multi-threaded environment where an onlineTests
+ * structure is associated with each collection thread.
+ */
+static int testsRun( /* RETURN: nz if input needed */
+ H_COLLECT * h_ctxt, /* IN-OUT: collector context */
+ H_UINT prod) /* IN: nz if production else tot */
+{
+ procShared *tps = TESTS_SHARED(h_ctxt);
+ onlineTests *context;
+ testsMemory *mem;
+ procB *pb;
+
+ if (0 ==(tps->testsUsed))
+ return 0;
+ if (0 == h_ctxt->havege_tests) {
+ H_UINT sz = sizeof(testsMemory);
+
+ if (0==(tps->testsUsed & A_RUN))
+ sz -= sizeof(procA);
+ if (0==(tps->testsUsed & B_RUN))
+ sz -= sizeof(procB);
+ mem = (testsMemory *) malloc(sz);
+ if (NULL==mem) {
+ h_ctxt->havege_err = H_NOTESTMEM;
+ return 1;
+ }
+ context = (onlineTests *) mem;
+ memset(context, 0, sizeof(onlineTests));
+ if (0!=(tps->testsUsed & A_RUN)) {
+ context->pA = &mem->pa;
+ context->pA->procState = TEST_INIT;
+ pb = &mem->pb;
+ }
+ else pb = (procB *)((void *) &mem->pa);
+ if (0!=(tps->testsUsed & B_RUN)) {
+ context->pB = pb;
+ context->pB->procState = TEST_INIT;
+ }
+ h_ctxt->havege_tests = context;
+ if (0 != (h_ctxt->havege_raw & H_DEBUG_TEST_IN))
+ return 0;
+ }
+ return aisTest(h_ctxt, prod, (H_UINT *)h_ctxt->havege_bigarray, h_ctxt->havege_szFill);
+}
+/**
+ * AIS-31 test procedure A. The test is initiated by setting procState to TEST_INIT and
+ * the test is performed by calling the procedure adding input until completion is indicated
+ * by a proc state of TEST_DONE. The first test requires 3145728 bits (393,216 bytes) and
+ * the remaining 5 tests are repeated on sucessive 2500 byte samples for 257 times.
+ *
+ * Exit states TEST_DONE, TEST_IGNORE, TEST_INPUT, TEST_RETRY
+ *
+ * An ideal RNG will pass this test with a probablilty of 0.9987. If there is a single failed
+ * test, the test will be repeated. An ideal RNG should almost never fail the retry. The goal
+ * of this procedure is to verify RNG output is statisically inconspicuous.
+ */
+static H_UINT aisProcedureA( /* RETURN: bits used */
+ H_COLLECT *h_ctxt, /* IN-OUT: collection instance */
+ procShared *tps, /* IN-OUT: shared data */
+ procA *p, /* IN: the context */
+ H_UINT *buffer, /* IN: the input */
+ H_UINT sz, /* IN: the input range */
+ H_UINT ct, /* IN: initial bit offset */
+ H_UINT prod) /* IN: production if nz */
+{
+ onlineTests *context = TESTS_CONTEXT(h_ctxt);
+ H_UINT i, r;
+
+ switch(p->procState) {
+ case TEST_INIT:
+ p->bytesUsed = 0;
+ p->procRetry = 0;
+ case TEST_RETRY:
+ p->procState = TEST_INPUT;
+ p->testState = TEST_INIT;
+ p->testId = p->testRun = 0;
+ case TEST_INPUT:
+ p->data = (H_UINT8 *)buffer;
+ p->range = sz * sizeof(H_UINT) <<3;
+ while(p->testRun < tps->procReps) {
+ p->testId = p->testRun<6? p->testRun : (1+(p->testRun-6) % 5);
+ switch(p->testId) {
+ case 0:
+ ct = test0(p, ct, p->testRun);
+ break;
+ case 1: case 2: case 3: case 4:
+ ct = fips140(tps, p, ct, p->testRun);
+ break;
+ case 5:
+ ct = test5(p, ct, p->testRun);
+ break;
+ }
+ context->szCarry = ct;
+ if (p->testState == TEST_DONE)
+ p->testState = TEST_INPUT;
+ else if (p->testState == TEST_INPUT)
+ return 0;
+ }
+ case TEST_EVAL:
+ p->procState = TEST_DONE;
+ for (r = i = 0;i<p->testRun;i++)
+ r += p->results[i].testResult & 1;
+ if (0!=r) {
+ tps->meters[prod? H_OLT_PROD_A_F : H_OLT_TOT_A_F] += 1;
+ if (1==r && 0==p->procRetry) {
+ p->procRetry = 1;
+ p->procState = TEST_RETRY;
+ }
+ else if (0!=(p->options & A_WARN))
+ p->procState = TEST_IGNORE;
+ else {
+ context->result = A_RUN;
+ h_ctxt->havege_err = prod? H_NOTESTRUN : H_NOTESTTOT;
+ }
+ break;
+ }
+ else tps->meters[prod? H_OLT_PROD_A_P : H_OLT_TOT_A_P] += 1;
+ if (0!=(tps->options & (H_DEBUG_OLT|H_DEBUG_OLT))|| TEST_DONE != p->procState)
+ tps->report(h_ctxt, A_RUN, prod, p->procState, p->bytesUsed);
+ break;
+ }
+ return p->bytesUsed<<3;
+}
+/**
+ * AIS-31 test procedure B. The test is initiated by setting procState to TEST_INIT and
+ * the test is performed by calling the procedure adding input until completion is indicated
+ * by a proc state of TEST_DONE. Unlike procedure A, the number of input bits is not fixed
+ * but depends on the input.
+ *
+ * Exit states TEST_DONE, TEST_IGNORE, TEST_INPUT, TEST_RETRY
+ *
+ * The probability that an ideal RNG will pass this test is 0.9998. If a single test fails,
+ * the test is repeated. An ideal RNG should almost never fail the retry. The goal of this
+ * procedure is to ensure the entropy of the output is sufficiently large.
+ */
+static H_UINT aisProcedureB( /* RETURN: bits used */
+ H_COLLECT *h_ctxt, /* IN-OUT: collection instance */
+ procShared *tps, /* IN-OUT: shared data */
+ procB *p, /* IN: the context */
+ H_UINT *buffer, /* IN: the input */
+ H_UINT sz, /* IN: the input range */
+ H_UINT ct, /* IN: initial bit offset */
+ H_UINT prod) /* IN: production if nz */
+{
+ onlineTests *context = TESTS_CONTEXT(h_ctxt);
+ H_UINT i, r;
+
+ switch(p->procState) {
+ case TEST_INIT:
+ p->bitsUsed = 0;
+ p->procRetry = 0;
+ case TEST_RETRY:
+ p->testId = p->testNbr = 0;
+ p->procState = TEST_INPUT;
+ p->testState = TEST_INIT;
+ case TEST_INPUT:
+ p->noise = buffer;
+ p->range = sz * BITS_PER_H_UINT;
+ i = p->testId;
+ while(p->testState != TEST_DONE && i < 5) {
+ p->seq = 1<<i;
+ switch(i) {
+ case 0: ct = test6a(p, ct, i); break;
+ case 4: ct = test8(tps,p,ct,i); break;
+ default: ct = aisSeq(p,ct,i); break;
+ }
+ if (p->testState == TEST_INPUT)
+ break;
+ p->testId = ++i;
+ p->testState = TEST_INIT;
+ }
+ context->szCarry = ct;
+ if (p->testState == TEST_INPUT)
+ return 0;
+ case TEST_EVAL:
+ p->procState = TEST_DONE;
+ for (i=r=0;i<p->testNbr;i++)
+ r += p->results[i].testResult & 1;
+ if (0!=r) {
+ tps->meters[prod? H_OLT_PROD_B_F : H_OLT_TOT_B_F] += 1;
+ if (1==r && 0==p->procRetry) {
+ p->procRetry = 1;
+ p->procState = TEST_RETRY;
+ }
+ else if (0!=(p->options & B_WARN))
+ p->procState = TEST_IGNORE;
+ else {
+ context->result = B_RUN;
+ h_ctxt->havege_err = prod? H_NOTESTRUN : H_NOTESTTOT;
+ }
+ }
+ else tps->meters[prod? H_OLT_PROD_B_P : H_OLT_TOT_B_P] += 1;
+ if (0!=(tps->options & H_DEBUG_OLT)|| TEST_DONE != p->procState)
+ tps->report(h_ctxt, B_RUN, prod, p->procState, p->bitsUsed/8);
+ break;
+ }
+ return p->bitsUsed;
+}
+/**
+ * Driver for disjoint sequence tests - steps 2,3,4 of AIS-31 procedure B (aka test6b, test7a, and test7b).
+ * Input tid is the width of the transition to be analyzed: tid=1 { 0x, 1x }, tid=2 {00x, 01x, 10x, 11x},
+ * tid=3 {000x, 001x, 010x, 011x, 100x, 101x, 110x, 111x}. The seq menber of procB gives # categories.
+ * For a tuple of width n, transition probabilities are calculated for log2(n) transitions for the first
+ * 100000 sequences. The deadman counter prevents total runaways with pathalogical input by counting
+ * interations that fail to update any counter. If the deadman value exceeds the limit, evaluation of
+ * the result forced. The probability of a forced evaluation is 10e-15.
+ *
+ * The macros below use fields in the procB structure to save/restore context when the input is
+ * segmented.
+ */
+#define RESTORE(a,b,c) a=p->bridge;b=p->lastpos[0];c=p->lastpos[1]
+#define SAVE(a,b,c) p->bridge=a;p->lastpos[0]=b;p->lastpos[1]=c
+
+static H_UINT aisSeq( /* RETURN: last bit index */
+ procB *p, /* IN-OUT: the context */
+ H_UINT offs, /* IN: starting bit offset */
+ H_UINT tid) /* IN: test id == #bits */
+{
+ static const H_UINT seq_dead[5] = {0, 50, 120, 258, 0}; /* dead man limit */
+ static const H_UINT seq_mask[5] = {0, 3, 15, 255, 0}; /* full mask */
+ H_UINT i=0, c, deadman, r, s, j, hilf;
+
+ switch(p->testState) {
+ case TEST_INIT:
+ for(j=0;j<p->seq;j++)
+ p->counter[j] = p->einsen[j] = 0;
+ p->full = 0;
+ p->testState = TEST_INPUT;
+ SAVE(0,0,0);
+ case TEST_INPUT:
+ RESTORE(j, hilf, deadman);
+ offs %= p->range;
+ r = p->range - offs;
+ s = r % (tid+1);
+ r -= s;
+ {
+ BITSTREAM_OPEN(p->noise,offs);
+ while(i<r) {
+ for(;j<tid;i++,j++) {
+ hilf += hilf+(BITSTREAM_BIT());BITSTREAM_NEXT();
+ }
+ c = BITSTREAM_BIT();BITSTREAM_NEXT();
+ i += 1;
+ if (0!=(p->full & (1<<hilf))) {
+ if ((deadman+=1)> seq_dead[tid]) {
+ p->testState = TEST_DONE;
+ break;
+ }
+ }
+ else {
+ deadman = 0;
+ p->einsen[hilf] += c;
+ if ((p->counter[hilf]+=1)==AIS_LENGTH) {
+ p->full |= (1<<hilf);
+ if (p->full == seq_mask[tid]) {
+ p->testState = TEST_EVAL;
+ break;
+ }
+ }
+ }
+ j = hilf = 0;
+ }
+ if (p->testState==TEST_INPUT) {
+ for(j=hilf=0;j<s;j++,i++) {
+ hilf += hilf+(BITSTREAM_BIT());BITSTREAM_NEXT();
+ }
+ SAVE(j,hilf,deadman);
+ }
+ }
+ p->bitsUsed += i;
+ if (p->testState == TEST_INPUT)
+ break;
+ case TEST_EVAL:
+ if (tid==1) {
+ double q[2];
+
+ if (p->testState == TEST_EVAL) {
+ for(j=0;j<2;j++)
+ q[j] = (double)(p->einsen[j]) / (double) AIS_LENGTH;
+ p->results[p->testNbr].finalValue = q[0] - q[1];
+ }
+ else p->results[p->testNbr].finalValue = NO_TRANSITION;
+ hilf = tid << 8;
+ if (p->results[p->testNbr].finalValue <= -0.02 || p->results[p->testNbr].finalValue >= 0.02)
+ hilf |= 1;
+ p->results[p->testNbr++].testResult = hilf;
+ }
+ else {
+ /**
+ * The spec is very confusing but the reference implementation is correct. The test
+ * operates on observed transions, i.e. the difference between pairs of successive
+ * einsen and nullen (AIS_LENGTH - einsen)
+ */
+ for(j=0; j<p->seq; j+=2) {
+ if (p->testState == TEST_EVAL) {
+ double qn = (double)((int)p->einsen[j] - (int)p->einsen[j+1]);
+ double qd = (double)(p->einsen[j] + p->einsen[j+1]);
+ double pd = AIS_LENGTH * 2.0 - qd;
+ p->results[p->testNbr].finalValue = ((qn * qn) / pd) + ((qn * qn) / qd);
+ }
+ else p->results[p->testNbr].finalValue = NO_TRANSITION;
+ hilf = tid << 8;
+ if (p->results[p->testNbr].finalValue > 15.13)
+ hilf |= 1;
+ p->results[p->testNbr++].testResult = hilf;
+ }
+ }
+ p->testState = TEST_DONE;
+ break;
+ }
+ return i+offs;
+}
+/**
+ * Run the configured test procedures. This function cycles the procedure calls
+ * setup by the configuration using tail recursion to sequence multiple tests.
+ */
+static H_UINT aisTest( /* RETURN: nz if input needed */
+ H_COLLECT * h_ctxt, /* IN-OUT: collector context */
+ H_UINT prod, /* IN: production indicator */
+ H_UINT *buffer, /* IN: test data, H_UINT aligned */
+ H_UINT sz) /* IN: size of data in H_UINT */
+{
+ procShared *tps = TESTS_SHARED(h_ctxt);
+ onlineTests *context = (onlineTests *) h_ctxt->havege_tests;
+ procInst *p;
+ H_UINT offs,state=TEST_DONE, tot=0;
+
+ if (context->result!=0)
+ return 0;
+ if (prod==0)
+ p = tps->totTests + context->totIdx;
+ else p = tps->runTests + context->runIdx;
+
+ switch(p->action) {
+ case A_RUN:
+ if (context->pA->procState==TEST_INIT)
+ context->pA->options = p->options;
+ tot = aisProcedureA(h_ctxt, tps, context->pA,
+ buffer, sz, context->szCarry, prod);
+ state = context->pA->procState;
+ break;
+ case B_RUN:
+ if (context->pB->procState==TEST_INIT)
+ context->pB->options = p->options;
+ tot = aisProcedureB(h_ctxt, tps, context->pB,
+ buffer, sz, context->szCarry, prod);
+ state = context->pB->procState;
+ break;
+ }
+ if (state==TEST_INPUT) {
+ context->szCarry = 0;
+ return 1;
+ }
+ context->szTotal += tot;
+ if (prod==0) {
+ if (context->totIdx>=1) /* check for end of tot */
+ return 0;
+ context->totIdx += 1;
+ p = tps->totTests + context->totIdx;
+ }
+ else {
+ if (0==tps->runTests[0].action) /* check for no cont tests */
+ return 0;
+ else if (0!=tps->runTests[1].action) /* check for only 1 cont test */
+ context->runIdx = context->runIdx? 0 : 1;
+ p = tps->runTests + context->runIdx;
+ }
+ switch(p->action) {
+ case A_RUN:
+ context->pA->procState=TEST_INIT;
+ break;
+ case B_RUN:
+ context->pB->procState=TEST_INIT;
+ break;
+ }
+ offs = context->szCarry/BITS_PER_H_UINT;
+ if (offs<sz) {
+ context->szCarry -= offs * BITS_PER_H_UINT;
+ return aisTest(h_ctxt, prod, buffer+offs, sz - offs);
+ }
+ return 1;
+}
+/**
+ * Procedure A input is obtained by copying bits from p->data to p->aux using
+ * p->bridge as position. This realigns the input to a byte boundary and
+ * resolves segmentation issues. Originally implemented in BITSTREAM macros
+ * performance was bad enough to justify serious tuning. Returns the updated
+ * bit offset.
+ */
+/**
+ * The BITSTREAM macros were totally inadequate for the proecedure A needs. These
+ * helpers are used to implement a high performance copyBit().
+ */
+#define COPY_BYTE() {c = (*src<<bit_diff_ls)|(*(src+1)>>bit_diff_rs);src++;}
+#define COPY_FIRST() if (xfr >= (8 - dst_bits)) {\
+ *dst &= rm[dst_bits];\
+ xfr -= 8 - dst_bits;\
+ }\
+ else {\
+ *dst &= rm[dst_bits] | rm_xor[dst_bits + xfr + 1];\
+ c &= rm[dst_bits + xfr];\
+ xfr = 0;\
+ }\
+ xfr_bytes = xfr>>3;\
+ xfr_bits = xfr&7;\
+ *dst++ |= c;
+/**
+ * Each procedure A repetition moves TEST0_USED + 257*FIPS_USED bits
+ * to the auxilary work space - a little more than 1MB
+ */
+static H_UINT copyBits( /* RETURN: updated bit offset */
+ procA *p, /* IN-OUT: the context */
+ H_UINT offs, /* IN: the input bit offset */
+ H_UINT sz) /* IN: number of bits to copy */
+{
+ H_UINT avail = p->range;
+ H_UINT need = sz - p->bridge;
+ H_UINT xfer, xfr;
+
+ offs %= avail;
+ xfer = (avail-offs)<need? (avail-offs) : need;
+ if ((xfr = xfer)!=0) {
+ static const H_UINT8 rm[] = { 0x55, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff };
+ static const H_UINT8 rm_xor[] = { 0xff, 0x7f, 0x3f, 0x1f, 0x0f, 0x07, 0x03, 0x01, 0x00 };
+ H_UINT8 *src = p->data+(offs>>3);
+ H_UINT8 *dst = p->aux +(p->bridge>>3);
+ H_UINT8 src_bits = offs&7;
+ H_UINT8 dst_bits = p->bridge&7;
+ H_UINT xfr_bytes = xfr>>3;
+ H_UINT xfr_bits = xfr&7;
+ H_UINT8 c;
+
+ if (src_bits==dst_bits) {
+ if (src_bits!=0){
+ c = rm_xor[dst_bits] & *src++;
+ COPY_FIRST();
+ }
+ if (xfr_bytes!=0) {
+ memcpy(dst, src, xfr_bytes);
+ src += xfr_bytes;
+ dst += xfr_bytes;
+ }
+ if (xfr_bits) {
+ *dst &= rm_xor[xfr_bits];
+ *dst |= rm[xfr_bits] & *src++;
+ }
+ }
+ else {
+ H_UINT bit_diff_ls, bit_diff_rs;
+ if (src_bits>dst_bits) {
+ bit_diff_ls = src_bits - dst_bits;
+ bit_diff_rs = 8 - bit_diff_ls;
+ COPY_BYTE();
+ c &= rm_xor[dst_bits];
+ }
+ else {
+ bit_diff_rs = dst_bits - src_bits;
+ bit_diff_ls = 8 - bit_diff_rs;
+ c = *src >> bit_diff_rs & rm_xor[dst_bits];
+ }
+ COPY_FIRST();
+ while (xfr_bytes-- != 0) {
+ COPY_BYTE();
+ *dst++ = c;
+ }
+ if (xfr_bits!=0) {
+ COPY_BYTE();
+ c &= rm[xfr_bits];
+ *dst &= rm_xor[xfr_bits];
+ *dst |= c;
+ }
+ }
+ }
+ p->bridge += xfer;
+ if (p->bridge>=sz) {
+ p->bytesUsed += sz>>3;
+ p->bridge = 0;
+ p->testState = TEST_EVAL;
+ }
+ return offs + xfer;
+}
+/**
+ * Procedure A tests 1 through 4 correspond to the fips140-1 tests. These tests
+ * are conducted on the same input stream, so the calculations can be
+ * done in parallel.
+ */
+#define FIPS_ADD() {\
+ if (runLength < 5)\
+ runs[runLength + (6*current)]++;\
+ else runs[5 + (6*current)]++;\
+ }
+
+static H_UINT fips140( /* RETURN: updated bit offset */
+ procShared *tps, /* IN: shared data */
+ procA *p, /* IN-OUT: the context */
+ H_UINT offs, /* IN: starting offset */
+ H_UINT tid) /* IN: test id */
+{
+ H_UINT poker[16]; /* counters for poker test */
+ H_UINT ones; /* counter for monbit test */
+ H_UINT runs[12]; /* counters for runs tests */
+ H_UINT runLength; /* current run length */
+ H_UINT maxRun; /* largest run encountered */
+ H_UINT current; /* current bit */
+ H_UINT last; /* last bit index */
+ H_UINT c, i, j, k;
+
+ switch(p->testState) {
+ case TEST_INIT:
+ p->testState = TEST_INPUT;
+ p->bridge = 0;
+ case TEST_INPUT:
+ offs = copyBits(p, offs, FIPS_USED);
+ if (p->testState!=TEST_EVAL)
+ break;
+ case TEST_EVAL:
+ maxRun = ones = runLength = 0;
+ memset(poker, 0, 16*sizeof(H_UINT));
+ memset(runs, 0, 12*sizeof(H_UINT));
+ {
+ BITSTREAM_OPEN(p->aux,0);
+ last = BITSTREAM_BIT();
+ for (c=i=0;i<FIPS_USED;i++) {
+ current = BITSTREAM_BIT();
+ if (current==last) {
+ if (++runLength>maxRun)
+ maxRun = runLength;
+ }
+ else {
+ FIPS_ADD();
+ runLength = 0;
+ last = current;
+ }
+ c += c + current;
+ ones += current;
+ if (bitstream_in==1) {
+ poker[c&15] += 1;
+ c = 0;
+ }
+ else if (bitstream_in==16)
+ poker[c] += 1;
+ BITSTREAM_NEXT();
+ }
+ FIPS_ADD();
+ }
+ /* 1 = monobit test */
+ k = (ones >= FIPS_ONES_HIGH || ones <= FIPS_ONES_LOW)? 1 : 0;
+ p->results[tid].testResult = k | (1<<8);
+ p->results[tid++].finalValue = ones;
+ /* 2 = poker test */
+ for(j=k=0;j<16;j++) k += poker[j]*poker[j];
+ j = (k <= FIPS_POKER_LOW || k >= FIPS_POKER_HIGH)? 1 : 0;
+ p->results[tid].testResult = j | (2<<8);
+ p->results[tid++].finalValue = k;
+ /* 3 = runs test */
+ for(i=j=k=0;j<12;j++)
+ if (runs[j] < tps->fips_low[j%6] || runs[j] > tps->fips_high[j%6]) {
+ k |= 1;
+ i = runs[j];
+ }
+ p->results[tid].testResult = k | (3<<8);
+ p->results[tid++].finalValue = i;
+ /* 4 = max run length */
+ k = maxRun>=FIPS_MAX_RUN? 1 : 0;
+ p->results[tid].testResult = k | (4<<8);
+ p->results[tid++].finalValue = maxRun;
+ p->testRun = tid;
+ p->testState = TEST_DONE;
+ }
+ return offs;
+}
+/**
+ * Procedure A disjointness test on 48 bit strings. Rejection probability for ideal
+ * RNG is 2e^-17
+ */
+static H_UINT test0( /* RETURN: updated bit offset */
+ procA *p, /* IN-OUT: the context */
+ H_UINT offs, /* IN: starting bit offset */
+ H_UINT tid) /* IN: test id */
+{
+ H_UINT i, j;
+
+ switch(p->testState) {
+ case TEST_INIT:
+ p->testState = TEST_INPUT;
+ p->bridge = 0;
+ case TEST_INPUT:
+ offs = copyBits(p, offs, TEST0_USED);
+ if (p->testState!=TEST_EVAL)
+ break;
+ case TEST_EVAL:
+ qsort(p->aux, TEST0_LENGTH, 6, test0cmp);
+ for (i=6,j=0;i<TEST0_LENGTH && j==0;i+=6)
+ if (!memcmp(p->aux+i-6, p->aux+i, 6)) {
+ j=1;
+ }
+ p->results[tid].testResult = j;
+ p->results[tid++].finalValue = i;
+ p->testRun = tid;
+ p->testState = TEST_DONE;
+ }
+ return offs;
+}
+/**
+ * Comparison method for the test0 sort
+ */
+static int test0cmp(const void *aa, const void *bb)
+{
+ return memcmp(aa,bb,6);
+}
+/**
+ * Procedure A autocorrelation test. Brutal bit twiddling. Uses same
+ * data as FIPS - no update to bit offset
+ */
+static H_UINT test5( /* RETURN: updated bit offset */
+ procA *p, /* IN-OUT: the context */
+ H_UINT offs, /* IN: starting bit offset */
+ H_UINT tid) /* IN: test id */
+{
+ H_UINT8 *dp = (H_UINT8 *)p->aux;
+ H_UINT j, k, max, tau, Z_tau;
+
+ /**
+ * Because this test is so slow it can be skipped on one or more repetitions
+ */
+ if (0 != (p->options & A_CYCLE)) {
+ j = p->options & A_CYCLE;
+ if (j==0 || ((tid-1)/5 % j)!=0) {
+ p->results[tid++].testResult = 0xff00;
+ p->testRun = tid;
+ p->testState = TEST_DONE;
+ return offs;
+ }
+ }
+ /**
+ * This test always uses the same data as test1 through test4
+ */
+ for (max = k = 0,tau=1;tau<=TEST5_LENGTH;tau++){
+ Z_tau = abs(test5XOR(dp, tau) - 2500);
+ if (Z_tau > max) {
+ max = Z_tau;
+ k = tau - 1;
+ }
+ }
+ dp += TEST5_LENGTH/8;
+ Z_tau = test5XOR(dp, k + 1);
+ j = 5<<8;
+ if (( Z_tau <= 2326) || ( Z_tau >= 2674))
+ j |= 1;
+
+ p->results[tid].testResult = j;
+ p->results[tid++].finalValue = Z_tau;
+ p->testRun = tid;
+ p->testState = TEST_DONE;
+ return offs;
+}
+/**
+ * The test5 reference implementation looks something like this:
+ *
+ * for(i=0,j=shift;i<TEST5_LENGTH;i++,j++)
+ * rv += 1 & (((src[i>>3]>>(i & 7))) ^ ((src[j>>3]>>(j & 7))));
+ * return rv;
+ *
+ * A high performance optimization using multi-byte casts is 3x as fast as the above but blows up
+ * because of alignment issues (leftovers from the test0 implementation)
+ * The optimized single byte optimization is 2x as fast as the above but uses no alignment games
+ */
+static H_UINT test5XOR(H_UINT8 *src, H_UINT shift)
+{
+ H_UINT8 *src1;
+ H_UINT i,rest, rv;
+
+ src1 = src + (shift>>3);
+ shift &= 7;
+ rest = 8 - shift;
+ for(i=rv=0;i<(TEST5_LENGTH>>3);i++) {
+ H_UINT8 lw = *src++;
+ H_UINT8 rw = *src1++;
+ H_UINT8 w;
+
+ for (w = (lw & (0xff>>shift)) ^ (rw>>shift);w!=0;w>>=1)
+ rv += w & 1;
+ for (w = (lw>>rest) ^ (*src1 & (0xff>>rest));w!=0;w>>=1)
+ rv += w & 1;
+ }
+ return rv;
+}
+/**
+ * Procedure B uniform distribution test for parameter set (1,100000,0.25). Very simple, just
+ * count bits. Fixed input size, deadman not needed
+ */
+#define SIDEWAYS_ADD(c,i) {H_UINT in = i;\
+ in -= ((in >> 1) & 0x55555555);\
+ in = (in & 0x33333333) + ((in >> 2) & 0x33333333);\
+ c=(((in + (in >> 4)) & 0x0F0F0F0F) * 0x01010101) >> 24;\
+ }
+
+static H_UINT test6a( /* RETURN: bit offset */
+ procB *p, /* IN-OUT: the context */
+ H_UINT offs, /* IN: starting bit offset */
+ H_UINT tid) /* IN: test id */
+{
+ H_UINT r = p->range - offs;
+ H_UINT i=0,j=p->bridge;
+
+ switch(p->testState) {
+ case TEST_INIT:
+ j = p->counter[0] = 0;
+ p->testState = TEST_INPUT;
+ case TEST_INPUT:
+ {
+ BITSTREAM_OPEN(p->noise,offs);
+ H_UINT c;
+
+ /* align to a byte boundary, then shift gears to gobble bytes */
+ while(i < r && j < AIS_LENGTH && bitstream_in != 0x80){
+ p->counter[0] += BITSTREAM_BIT();BITSTREAM_NEXT();
+ i++;j++;
+ }
+ /* align to a word boundary, then shift gears to gobble words */
+ while((i+8) < r && (j+8) < AIS_LENGTH) {
+ if (0==((void *)bitstream_src - (void *)p->noise) % sizeof(H_UINT))
+ break;
+ SIDEWAYS_ADD(c, *bitstream_src++);
+ p->counter[0] += c;
+ i+=8;j+=8;
+ }
+ /* gobble all words available */
+ while((i+BITS_PER_H_UINT) < r && (j+BITS_PER_H_UINT) < AIS_LENGTH) {
+ SIDEWAYS_ADD(c, *((H_UINT *)bitstream_src));
+ bitstream_src += sizeof(H_UINT);
+ p->counter[0] += c;
+ i+=BITS_PER_H_UINT;j+=BITS_PER_H_UINT;
+ }
+ /* shift back to bits & cleanup the leftovers */
+ for(;i < r && j < AIS_LENGTH;i++,j++) {
+ p->counter[0] += BITSTREAM_BIT();BITSTREAM_NEXT();
+ }
+ p->bitsUsed += i;
+ if (j < AIS_LENGTH) {
+ p->bridge = j;
+ break;
+ }
+ }
+ case TEST_EVAL:
+ p->results[p->testNbr].finalValue = (double)(p->counter[0]) / (double) AIS_LENGTH;
+ r = tid << 8;
+ if (p->results[p->testNbr].finalValue <= 0.25 || p->results[p->testNbr].finalValue >= 0.75)
+ r |= 1;
+ p->results[p->testNbr++].testResult = r;
+ p->testState = TEST_DONE;
+ }
+ return i+offs;
+}
+/**
+ * Context is saved and restored using inactive members of the anchor.
+ */
+#define RESTORE8(a,b,c,d) a=p->bridge;b=p->full;c=p->einsen[0];\
+ d=p->results[p->testNbr].finalValue
+#define SAVE8(a,b,c,d) p->bridge=a;p->full=b;p->einsen[0]=c;\
+ p->results[p->testNbr].finalValue = d
+/**
+ * Procedure B entropy estimator (Coron). Find the distribution of the distance between
+ * bytes and their predecessors. Fixed input size, no deadman needed.
+ */
+static H_UINT test8( /* RETURN: bit offset */
+ procShared *tps, /* IN-OUT: shared data */
+ procB *p, /* IN-OUT: the context */
+ H_UINT offs, /* IN: starting bit offset */
+ H_UINT tid) /* IN: test id */
+{
+ H_UINT hilf, j, k, r, i=0;
+ double TG=0.0;
+
+ switch(p->testState) {
+ case TEST_INIT:
+ memset(p->lastpos, 0, 256*sizeof(H_UINT));
+ SAVE8(0,0,0,0.0);
+ p->testState = TEST_INPUT;
+ case TEST_INPUT:
+ RESTORE8(k,j,hilf,TG);
+ r = p->range - offs;
+ {
+ H_UINT align;
+ /* gobble bits up to a byte boundary */
+ BITSTREAM_OPEN(p->noise,offs);
+ for(;j<8 && i<r && bitstream_in!=0x80;i++,j++) {
+ hilf += hilf+(BITSTREAM_BIT());BITSTREAM_NEXT();
+ }
+ align = (j &= 7);
+ while(i<r) {
+ if (j==0 && (i+8)<r) { /* gobble a byte */
+ hilf = (0xff & (bitstream_src[0]<<(8-align))) | (bitstream_src[1]>>align);
+ bitstream_src++;i+=8;j=8;
+ }
+ for(;j<8 && i<r;i++,j++) { /* gobble loose bits */
+ hilf += hilf+(BITSTREAM_BIT());BITSTREAM_NEXT();
+ }
+ if (j!=8)
+ break;
+ if (k<Q)
+ p->lastpos[hilf] = k++;
+ else {
+ TG += tps->G[k - p->lastpos[hilf]];
+ p->lastpos[hilf] = k++;
+ if (k==(K+Q)) {
+ p->testState = TEST_EVAL;
+ break;
+ }
+ }
+ j = hilf = 0;
+ }
+ if (p->testState==TEST_INPUT) {
+ SAVE8(k,j,hilf,TG);
+ }
+ }
+ p->bitsUsed += i;
+ if (p->testState == TEST_INPUT)
+ break;
+ case TEST_EVAL:
+ tps->lastCoron = p->results[p->testNbr].finalValue = TG/(double)K;
+ r = tid<<8;
+ if (p->results[p->testNbr].finalValue <= 7.967)
+ r |= 1;
+ p->results[p->testNbr++].testResult = r;
+ p->testState = TEST_DONE;
+ }
+ return i+offs;
+}
+#endif