diff options
-rw-r--r-- | drivers/mtd/nand/raw/Kconfig | 9 | ||||
-rw-r--r-- | drivers/mtd/nand/raw/Makefile | 1 | ||||
-rw-r--r-- | drivers/mtd/nand/raw/stm32_fmc2_nand.c | 1808 |
3 files changed, 1818 insertions, 0 deletions
diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig index 1a55d3e3d4c5..0f479bee19d5 100644 --- a/drivers/mtd/nand/raw/Kconfig +++ b/drivers/mtd/nand/raw/Kconfig @@ -541,4 +541,13 @@ config MTD_NAND_TEGRA is supported. Extra OOB bytes when using HW ECC are currently not supported. +config MTD_NAND_STM32_FMC2 + tristate "Support for NAND controller on STM32MP SoCs" + depends on MACH_STM32MP157 || COMPILE_TEST + help + Enables support for NAND Flash chips on SoCs containing the FMC2 + NAND controller. This controller is found on STM32MP SoCs. + The controller supports a maximum 8k page size and supports + a maximum 8-bit correction error per sector of 512 bytes. + endif # MTD_NAND diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile index 57159b349054..325bc9eb3858 100644 --- a/drivers/mtd/nand/raw/Makefile +++ b/drivers/mtd/nand/raw/Makefile @@ -56,6 +56,7 @@ obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/ obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o obj-$(CONFIG_MTD_NAND_MTK) += mtk_ecc.o mtk_nand.o obj-$(CONFIG_MTD_NAND_TEGRA) += tegra_nand.o +obj-$(CONFIG_MTD_NAND_STM32_FMC2) += stm32_fmc2_nand.o nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o nand-objs += nand_onfi.o diff --git a/drivers/mtd/nand/raw/stm32_fmc2_nand.c b/drivers/mtd/nand/raw/stm32_fmc2_nand.c new file mode 100644 index 000000000000..c2fc45f7c00b --- /dev/null +++ b/drivers/mtd/nand/raw/stm32_fmc2_nand.c @@ -0,0 +1,1808 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) STMicroelectronics 2018 + * Author: Christophe Kerello <christophe.kerello@st.com> + */ + +#include <linux/clk.h> +#include <linux/dmaengine.h> +#include <linux/dma-mapping.h> +#include <linux/errno.h> +#include <linux/interrupt.h> +#include <linux/iopoll.h> +#include <linux/module.h> +#include <linux/mtd/rawnand.h> +#include <linux/pinctrl/consumer.h> +#include <linux/platform_device.h> +#include <linux/reset.h> + +/* Bad block marker length */ +#define FMC2_BBM_LEN 2 + +/* ECC step size */ +#define FMC2_ECC_STEP_SIZE 512 + +/* BCHDSRx registers length */ +#define FMC2_BCHDSRS_LEN 20 + +/* HECCR length */ +#define FMC2_HECCR_LEN 4 + +/* Max requests done for a 8k nand page size */ +#define FMC2_MAX_SG 16 + +/* Max chip enable */ +#define FMC2_MAX_CE 2 + +/* Max ECC buffer length */ +#define FMC2_MAX_ECC_BUF_LEN (FMC2_BCHDSRS_LEN * FMC2_MAX_SG) + +/* Timings */ +#define FMC2_THIZ 1 +#define FMC2_TIO 8000 +#define FMC2_TSYNC 3000 +#define FMC2_PCR_TIMING_MASK 0xf +#define FMC2_PMEM_PATT_TIMING_MASK 0xff + +/* FMC2 Controller Registers */ +#define FMC2_BCR1 0x0 +#define FMC2_PCR 0x80 +#define FMC2_SR 0x84 +#define FMC2_PMEM 0x88 +#define FMC2_PATT 0x8c +#define FMC2_HECCR 0x94 +#define FMC2_CSQCR 0x200 +#define FMC2_CSQCFGR1 0x204 +#define FMC2_CSQCFGR2 0x208 +#define FMC2_CSQCFGR3 0x20c +#define FMC2_CSQAR1 0x210 +#define FMC2_CSQAR2 0x214 +#define FMC2_CSQIER 0x220 +#define FMC2_CSQISR 0x224 +#define FMC2_CSQICR 0x228 +#define FMC2_CSQEMSR 0x230 +#define FMC2_BCHIER 0x250 +#define FMC2_BCHISR 0x254 +#define FMC2_BCHICR 0x258 +#define FMC2_BCHPBR1 0x260 +#define FMC2_BCHPBR2 0x264 +#define FMC2_BCHPBR3 0x268 +#define FMC2_BCHPBR4 0x26c +#define FMC2_BCHDSR0 0x27c +#define FMC2_BCHDSR1 0x280 +#define FMC2_BCHDSR2 0x284 +#define FMC2_BCHDSR3 0x288 +#define FMC2_BCHDSR4 0x28c + +/* Register: FMC2_BCR1 */ +#define FMC2_BCR1_FMC2EN BIT(31) + +/* Register: FMC2_PCR */ +#define FMC2_PCR_PWAITEN BIT(1) +#define FMC2_PCR_PBKEN BIT(2) +#define FMC2_PCR_PWID_MASK GENMASK(5, 4) +#define FMC2_PCR_PWID(x) (((x) & 0x3) << 4) +#define FMC2_PCR_PWID_BUSWIDTH_8 0 +#define FMC2_PCR_PWID_BUSWIDTH_16 1 +#define FMC2_PCR_ECCEN BIT(6) +#define FMC2_PCR_ECCALG BIT(8) +#define FMC2_PCR_TCLR_MASK GENMASK(12, 9) +#define FMC2_PCR_TCLR(x) (((x) & 0xf) << 9) +#define FMC2_PCR_TCLR_DEFAULT 0xf +#define FMC2_PCR_TAR_MASK GENMASK(16, 13) +#define FMC2_PCR_TAR(x) (((x) & 0xf) << 13) +#define FMC2_PCR_TAR_DEFAULT 0xf +#define FMC2_PCR_ECCSS_MASK GENMASK(19, 17) +#define FMC2_PCR_ECCSS(x) (((x) & 0x7) << 17) +#define FMC2_PCR_ECCSS_512 1 +#define FMC2_PCR_ECCSS_2048 3 +#define FMC2_PCR_BCHECC BIT(24) +#define FMC2_PCR_WEN BIT(25) + +/* Register: FMC2_SR */ +#define FMC2_SR_NWRF BIT(6) + +/* Register: FMC2_PMEM */ +#define FMC2_PMEM_MEMSET(x) (((x) & 0xff) << 0) +#define FMC2_PMEM_MEMWAIT(x) (((x) & 0xff) << 8) +#define FMC2_PMEM_MEMHOLD(x) (((x) & 0xff) << 16) +#define FMC2_PMEM_MEMHIZ(x) (((x) & 0xff) << 24) +#define FMC2_PMEM_DEFAULT 0x0a0a0a0a + +/* Register: FMC2_PATT */ +#define FMC2_PATT_ATTSET(x) (((x) & 0xff) << 0) +#define FMC2_PATT_ATTWAIT(x) (((x) & 0xff) << 8) +#define FMC2_PATT_ATTHOLD(x) (((x) & 0xff) << 16) +#define FMC2_PATT_ATTHIZ(x) (((x) & 0xff) << 24) +#define FMC2_PATT_DEFAULT 0x0a0a0a0a + +/* Register: FMC2_CSQCR */ +#define FMC2_CSQCR_CSQSTART BIT(0) + +/* Register: FMC2_CSQCFGR1 */ +#define FMC2_CSQCFGR1_CMD2EN BIT(1) +#define FMC2_CSQCFGR1_DMADEN BIT(2) +#define FMC2_CSQCFGR1_ACYNBR(x) (((x) & 0x7) << 4) +#define FMC2_CSQCFGR1_CMD1(x) (((x) & 0xff) << 8) +#define FMC2_CSQCFGR1_CMD2(x) (((x) & 0xff) << 16) +#define FMC2_CSQCFGR1_CMD1T BIT(24) +#define FMC2_CSQCFGR1_CMD2T BIT(25) + +/* Register: FMC2_CSQCFGR2 */ +#define FMC2_CSQCFGR2_SQSDTEN BIT(0) +#define FMC2_CSQCFGR2_RCMD2EN BIT(1) +#define FMC2_CSQCFGR2_DMASEN BIT(2) +#define FMC2_CSQCFGR2_RCMD1(x) (((x) & 0xff) << 8) +#define FMC2_CSQCFGR2_RCMD2(x) (((x) & 0xff) << 16) +#define FMC2_CSQCFGR2_RCMD1T BIT(24) +#define FMC2_CSQCFGR2_RCMD2T BIT(25) + +/* Register: FMC2_CSQCFGR3 */ +#define FMC2_CSQCFGR3_SNBR(x) (((x) & 0x1f) << 8) +#define FMC2_CSQCFGR3_AC1T BIT(16) +#define FMC2_CSQCFGR3_AC2T BIT(17) +#define FMC2_CSQCFGR3_AC3T BIT(18) +#define FMC2_CSQCFGR3_AC4T BIT(19) +#define FMC2_CSQCFGR3_AC5T BIT(20) +#define FMC2_CSQCFGR3_SDT BIT(21) +#define FMC2_CSQCFGR3_RAC1T BIT(22) +#define FMC2_CSQCFGR3_RAC2T BIT(23) + +/* Register: FMC2_CSQCAR1 */ +#define FMC2_CSQCAR1_ADDC1(x) (((x) & 0xff) << 0) +#define FMC2_CSQCAR1_ADDC2(x) (((x) & 0xff) << 8) +#define FMC2_CSQCAR1_ADDC3(x) (((x) & 0xff) << 16) +#define FMC2_CSQCAR1_ADDC4(x) (((x) & 0xff) << 24) + +/* Register: FMC2_CSQCAR2 */ +#define FMC2_CSQCAR2_ADDC5(x) (((x) & 0xff) << 0) +#define FMC2_CSQCAR2_NANDCEN(x) (((x) & 0x3) << 10) +#define FMC2_CSQCAR2_SAO(x) (((x) & 0xffff) << 16) + +/* Register: FMC2_CSQIER */ +#define FMC2_CSQIER_TCIE BIT(0) + +/* Register: FMC2_CSQICR */ +#define FMC2_CSQICR_CLEAR_IRQ GENMASK(4, 0) + +/* Register: FMC2_CSQEMSR */ +#define FMC2_CSQEMSR_SEM GENMASK(15, 0) + +/* Register: FMC2_BCHIER */ +#define FMC2_BCHIER_DERIE BIT(1) +#define FMC2_BCHIER_EPBRIE BIT(4) + +/* Register: FMC2_BCHICR */ +#define FMC2_BCHICR_CLEAR_IRQ GENMASK(4, 0) + +/* Register: FMC2_BCHDSR0 */ +#define FMC2_BCHDSR0_DUE BIT(0) +#define FMC2_BCHDSR0_DEF BIT(1) +#define FMC2_BCHDSR0_DEN_MASK GENMASK(7, 4) +#define FMC2_BCHDSR0_DEN_SHIFT 4 + +/* Register: FMC2_BCHDSR1 */ +#define FMC2_BCHDSR1_EBP1_MASK GENMASK(12, 0) +#define FMC2_BCHDSR1_EBP2_MASK GENMASK(28, 16) +#define FMC2_BCHDSR1_EBP2_SHIFT 16 + +/* Register: FMC2_BCHDSR2 */ +#define FMC2_BCHDSR2_EBP3_MASK GENMASK(12, 0) +#define FMC2_BCHDSR2_EBP4_MASK GENMASK(28, 16) +#define FMC2_BCHDSR2_EBP4_SHIFT 16 + +/* Register: FMC2_BCHDSR3 */ +#define FMC2_BCHDSR3_EBP5_MASK GENMASK(12, 0) +#define FMC2_BCHDSR3_EBP6_MASK GENMASK(28, 16) +#define FMC2_BCHDSR3_EBP6_SHIFT 16 + +/* Register: FMC2_BCHDSR4 */ +#define FMC2_BCHDSR4_EBP7_MASK GENMASK(12, 0) +#define FMC2_BCHDSR4_EBP8_MASK GENMASK(28, 16) +#define FMC2_BCHDSR4_EBP8_SHIFT 16 + +enum stm32_fmc2_ecc { + FMC2_ECC_HAM = 1, + FMC2_ECC_BCH4 = 4, + FMC2_ECC_BCH8 = 8 +}; + +struct stm32_fmc2_timings { + u8 tclr; + u8 tar; + u8 thiz; + u8 twait; + u8 thold_mem; + u8 tset_mem; + u8 thold_att; + u8 tset_att; +}; + +struct stm32_fmc2_nand { + struct nand_chip chip; + struct stm32_fmc2_timings timings; + int ncs; + int cs_used[FMC2_MAX_CE]; +}; + +static inline struct stm32_fmc2_nand *to_fmc2_nand(struct nand_chip *chip) +{ + return container_of(chip, struct stm32_fmc2_nand, chip); +} + +struct stm32_fmc2_nfc { + struct nand_controller base; + struct stm32_fmc2_nand nand; + struct device *dev; + void __iomem *io_base; + void __iomem *data_base[FMC2_MAX_CE]; + void __iomem *cmd_base[FMC2_MAX_CE]; + void __iomem *addr_base[FMC2_MAX_CE]; + phys_addr_t io_phys_addr; + phys_addr_t data_phys_addr[FMC2_MAX_CE]; + struct clk *clk; + + struct dma_chan *dma_tx_ch; + struct dma_chan *dma_rx_ch; + struct dma_chan *dma_ecc_ch; + struct sg_table dma_data_sg; + struct sg_table dma_ecc_sg; + u8 *ecc_buf; + int dma_ecc_len; + + struct completion complete; + struct completion dma_data_complete; + struct completion dma_ecc_complete; + + u8 cs_assigned; + int cs_sel; +}; + +static inline struct stm32_fmc2_nfc *to_stm32_nfc(struct nand_controller *base) +{ + return container_of(base, struct stm32_fmc2_nfc, base); +} + +/* Timings configuration */ +static void stm32_fmc2_timings_init(struct nand_chip *chip) +{ + struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); + struct stm32_fmc2_nand *nand = to_fmc2_nand(chip); + struct stm32_fmc2_timings *timings = &nand->timings; + u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR); + u32 pmem, patt; + + /* Set tclr/tar timings */ + pcr &= ~FMC2_PCR_TCLR_MASK; + pcr |= FMC2_PCR_TCLR(timings->tclr); + pcr &= ~FMC2_PCR_TAR_MASK; + pcr |= FMC2_PCR_TAR(timings->tar); + + /* Set tset/twait/thold/thiz timings in common bank */ + pmem = FMC2_PMEM_MEMSET(timings->tset_mem); + pmem |= FMC2_PMEM_MEMWAIT(timings->twait); + pmem |= FMC2_PMEM_MEMHOLD(timings->thold_mem); + pmem |= FMC2_PMEM_MEMHIZ(timings->thiz); + + /* Set tset/twait/thold/thiz timings in attribut bank */ + patt = FMC2_PATT_ATTSET(timings->tset_att); + patt |= FMC2_PATT_ATTWAIT(timings->twait); + patt |= FMC2_PATT_ATTHOLD(timings->thold_att); + patt |= FMC2_PATT_ATTHIZ(timings->thiz); + + writel_relaxed(pcr, fmc2->io_base + FMC2_PCR); + writel_relaxed(pmem, fmc2->io_base + FMC2_PMEM); + writel_relaxed(patt, fmc2->io_base + FMC2_PATT); +} + +/* Controller configuration */ +static void stm32_fmc2_setup(struct nand_chip *chip) +{ + struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); + u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR); + + /* Configure ECC algorithm (default configuration is Hamming) */ + pcr &= ~FMC2_PCR_ECCALG; + pcr &= ~FMC2_PCR_BCHECC; + if (chip->ecc.strength == FMC2_ECC_BCH8) { + pcr |= FMC2_PCR_ECCALG; + pcr |= FMC2_PCR_BCHECC; + } else if (chip->ecc.strength == FMC2_ECC_BCH4) { + pcr |= FMC2_PCR_ECCALG; + } + + /* Set buswidth */ + pcr &= ~FMC2_PCR_PWID_MASK; + if (chip->options & NAND_BUSWIDTH_16) + pcr |= FMC2_PCR_PWID(FMC2_PCR_PWID_BUSWIDTH_16); + + /* Set ECC sector size */ + pcr &= ~FMC2_PCR_ECCSS_MASK; + pcr |= FMC2_PCR_ECCSS(FMC2_PCR_ECCSS_512); + + writel_relaxed(pcr, fmc2->io_base + FMC2_PCR); +} + +/* Select target */ +static int stm32_fmc2_select_chip(struct nand_chip *chip, int chipnr) +{ + struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); + struct stm32_fmc2_nand *nand = to_fmc2_nand(chip); + struct dma_slave_config dma_cfg; + int ret; + + if (nand->cs_used[chipnr] == fmc2->cs_sel) + return 0; + + fmc2->cs_sel = nand->cs_used[chipnr]; + + /* FMC2 setup routine */ + stm32_fmc2_setup(chip); + + /* Apply timings */ + stm32_fmc2_timings_init(chip); + + if (fmc2->dma_tx_ch && fmc2->dma_rx_ch) { + memset(&dma_cfg, 0, sizeof(dma_cfg)); + dma_cfg.src_addr = fmc2->data_phys_addr[fmc2->cs_sel]; + dma_cfg.dst_addr = fmc2->data_phys_addr[fmc2->cs_sel]; + dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + dma_cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + dma_cfg.src_maxburst = 32; + dma_cfg.dst_maxburst = 32; + + ret = dmaengine_slave_config(fmc2->dma_tx_ch, &dma_cfg); + if (ret) { + dev_err(fmc2->dev, "tx DMA engine slave config failed\n"); + return ret; + } + + ret = dmaengine_slave_config(fmc2->dma_rx_ch, &dma_cfg); + if (ret) { + dev_err(fmc2->dev, "rx DMA engine slave config failed\n"); + return ret; + } + } + + if (fmc2->dma_ecc_ch) { + /* + * Hamming: we read HECCR register + * BCH4/BCH8: we read BCHDSRSx registers + */ + memset(&dma_cfg, 0, sizeof(dma_cfg)); + dma_cfg.src_addr = fmc2->io_phys_addr; + dma_cfg.src_addr += chip->ecc.strength == FMC2_ECC_HAM ? + FMC2_HECCR : FMC2_BCHDSR0; + dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + + ret = dmaengine_slave_config(fmc2->dma_ecc_ch, &dma_cfg); + if (ret) { + dev_err(fmc2->dev, "ECC DMA engine slave config failed\n"); + return ret; + } + + /* Calculate ECC length needed for one sector */ + fmc2->dma_ecc_len = chip->ecc.strength == FMC2_ECC_HAM ? + FMC2_HECCR_LEN : FMC2_BCHDSRS_LEN; + } + + return 0; +} + +/* Set bus width to 16-bit or 8-bit */ +static void stm32_fmc2_set_buswidth_16(struct stm32_fmc2_nfc *fmc2, bool set) +{ + u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR); + + pcr &= ~FMC2_PCR_PWID_MASK; + if (set) + pcr |= FMC2_PCR_PWID(FMC2_PCR_PWID_BUSWIDTH_16); + writel_relaxed(pcr, fmc2->io_base + FMC2_PCR); +} + +/* Enable irq sources in case of the sequencer is used */ +static inline void stm32_fmc2_enable_seq_irq(struct stm32_fmc2_nfc *fmc2) +{ + u32 csqier = readl_relaxed(fmc2->io_base + FMC2_CSQIER); + + csqier |= FMC2_CSQIER_TCIE; + + writel_relaxed(csqier, fmc2->io_base + FMC2_CSQIER); +} + +/* Disable irq sources in case of the sequencer is used */ +static inline void stm32_fmc2_disable_seq_irq(struct stm32_fmc2_nfc *fmc2) +{ + u32 csqier = readl_relaxed(fmc2->io_base + FMC2_CSQIER); + + csqier &= ~FMC2_CSQIER_TCIE; + + writel_relaxed(csqier, fmc2->io_base + FMC2_CSQIER); +} + +/* Clear irq sources in case of the sequencer is used */ +static inline void stm32_fmc2_clear_seq_irq(struct stm32_fmc2_nfc *fmc2) +{ + writel_relaxed(FMC2_CSQICR_CLEAR_IRQ, fmc2->io_base + FMC2_CSQICR); +} + +/* + * ECC Hamming calculation + * ECC is 3 bytes for 512 bytes of data (supports error correction up to + * max of 1-bit) + */ +static inline void stm32_fmc2_ham_set_ecc(const u32 ecc_sta, u8 *ecc) +{ + ecc[0] = ecc_sta; + ecc[1] = ecc_sta >> 8; + ecc[2] = ecc_sta >> 16; +} + +static int stm32_fmc2_ham_correct(struct nand_chip *chip, u8 *dat, + u8 *read_ecc, u8 *calc_ecc) +{ + u8 bit_position = 0, b0, b1, b2; + u32 byte_addr = 0, b; + u32 i, shifting = 1; + + /* Indicate which bit and byte is faulty (if any) */ + b0 = read_ecc[0] ^ calc_ecc[0]; + b1 = read_ecc[1] ^ calc_ecc[1]; + b2 = read_ecc[2] ^ calc_ecc[2]; + b = b0 | (b1 << 8) | (b2 << 16); + + /* No errors */ + if (likely(!b)) + return 0; + + /* Calculate bit position */ + for (i = 0; i < 3; i++) { + switch (b % 4) { + case 2: + bit_position += shifting; + case 1: + break; + default: + return -EBADMSG; + } + shifting <<= 1; + b >>= 2; + } + + /* Calculate byte position */ + shifting = 1; + for (i = 0; i < 9; i++) { + switch (b % 4) { + case 2: + byte_addr += shifting; + case 1: + break; + default: + return -EBADMSG; + } + shifting <<= 1; + b >>= 2; + } + + /* Flip the bit */ + dat[byte_addr] ^= (1 << bit_position); + + return 1; +} + +/* BCH algorithm correction */ +static int stm32_fmc2_bch_decode(int eccsize, u8 *dat, u32 *ecc_sta) +{ + u32 bchdsr0 = ecc_sta[0]; + u32 bchdsr1 = ecc_sta[1]; + u32 bchdsr2 = ecc_sta[2]; + u32 bchdsr3 = ecc_sta[3]; + u32 bchdsr4 = ecc_sta[4]; + u16 pos[8]; + int i, den; + unsigned int nb_errs = 0; + + /* No errors found */ + if (likely(!(bchdsr0 & FMC2_BCHDSR0_DEF))) + return 0; + + /* Too many errors detected */ + if (unlikely(bchdsr0 & FMC2_BCHDSR0_DUE)) + return -EBADMSG; + + pos[0] = bchdsr1 & FMC2_BCHDSR1_EBP1_MASK; + pos[1] = (bchdsr1 & FMC2_BCHDSR1_EBP2_MASK) >> FMC2_BCHDSR1_EBP2_SHIFT; + pos[2] = bchdsr2 & FMC2_BCHDSR2_EBP3_MASK; + pos[3] = (bchdsr2 & FMC2_BCHDSR2_EBP4_MASK) >> FMC2_BCHDSR2_EBP4_SHIFT; + pos[4] = bchdsr3 & FMC2_BCHDSR3_EBP5_MASK; + pos[5] = (bchdsr3 & FMC2_BCHDSR3_EBP6_MASK) >> FMC2_BCHDSR3_EBP6_SHIFT; + pos[6] = bchdsr4 & FMC2_BCHDSR4_EBP7_MASK; + pos[7] = (bchdsr4 & FMC2_BCHDSR4_EBP8_MASK) >> FMC2_BCHDSR4_EBP8_SHIFT; + + den = (bchdsr0 & FMC2_BCHDSR0_DEN_MASK) >> FMC2_BCHDSR0_DEN_SHIFT; + for (i = 0; i < den; i++) { + if (pos[i] < eccsize * 8) { + change_bit(pos[i], (unsigned long *)dat); + nb_errs++; + } + } + + return nb_errs; +} + +/* Sequencer read/write configuration */ +static void stm32_fmc2_rw_page_init(struct nand_chip *chip, int page, + int raw, bool write_data) +{ + struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + u32 csqcfgr1, csqcfgr2, csqcfgr3; + u32 csqar1, csqar2; + u32 ecc_offset = mtd->writesize + FMC2_BBM_LEN; + u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR); + + if (write_data) + pcr |= FMC2_PCR_WEN; + else + pcr &= ~FMC2_PCR_WEN; + writel_relaxed(pcr, fmc2->io_base + FMC2_PCR); + + /* + * - Set Program Page/Page Read command + * - Enable DMA request data + * - Set timings + */ + csqcfgr1 = FMC2_CSQCFGR1_DMADEN | FMC2_CSQCFGR1_CMD1T; + if (write_data) + csqcfgr1 |= FMC2_CSQCFGR1_CMD1(NAND_CMD_SEQIN); + else + csqcfgr1 |= FMC2_CSQCFGR1_CMD1(NAND_CMD_READ0) | + FMC2_CSQCFGR1_CMD2EN | + FMC2_CSQCFGR1_CMD2(NAND_CMD_READSTART) | + FMC2_CSQCFGR1_CMD2T; + + /* + * - Set Random Data Input/Random Data Read command + * - Enable the sequencer to access the Spare data area + * - Enable DMA request status decoding for read + * - Set timings + */ + if (write_data) + csqcfgr2 = FMC2_CSQCFGR2_RCMD1(NAND_CMD_RNDIN); + else + csqcfgr2 = FMC2_CSQCFGR2_RCMD1(NAND_CMD_RNDOUT) | + FMC2_CSQCFGR2_RCMD2EN | + FMC2_CSQCFGR2_RCMD2(NAND_CMD_RNDOUTSTART) | + FMC2_CSQCFGR2_RCMD1T | + FMC2_CSQCFGR2_RCMD2T; + if (!raw) { + csqcfgr2 |= write_data ? 0 : FMC2_CSQCFGR2_DMASEN; + csqcfgr2 |= FMC2_CSQCFGR2_SQSDTEN; + } + + /* + * - Set the number of sectors to be written + * - Set timings + */ + csqcfgr3 = FMC2_CSQCFGR3_SNBR(chip->ecc.steps - 1); + if (write_data) { + csqcfgr3 |= FMC2_CSQCFGR3_RAC2T; + if (chip->options & NAND_ROW_ADDR_3) + csqcfgr3 |= FMC2_CSQCFGR3_AC5T; + else + csqcfgr3 |= FMC2_CSQCFGR3_AC4T; + } + + /* + * Set the fourth first address cycles + * Byte 1 and byte 2 => column, we start at 0x0 + * Byte 3 and byte 4 => page + */ + csqar1 = FMC2_CSQCAR1_ADDC3(page); + csqar1 |= FMC2_CSQCAR1_ADDC4(page >> 8); + + /* + * - Set chip enable number + * - Set ECC byte offset in the spare area + * - Calculate the number of address cycles to be issued + * - Set byte 5 of address cycle if needed + */ + csqar2 = FMC2_CSQCAR2_NANDCEN(fmc2->cs_sel); + if (chip->options & NAND_BUSWIDTH_16) + csqar2 |= FMC2_CSQCAR2_SAO(ecc_offset >> 1); + else + csqar2 |= FMC2_CSQCAR2_SAO(ecc_offset); + if (chip->options & NAND_ROW_ADDR_3) { + csqcfgr1 |= FMC2_CSQCFGR1_ACYNBR(5); + csqar2 |= FMC2_CSQCAR2_ADDC5(page >> 16); + } else { + csqcfgr1 |= FMC2_CSQCFGR1_ACYNBR(4); + } + + writel_relaxed(csqcfgr1, fmc2->io_base + FMC2_CSQCFGR1); + writel_relaxed(csqcfgr2, fmc2->io_base + FMC2_CSQCFGR2); + writel_relaxed(csqcfgr3, fmc2->io_base + FMC2_CSQCFGR3); + writel_relaxed(csqar1, fmc2->io_base + FMC2_CSQAR1); + writel_relaxed(csqar2, fmc2->io_base + FMC2_CSQAR2); +} + +static void stm32_fmc2_dma_callback(void *arg) +{ + complete((struct completion *)arg); +} + +/* Read/write data from/to a page */ +static int stm32_fmc2_xfer(struct nand_chip *chip, const u8 *buf, + int raw, bool write_data) +{ + struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); + struct dma_async_tx_descriptor *desc_data, *desc_ecc; + struct scatterlist *sg; + struct dma_chan *dma_ch = fmc2->dma_rx_ch; + enum dma_data_direction dma_data_dir = DMA_FROM_DEVICE; + enum dma_transfer_direction dma_transfer_dir = DMA_DEV_TO_MEM; + u32 csqcr = readl_relaxed(fmc2->io_base + FMC2_CSQCR); + int eccsteps = chip->ecc.steps; + int eccsize = chip->ecc.size; + const u8 *p = buf; + int s, ret; + + /* Configure DMA data */ + if (write_data) { + dma_data_dir = DMA_TO_DEVICE; + dma_transfer_dir = DMA_MEM_TO_DEV; + dma_ch = fmc2->dma_tx_ch; + } + + for_each_sg(fmc2->dma_data_sg.sgl, sg, eccsteps, s) { + sg_set_buf(sg, p, eccsize); + p += eccsize; + } + + ret = dma_map_sg(fmc2->dev, fmc2->dma_data_sg.sgl, + eccsteps, dma_data_dir); + if (ret < 0) + return ret; + + desc_data = dmaengine_prep_slave_sg(dma_ch, fmc2->dma_data_sg.sgl, + eccsteps, dma_transfer_dir, + DMA_PREP_INTERRUPT); + if (!desc_data) { + ret = -ENOMEM; + goto err_unmap_data; + } + + reinit_completion(&fmc2->dma_data_complete); + reinit_completion(&fmc2->complete); + desc_data->callback = stm32_fmc2_dma_callback; + desc_data->callback_param = &fmc2->dma_data_complete; + ret = dma_submit_error(dmaengine_submit(desc_data)); + if (ret) + goto err_unmap_data; + + dma_async_issue_pending(dma_ch); + + if (!write_data && !raw) { + /* Configure DMA ECC status */ + p = fmc2->ecc_buf; + for_each_sg(fmc2->dma_ecc_sg.sgl, sg, eccsteps, s) { + sg_set_buf(sg, p, fmc2->dma_ecc_len); + p += fmc2->dma_ecc_len; + } + + ret = dma_map_sg(fmc2->dev, fmc2->dma_ecc_sg.sgl, + eccsteps, dma_data_dir); + if (ret < 0) + goto err_unmap_data; + + desc_ecc = dmaengine_prep_slave_sg(fmc2->dma_ecc_ch, + fmc2->dma_ecc_sg.sgl, + eccsteps, dma_transfer_dir, + DMA_PREP_INTERRUPT); + if (!desc_ecc) { + ret = -ENOMEM; + goto err_unmap_ecc; + } + + reinit_completion(&fmc2->dma_ecc_complete); + desc_ecc->callback = stm32_fmc2_dma_callback; + desc_ecc->callback_param = &fmc2->dma_ecc_complete; + ret = dma_submit_error(dmaengine_submit(desc_ecc)); + if (ret) + goto err_unmap_ecc; + + dma_async_issue_pending(fmc2->dma_ecc_ch); + } + + stm32_fmc2_clear_seq_irq(fmc2); + stm32_fmc2_enable_seq_irq(fmc2); + + /* Start the transfer */ + csqcr |= FMC2_CSQCR_CSQSTART; + writel_relaxed(csqcr, fmc2->io_base + FMC2_CSQCR); + + /* Wait end of sequencer transfer */ + if (!wait_for_completion_timeout(&fmc2->complete, + msecs_to_jiffies(1000))) { + dev_err(fmc2->dev, "seq timeout\n"); + stm32_fmc2_disable_seq_irq(fmc2); + dmaengine_terminate_all(dma_ch); + if (!write_data && !raw) + dmaengine_terminate_all(fmc2->dma_ecc_ch); + ret = -ETIMEDOUT; + goto err_unmap_ecc; + } + + /* Wait DMA data transfer completion */ + if (!wait_for_completion_timeout(&fmc2->dma_data_complete, + msecs_to_jiffies(100))) { + dev_err(fmc2->dev, "data DMA timeout\n"); + dmaengine_terminate_all(dma_ch); + ret = -ETIMEDOUT; + } + + /* Wait DMA ECC transfer completion */ + if (!write_data && !raw) { + if (!wait_for_completion_timeout(&fmc2->dma_ecc_complete, + msecs_to_jiffies(100))) { + dev_err(fmc2->dev, "ECC DMA timeout\n"); + dmaengine_terminate_all(fmc2->dma_ecc_ch); + ret = -ETIMEDOUT; + } + } + +err_unmap_ecc: + if (!write_data && !raw) + dma_unmap_sg(fmc2->dev, fmc2->dma_ecc_sg.sgl, + eccsteps, dma_data_dir); + +err_unmap_data: + dma_unmap_sg(fmc2->dev, fmc2->dma_data_sg.sgl, eccsteps, dma_data_dir); + + return ret; +} + +static int stm32_fmc2_sequencer_write(struct nand_chip *chip, + const u8 *buf, int oob_required, + int page, int raw) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int ret; + + /* Configure the sequencer */ + stm32_fmc2_rw_page_init(chip, page, raw, true); + + /* Write the page */ + ret = stm32_fmc2_xfer(chip, buf, raw, true); + if (ret) + return ret; + + /* Write oob */ + if (oob_required) { + ret = nand_change_write_column_op(chip, mtd->writesize, + chip->oob_poi, mtd->oobsize, + false); + if (ret) + return ret; + } + + return nand_prog_page_end_op(chip); +} + +static int stm32_fmc2_sequencer_write_page(struct nand_chip *chip, + const u8 *buf, + int oob_required, + int page) +{ + int ret; + + /* Select the target */ + ret = stm32_fmc2_select_chip(chip, chip->cur_cs); + if (ret) + return ret; + + return stm32_fmc2_sequencer_write(chip, buf, oob_required, page, false); +} + +static int stm32_fmc2_sequencer_write_page_raw(struct nand_chip *chip, + const u8 *buf, + int oob_required, + int page) +{ + int ret; + + /* Select the target */ + ret = stm32_fmc2_select_chip(chip, chip->cur_cs); + if (ret) + return ret; + + return stm32_fmc2_sequencer_write(chip, buf, oob_required, page, true); +} + +/* Get a status indicating which sectors have errors */ +static inline u16 stm32_fmc2_get_mapping_status(struct stm32_fmc2_nfc *fmc2) +{ + u32 csqemsr = readl_relaxed(fmc2->io_base + FMC2_CSQEMSR); + + return csqemsr & FMC2_CSQEMSR_SEM; +} + +static int stm32_fmc2_sequencer_correct(struct nand_chip *chip, u8 *dat, + u8 *read_ecc, u8 *calc_ecc) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); + int eccbytes = chip->ecc.bytes; + int eccsteps = chip->ecc.steps; + int eccstrength = chip->ecc.strength; + int i, s, eccsize = chip->ecc.size; + u32 *ecc_sta = (u32 *)fmc2->ecc_buf; + u16 sta_map = stm32_fmc2_get_mapping_status(fmc2); + unsigned int max_bitflips = 0; + + for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, dat += eccsize) { + int stat = 0; + + if (eccstrength == FMC2_ECC_HAM) { + /* Ecc_sta = FMC2_HECCR */ + if (sta_map & BIT(s)) { + stm32_fmc2_ham_set_ecc(*ecc_sta, &calc_ecc[i]); + stat = stm32_fmc2_ham_correct(chip, dat, + &read_ecc[i], + &calc_ecc[i]); + } + ecc_sta++; + } else { + /* + * Ecc_sta[0] = FMC2_BCHDSR0 + * Ecc_sta[1] = FMC2_BCHDSR1 + * Ecc_sta[2] = FMC2_BCHDSR2 + * Ecc_sta[3] = FMC2_BCHDSR3 + * Ecc_sta[4] = FMC2_BCHDSR4 + */ + if (sta_map & BIT(s)) + stat = stm32_fmc2_bch_decode(eccsize, dat, + ecc_sta); + ecc_sta += 5; + } + + if (stat == -EBADMSG) + /* Check for empty pages with bitflips */ + stat = nand_check_erased_ecc_chunk(dat, eccsize, + &read_ecc[i], + eccbytes, + NULL, 0, + eccstrength); + + if (stat < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += stat; + max_bitflips = max_t(unsigned int, max_bitflips, stat); + } + } + + return max_bitflips; +} + +static int stm32_fmc2_sequencer_read_page(struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); + u8 *ecc_calc = chip->ecc.calc_buf; + u8 *ecc_code = chip->ecc.code_buf; + u16 sta_map; + int ret; + + /* Select the target */ + ret = stm32_fmc2_select_chip(chip, chip->cur_cs); + if (ret) + return ret; + + /* Configure the sequencer */ + stm32_fmc2_rw_page_init(chip, page, 0, false); + + /* Read the page */ + ret = stm32_fmc2_xfer(chip, buf, 0, false); + if (ret) + return ret; + + sta_map = stm32_fmc2_get_mapping_status(fmc2); + + /* Check if errors happen */ + if (likely(!sta_map)) { + if (oob_required) + return nand_change_read_column_op(chip, mtd->writesize, + chip->oob_poi, + mtd->oobsize, false); + + return 0; + } + + /* Read oob */ + ret = nand_change_read_column_op(chip, mtd->writesize, + chip->oob_poi, mtd->oobsize, false); + if (ret) + return ret; + + ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, + chip->ecc.total); + if (ret) + return ret; + + /* Correct data */ + return chip->ecc.correct(chip, buf, ecc_code, ecc_calc); +} + +static int stm32_fmc2_sequencer_read_page_raw(struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int ret; + + /* Select the target */ + ret = stm32_fmc2_select_chip(chip, chip->cur_cs); + if (ret) + return ret; + + /* Configure the sequencer */ + stm32_fmc2_rw_page_init(chip, page, 1, false); + + /* Read the page */ + ret = stm32_fmc2_xfer(chip, buf, 1, false); + if (ret) + return ret; + + /* Read oob */ + if (oob_required) + return nand_change_read_column_op(chip, mtd->writesize, + chip->oob_poi, mtd->oobsize, + false); + + return 0; +} + +static irqreturn_t stm32_fmc2_irq(int irq, void *dev_id) +{ + struct stm32_fmc2_nfc *fmc2 = (struct stm32_fmc2_nfc *)dev_id; + + stm32_fmc2_disable_seq_irq(fmc2); + + complete(&fmc2->complete); + + return IRQ_HANDLED; +} + +static void stm32_fmc2_read_data(struct nand_chip *chip, void *buf, + unsigned int len, bool force_8bit) +{ + struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); + void __iomem *io_addr_r = fmc2->data_base[fmc2->cs_sel]; + + if (force_8bit && chip->options & NAND_BUSWIDTH_16) + /* Reconfigure bus width to 8-bit */ + stm32_fmc2_set_buswidth_16(fmc2, false); + + if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) { + if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) { + *(u8 *)buf = readb_relaxed(io_addr_r); + buf += sizeof(u8); + len -= sizeof(u8); + } + + if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) && + len >= sizeof(u16)) { + *(u16 *)buf = readw_relaxed(io_addr_r); + buf += sizeof(u16); + len -= sizeof(u16); + } + } + + /* Buf is aligned */ + while (len >= sizeof(u32)) { + *(u32 *)buf = readl_relaxed(io_addr_r); + buf += sizeof(u32); + len -= sizeof(u32); + } + + /* Read remaining bytes */ + if (len >= sizeof(u16)) { + *(u16 *)buf = readw_relaxed(io_addr_r); + buf += sizeof(u16); + len -= sizeof(u16); + } + + if (len) + *(u8 *)buf = readb_relaxed(io_addr_r); + + if (force_8bit && chip->options & NAND_BUSWIDTH_16) + /* Reconfigure bus width to 16-bit */ + stm32_fmc2_set_buswidth_16(fmc2, true); +} + +static void stm32_fmc2_write_data(struct nand_chip *chip, const void *buf, + unsigned int len, bool force_8bit) +{ + struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); + void __iomem *io_addr_w = fmc2->data_base[fmc2->cs_sel]; + + if (force_8bit && chip->options & NAND_BUSWIDTH_16) + /* Reconfigure bus width to 8-bit */ + stm32_fmc2_set_buswidth_16(fmc2, false); + + if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) { + if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) { + writeb_relaxed(*(u8 *)buf, io_addr_w); + buf += sizeof(u8); + len -= sizeof(u8); + } + + if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) && + len >= sizeof(u16)) { + writew_relaxed(*(u16 *)buf, io_addr_w); + buf += sizeof(u16); + len -= sizeof(u16); + } + } + + /* Buf is aligned */ + while (len >= sizeof(u32)) { + writel_relaxed(*(u32 *)buf, io_addr_w); + buf += sizeof(u32); + len -= sizeof(u32); + } + + /* Write remaining bytes */ + if (len >= sizeof(u16)) { + writew_relaxed(*(u16 *)buf, io_addr_w); + buf += sizeof(u16); + len -= sizeof(u16); + } + + if (len) + writeb_relaxed(*(u8 *)buf, io_addr_w); + + if (force_8bit && chip->options & NAND_BUSWIDTH_16) + /* Reconfigure bus width to 16-bit */ + stm32_fmc2_set_buswidth_16(fmc2, true); +} + +static int stm32_fmc2_exec_op(struct nand_chip *chip, + const struct nand_operation *op, + bool check_only) +{ + struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); + const struct nand_op_instr *instr = NULL; + unsigned int op_id, i; + int ret; + + ret = stm32_fmc2_select_chip(chip, op->cs); + if (ret) + return ret; + + if (check_only) + return ret; + + for (op_id = 0; op_id < op->ninstrs; op_id++) { + instr = &op->instrs[op_id]; + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + writeb_relaxed(instr->ctx.cmd.opcode, + fmc2->cmd_base[fmc2->cs_sel]); + break; + + case NAND_OP_ADDR_INSTR: + for (i = 0; i < instr->ctx.addr.naddrs; i++) + writeb_relaxed(instr->ctx.addr.addrs[i], + fmc2->addr_base[fmc2->cs_sel]); + break; + + case NAND_OP_DATA_IN_INSTR: + stm32_fmc2_read_data(chip, instr->ctx.data.buf.in, + instr->ctx.data.len, + instr->ctx.data.force_8bit); + break; + + case NAND_OP_DATA_OUT_INSTR: + stm32_fmc2_write_data(chip, instr->ctx.data.buf.out, + instr->ctx.data.len, + instr->ctx.data.force_8bit); + break; + + case NAND_OP_WAITRDY_INSTR: + ret = nand_soft_waitrdy(chip, + instr->ctx.waitrdy.timeout_ms); + break; + } + } + + return ret; +} + +/* Controller initialization */ +static void stm32_fmc2_init(struct stm32_fmc2_nfc *fmc2) +{ + u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR); + u32 bcr1 = readl_relaxed(fmc2->io_base + FMC2_BCR1); + + /* Set CS used to undefined */ + fmc2->cs_sel = -1; + + /* Enable wait feature and nand flash memory bank */ + pcr |= FMC2_PCR_PWAITEN; + pcr |= FMC2_PCR_PBKEN; + + /* Set buswidth to 8 bits mode for identification */ + pcr &= ~FMC2_PCR_PWID_MASK; + + /* ECC logic is disabled */ + pcr &= ~FMC2_PCR_ECCEN; + + /* Default mode */ + pcr &= ~FMC2_PCR_ECCALG; + pcr &= ~FMC2_PCR_BCHECC; + pcr &= ~FMC2_PCR_WEN; + + /* Set default ECC sector size */ + pcr &= ~FMC2_PCR_ECCSS_MASK; + pcr |= FMC2_PCR_ECCSS(FMC2_PCR_ECCSS_2048); + + /* Set default tclr/tar timings */ + pcr &= ~FMC2_PCR_TCLR_MASK; + pcr |= FMC2_PCR_TCLR(FMC2_PCR_TCLR_DEFAULT); + pcr &= ~FMC2_PCR_TAR_MASK; + pcr |= FMC2_PCR_TAR(FMC2_PCR_TAR_DEFAULT); + + /* Enable FMC2 controller */ + bcr1 |= FMC2_BCR1_FMC2EN; + + writel_relaxed(bcr1, fmc2->io_base + FMC2_BCR1); + writel_relaxed(pcr, fmc2->io_base + FMC2_PCR); + writel_relaxed(FMC2_PMEM_DEFAULT, fmc2->io_base + FMC2_PMEM); + writel_relaxed(FMC2_PATT_DEFAULT, fmc2->io_base + FMC2_PATT); +} + +/* Controller timings */ +static void stm32_fmc2_calc_timings(struct nand_chip *chip, + const struct nand_sdr_timings *sdrt) +{ + struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); + struct stm32_fmc2_nand *nand = to_fmc2_nand(chip); + struct stm32_fmc2_timings *tims = &nand->timings; + unsigned long hclk = clk_get_rate(fmc2->clk); + unsigned long hclkp = NSEC_PER_SEC / (hclk / 1000); + int tar, tclr, thiz, twait, tset_mem, tset_att, thold_mem, thold_att; + + tar = hclkp; + if (tar < sdrt->tAR_min) + tar = sdrt->tAR_min; + tims->tar = DIV_ROUND_UP(tar, hclkp) - 1; + if (tims->tar > FMC2_PCR_TIMING_MASK) + tims->tar = FMC2_PCR_TIMING_MASK; + + tclr = hclkp; + if (tclr < sdrt->tCLR_min) + tclr = sdrt->tCLR_min; + tims->tclr = DIV_ROUND_UP(tclr, hclkp) - 1; + if (tims->tclr > FMC2_PCR_TIMING_MASK) + tims->tclr = FMC2_PCR_TIMING_MASK; + + tims->thiz = FMC2_THIZ; + thiz = (tims->thiz + 1) * hclkp; + + /* + * tWAIT > tRP + * tWAIT > tWP + * tWAIT > tREA + tIO + */ + twait = hclkp; + if (twait < sdrt->tRP_min) + twait = sdrt->tRP_min; + if (twait < sdrt->tWP_min) + twait = sdrt->tWP_min; + if (twait < sdrt->tREA_max + FMC2_TIO) + twait = sdrt->tREA_max + FMC2_TIO; + tims->twait = DIV_ROUND_UP(twait, hclkp); + if (tims->twait == 0) + tims->twait = 1; + else if (tims->twait > FMC2_PMEM_PATT_TIMING_MASK) + tims->twait = FMC2_PMEM_PATT_TIMING_MASK; + + /* + * tSETUP_MEM > tCS - tWAIT + * tSETUP_MEM > tALS - tWAIT + * tSETUP_MEM > tDS - (tWAIT - tHIZ) + */ + tset_mem = hclkp; + if (sdrt->tCS_min > twait && (tset_mem < sdrt->tCS_min - twait)) + tset_mem = sdrt->tCS_min - twait; + if (sdrt->tALS_min > twait && (tset_mem < sdrt->tALS_min - twait)) + tset_mem = sdrt->tALS_min - twait; + if (twait > thiz && (sdrt->tDS_min > twait - thiz) && + (tset_mem < sdrt->tDS_min - (twait - thiz))) + tset_mem = sdrt->tDS_min - (twait - thiz); + tims->tset_mem = DIV_ROUND_UP(tset_mem, hclkp); + if (tims->tset_mem == 0) + tims->tset_mem = 1; + else if (tims->tset_mem > FMC2_PMEM_PATT_TIMING_MASK) + tims->tset_mem = FMC2_PMEM_PATT_TIMING_MASK; + + /* + * tHOLD_MEM > tCH + * tHOLD_MEM > tREH - tSETUP_MEM + * tHOLD_MEM > max(tRC, tWC) - (tSETUP_MEM + tWAIT) + */ + thold_mem = hclkp; + if (thold_mem < sdrt->tCH_min) + thold_mem = sdrt->tCH_min; + if (sdrt->tREH_min > tset_mem && + (thold_mem < sdrt->tREH_min - tset_mem)) + thold_mem = sdrt->tREH_min - tset_mem; + if ((sdrt->tRC_min > tset_mem + twait) && + (thold_mem < sdrt->tRC_min - (tset_mem + twait))) + thold_mem = sdrt->tRC_min - (tset_mem + twait); + if ((sdrt->tWC_min > tset_mem + twait) && + (thold_mem < sdrt->tWC_min - (tset_mem + twait))) + thold_mem = sdrt->tWC_min - (tset_mem + twait); + tims->thold_mem = DIV_ROUND_UP(thold_mem, hclkp); + if (tims->thold_mem == 0) + tims->thold_mem = 1; + else if (tims->thold_mem > FMC2_PMEM_PATT_TIMING_MASK) + tims->thold_mem = FMC2_PMEM_PATT_TIMING_MASK; + + /* + * tSETUP_ATT > tCS - tWAIT + * tSETUP_ATT > tCLS - tWAIT + * tSETUP_ATT > tALS - tWAIT + * tSETUP_ATT > tRHW - tHOLD_MEM + * tSETUP_ATT > tDS - (tWAIT - tHIZ) + */ + tset_att = hclkp; + if (sdrt->tCS_min > twait && (tset_att < sdrt->tCS_min - twait)) + tset_att = sdrt->tCS_min - twait; + if (sdrt->tCLS_min > twait && (tset_att < sdrt->tCLS_min - twait)) + tset_att = sdrt->tCLS_min - twait; + if (sdrt->tALS_min > twait && (tset_att < sdrt->tALS_min - twait)) + tset_att = sdrt->tALS_min - twait; + if (sdrt->tRHW_min > thold_mem && + (tset_att < sdrt->tRHW_min - thold_mem)) + tset_att = sdrt->tRHW_min - thold_mem; + if (twait > thiz && (sdrt->tDS_min > twait - thiz) && + (tset_att < sdrt->tDS_min - (twait - thiz))) + tset_att = sdrt->tDS_min - (twait - thiz); + tims->tset_att = DIV_ROUND_UP(tset_att, hclkp); + if (tims->tset_att == 0) + tims->tset_att = 1; + else if (tims->tset_att > FMC2_PMEM_PATT_TIMING_MASK) + tims->tset_att = FMC2_PMEM_PATT_TIMING_MASK; + + /* + * tHOLD_ATT > tALH + * tHOLD_ATT > tCH + * tHOLD_ATT > tCLH + * tHOLD_ATT > tCOH + * tHOLD_ATT > tDH + * tHOLD_ATT > tWB + tIO + tSYNC - tSETUP_MEM + * tHOLD_ATT > tADL - tSETUP_MEM + * tHOLD_ATT > tWH - tSETUP_MEM + * tHOLD_ATT > tWHR - tSETUP_MEM + * tHOLD_ATT > tRC - (tSETUP_ATT + tWAIT) + * tHOLD_ATT > tWC - (tSETUP_ATT + tWAIT) + */ + thold_att = hclkp; + if (thold_att < sdrt->tALH_min) + thold_att = sdrt->tALH_min; + if (thold_att < sdrt->tCH_min) + thold_att = sdrt->tCH_min; + if (thold_att < sdrt->tCLH_min) + thold_att = sdrt->tCLH_min; + if (thold_att < sdrt->tCOH_min) + thold_att = sdrt->tCOH_min; + if (thold_att < sdrt->tDH_min) + thold_att = sdrt->tDH_min; + if ((sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC > tset_mem) && + (thold_att < sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem)) + thold_att = sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem; + if (sdrt->tADL_min > tset_mem && + (thold_att < sdrt->tADL_min - tset_mem)) + thold_att = sdrt->tADL_min - tset_mem; + if (sdrt->tWH_min > tset_mem && + (thold_att < sdrt->tWH_min - tset_mem)) + thold_att = sdrt->tWH_min - tset_mem; + if (sdrt->tWHR_min > tset_mem && + (thold_att < sdrt->tWHR_min - tset_mem)) + thold_att = sdrt->tWHR_min - tset_mem; + if ((sdrt->tRC_min > tset_att + twait) && + (thold_att < sdrt->tRC_min - (tset_att + twait))) + thold_att = sdrt->tRC_min - (tset_att + twait); + if ((sdrt->tWC_min > tset_att + twait) && + (thold_att < sdrt->tWC_min - (tset_att + twait))) + thold_att = sdrt->tWC_min - (tset_att + twait); + tims->thold_att = DIV_ROUND_UP(thold_att, hclkp); + if (tims->thold_att == 0) + tims->thold_att = 1; + else if (tims->thold_att > FMC2_PMEM_PATT_TIMING_MASK) + tims->thold_att = FMC2_PMEM_PATT_TIMING_MASK; +} + +static int stm32_fmc2_setup_interface(struct nand_chip *chip, int chipnr, + const struct nand_data_interface *conf) +{ + const struct nand_sdr_timings *sdrt; + + sdrt = nand_get_sdr_timings(conf); + if (IS_ERR(sdrt)) + return PTR_ERR(sdrt); + + if (chipnr == NAND_DATA_IFACE_CHECK_ONLY) + return 0; + + stm32_fmc2_calc_timings(chip, sdrt); + + /* Apply timings */ + stm32_fmc2_timings_init(chip); + + return 0; +} + +/* DMA configuration */ +static int stm32_fmc2_dma_setup(struct stm32_fmc2_nfc *fmc2) +{ + int ret; + + fmc2->dma_tx_ch = dma_request_slave_channel(fmc2->dev, "tx"); + fmc2->dma_rx_ch = dma_request_slave_channel(fmc2->dev, "rx"); + fmc2->dma_ecc_ch = dma_request_slave_channel(fmc2->dev, "ecc"); + + if (fmc2->dma_ecc_ch) { + ret = sg_alloc_table(&fmc2->dma_ecc_sg, FMC2_MAX_SG, + GFP_KERNEL); + if (ret) + return ret; + + /* Allocate a buffer to store ECC status registers */ + fmc2->ecc_buf = devm_kzalloc(fmc2->dev, + FMC2_MAX_ECC_BUF_LEN, + GFP_KERNEL); + if (!fmc2->ecc_buf) + return -ENOMEM; + } else { + dev_err(fmc2->dev, "ECC DMA not defined in the device tree\n"); + return -ENOENT; + } + + if (fmc2->dma_tx_ch && fmc2->dma_rx_ch) { + ret = sg_alloc_table(&fmc2->dma_data_sg, FMC2_MAX_SG, + GFP_KERNEL); + if (ret) + return ret; + + init_completion(&fmc2->dma_data_complete); + init_completion(&fmc2->dma_ecc_complete); + } else { + dev_err(fmc2->dev, "rx/tx DMA not defined in the device tree\n"); + return -ENOENT; + } + + return 0; +} + +/* NAND callbacks setup */ +static void stm32_fmc2_nand_callbacks_setup(struct nand_chip *chip) +{ + /* Specific callbacks to read/write a page */ + chip->ecc.correct = stm32_fmc2_sequencer_correct; + chip->ecc.write_page = stm32_fmc2_sequencer_write_page; + chip->ecc.read_page = stm32_fmc2_sequencer_read_page; + chip->ecc.write_page_raw = stm32_fmc2_sequencer_write_page_raw; + chip->ecc.read_page_raw = stm32_fmc2_sequencer_read_page_raw; + + /* Specific configurations depending on the algo used */ + if (chip->ecc.strength == FMC2_ECC_HAM) + chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 4 : 3; + else if (chip->ecc.strength == FMC2_ECC_BCH8) + chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 14 : 13; + else + chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 8 : 7; +} + +/* FMC2 layout */ +static int stm32_fmc2_nand_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct nand_ecc_ctrl *ecc = &chip->ecc; + + if (section) + return -ERANGE; + + oobregion->length = ecc->total; + oobregion->offset = FMC2_BBM_LEN; + + return 0; +} + +static int stm32_fmc2_nand_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct nand_ecc_ctrl *ecc = &chip->ecc; + + if (section) + return -ERANGE; + + oobregion->length = mtd->oobsize - ecc->total - FMC2_BBM_LEN; + oobregion->offset = ecc->total + FMC2_BBM_LEN; + + return 0; +} + +static const struct mtd_ooblayout_ops stm32_fmc2_nand_ooblayout_ops = { + .ecc = stm32_fmc2_nand_ooblayout_ecc, + .free = stm32_fmc2_nand_ooblayout_free, +}; + +/* FMC2 caps */ +static int stm32_fmc2_calc_ecc_bytes(int step_size, int strength) +{ + /* Hamming */ + if (strength == FMC2_ECC_HAM) + return 4; + + /* BCH8 */ + if (strength == FMC2_ECC_BCH8) + return 14; + + /* BCH4 */ + return 8; +} + +NAND_ECC_CAPS_SINGLE(stm32_fmc2_ecc_caps, stm32_fmc2_calc_ecc_bytes, + FMC2_ECC_STEP_SIZE, + FMC2_ECC_HAM, FMC2_ECC_BCH4, FMC2_ECC_BCH8); + +/* FMC2 controller ops */ +static int stm32_fmc2_attach_chip(struct nand_chip *chip) +{ + struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + int ret; + + /* + * Only NAND_ECC_HW mode is actually supported + * Hamming => ecc.strength = 1 + * BCH4 => ecc.strength = 4 + * BCH8 => ecc.strength = 8 + * ECC sector size = 512 + */ + if (chip->ecc.mode != NAND_ECC_HW) { + dev_err(fmc2->dev, "nand_ecc_mode is not well defined in the DT\n"); + return -EINVAL; + } + + ret = nand_ecc_choose_conf(chip, &stm32_fmc2_ecc_caps, + mtd->oobsize - FMC2_BBM_LEN); + if (ret) { + dev_err(fmc2->dev, "no valid ECC settings set\n"); + return ret; + } + + if (mtd->writesize / chip->ecc.size > FMC2_MAX_SG) { + dev_err(fmc2->dev, "nand page size is not supported\n"); + return -EINVAL; + } + + if (chip->bbt_options & NAND_BBT_USE_FLASH) + chip->bbt_options |= NAND_BBT_NO_OOB; + + /* NAND callbacks setup */ + stm32_fmc2_nand_callbacks_setup(chip); + + /* Define ECC layout */ + mtd_set_ooblayout(mtd, &stm32_fmc2_nand_ooblayout_ops); + + /* Configure bus width to 16-bit */ + if (chip->options & NAND_BUSWIDTH_16) + stm32_fmc2_set_buswidth_16(fmc2, true); + + return 0; +} + +static const struct nand_controller_ops stm32_fmc2_nand_controller_ops = { + .attach_chip = stm32_fmc2_attach_chip, + .exec_op = stm32_fmc2_exec_op, + .setup_data_interface = stm32_fmc2_setup_interface, +}; + +/* FMC2 probe */ +static int stm32_fmc2_parse_child(struct stm32_fmc2_nfc *fmc2, + struct device_node *dn) +{ + struct stm32_fmc2_nand *nand = &fmc2->nand; + u32 cs; + int ret, i; + + if (!of_get_property(dn, "reg", &nand->ncs)) + return -EINVAL; + + nand->ncs /= sizeof(u32); + if (!nand->ncs) { + dev_err(fmc2->dev, "invalid reg property size\n"); + return -EINVAL; + } + + for (i = 0; i < nand->ncs; i++) { + ret = of_property_read_u32_index(dn, "reg", i, &cs); + if (ret) { + dev_err(fmc2->dev, "could not retrieve reg property: %d\n", + ret); + return ret; + } + + if (cs > FMC2_MAX_CE) { + dev_err(fmc2->dev, "invalid reg value: %d\n", cs); + return -EINVAL; + } + + if (fmc2->cs_assigned & BIT(cs)) { + dev_err(fmc2->dev, "cs already assigned: %d\n", cs); + return -EINVAL; + } + + fmc2->cs_assigned |= BIT(cs); + nand->cs_used[i] = cs; + } + + nand_set_flash_node(&nand->chip, dn); + + return 0; +} + +static int stm32_fmc2_parse_dt(struct stm32_fmc2_nfc *fmc2) +{ + struct device_node *dn = fmc2->dev->of_node; + struct device_node *child; + int nchips = of_get_child_count(dn); + int ret = 0; + + if (!nchips) { + dev_err(fmc2->dev, "NAND chip not defined\n"); + return -EINVAL; + } + + if (nchips > 1) { + dev_err(fmc2->dev, "too many NAND chips defined\n"); + return -EINVAL; + } + + for_each_child_of_node(dn, child) { + ret = stm32_fmc2_parse_child(fmc2, child); + if (ret < 0) { + of_node_put(child); + return ret; + } + } + + return ret; +} + +static int stm32_fmc2_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct reset_control *rstc; + struct stm32_fmc2_nfc *fmc2; + struct stm32_fmc2_nand *nand; + struct resource *res; + struct mtd_info *mtd; + struct nand_chip *chip; + int chip_cs, mem_region, ret, irq; + + fmc2 = devm_kzalloc(dev, sizeof(*fmc2), GFP_KERNEL); + if (!fmc2) + return -ENOMEM; + + fmc2->dev = dev; + nand_controller_init(&fmc2->base); + fmc2->base.ops = &stm32_fmc2_nand_controller_ops; + + ret = stm32_fmc2_parse_dt(fmc2); + if (ret) + return ret; + + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + fmc2->io_base = devm_ioremap_resource(dev, res); + if (IS_ERR(fmc2->io_base)) + return PTR_ERR(fmc2->io_base); + + fmc2->io_phys_addr = res->start; + + for (chip_cs = 0, mem_region = 1; chip_cs < FMC2_MAX_CE; + chip_cs++, mem_region += 3) { + if (!(fmc2->cs_assigned & BIT(chip_cs))) + continue; + + res = platform_get_resource(pdev, IORESOURCE_MEM, mem_region); + fmc2->data_base[chip_cs] = devm_ioremap_resource(dev, res); + if (IS_ERR(fmc2->data_base[chip_cs])) + return PTR_ERR(fmc2->data_base[chip_cs]); + + fmc2->data_phys_addr[chip_cs] = res->start; + + res = platform_get_resource(pdev, IORESOURCE_MEM, + mem_region + 1); + fmc2->cmd_base[chip_cs] = devm_ioremap_resource(dev, res); + if (IS_ERR(fmc2->cmd_base[chip_cs])) + return PTR_ERR(fmc2->cmd_base[chip_cs]); + + res = platform_get_resource(pdev, IORESOURCE_MEM, + mem_region + 2); + fmc2->addr_base[chip_cs] = devm_ioremap_resource(dev, res); + if (IS_ERR(fmc2->addr_base[chip_cs])) + return PTR_ERR(fmc2->addr_base[chip_cs]); + } + + irq = platform_get_irq(pdev, 0); + ret = devm_request_irq(dev, irq, stm32_fmc2_irq, 0, + dev_name(dev), fmc2); + if (ret) { + dev_err(dev, "failed to request irq\n"); + return ret; + } + + init_completion(&fmc2->complete); + + fmc2->clk = devm_clk_get(dev, NULL); + if (IS_ERR(fmc2->clk)) + return PTR_ERR(fmc2->clk); + + ret = clk_prepare_enable(fmc2->clk); + if (ret) { + dev_err(dev, "can not enable the clock\n"); + return ret; + } + + rstc = devm_reset_control_get(dev, NULL); + if (!IS_ERR(rstc)) { + reset_control_assert(rstc); + reset_control_deassert(rstc); + } + + /* DMA setup */ + ret = stm32_fmc2_dma_setup(fmc2); + if (ret) + return ret; + + /* FMC2 init routine */ + stm32_fmc2_init(fmc2); + + nand = &fmc2->nand; + chip = &nand->chip; + mtd = nand_to_mtd(chip); + mtd->dev.parent = dev; + + chip->controller = &fmc2->base; + chip->options |= NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE | + NAND_USE_BOUNCE_BUFFER; + + /* Default ECC settings */ + chip->ecc.mode = NAND_ECC_HW; + chip->ecc.size = FMC2_ECC_STEP_SIZE; + chip->ecc.strength = FMC2_ECC_BCH8; + + /* Scan to find existence of the device */ + ret = nand_scan(chip, nand->ncs); + if (ret) + goto err_scan; + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) + goto err_device_register; + + platform_set_drvdata(pdev, fmc2); + + return 0; + +err_device_register: + nand_cleanup(chip); + +err_scan: + if (fmc2->dma_ecc_ch) + dma_release_channel(fmc2->dma_ecc_ch); + if (fmc2->dma_tx_ch) + dma_release_channel(fmc2->dma_tx_ch); + if (fmc2->dma_rx_ch) + dma_release_channel(fmc2->dma_rx_ch); + + sg_free_table(&fmc2->dma_data_sg); + sg_free_table(&fmc2->dma_ecc_sg); + + clk_disable_unprepare(fmc2->clk); + + return ret; +} + +static int stm32_fmc2_remove(struct platform_device *pdev) +{ + struct stm32_fmc2_nfc *fmc2 = platform_get_drvdata(pdev); + struct stm32_fmc2_nand *nand = &fmc2->nand; + + nand_release(&nand->chip); + + if (fmc2->dma_ecc_ch) + dma_release_channel(fmc2->dma_ecc_ch); + if (fmc2->dma_tx_ch) + dma_release_channel(fmc2->dma_tx_ch); + if (fmc2->dma_rx_ch) + dma_release_channel(fmc2->dma_rx_ch); + + sg_free_table(&fmc2->dma_data_sg); + sg_free_table(&fmc2->dma_ecc_sg); + + clk_disable_unprepare(fmc2->clk); + + return 0; +} + +static int __maybe_unused stm32_fmc2_suspend(struct device *dev) +{ + struct stm32_fmc2_nfc *fmc2 = dev_get_drvdata(dev); + + clk_disable_unprepare(fmc2->clk); + + pinctrl_pm_select_sleep_state(dev); + + return 0; +} + +static int __maybe_unused stm32_fmc2_resume(struct device *dev) +{ + struct stm32_fmc2_nfc *fmc2 = dev_get_drvdata(dev); + struct stm32_fmc2_nand *nand = &fmc2->nand; + int chip_cs, ret; + + pinctrl_pm_select_default_state(dev); + + ret = clk_prepare_enable(fmc2->clk); + if (ret) { + dev_err(dev, "can not enable the clock\n"); + return ret; + } + + stm32_fmc2_init(fmc2); + + for (chip_cs = 0; chip_cs < FMC2_MAX_CE; chip_cs++) { + if (!(fmc2->cs_assigned & BIT(chip_cs))) + continue; + + nand_reset(&nand->chip, chip_cs); + } + + return 0; +} + +static SIMPLE_DEV_PM_OPS(stm32_fmc2_pm_ops, stm32_fmc2_suspend, + stm32_fmc2_resume); + +static const struct of_device_id stm32_fmc2_match[] = { + {.compatible = "st,stm32mp15-fmc2"}, + {} +}; +MODULE_DEVICE_TABLE(of, stm32_fmc2_match); + +static struct platform_driver stm32_fmc2_driver = { + .probe = stm32_fmc2_probe, + .remove = stm32_fmc2_remove, + .driver = { + .name = "stm32_fmc2_nand", + .of_match_table = stm32_fmc2_match, + .pm = &stm32_fmc2_pm_ops, + }, +}; +module_platform_driver(stm32_fmc2_driver); + +MODULE_ALIAS("platform:stm32_fmc2_nand"); +MODULE_AUTHOR("Christophe Kerello <christophe.kerello@st.com>"); +MODULE_DESCRIPTION("STMicroelectronics STM32 FMC2 nand driver"); +MODULE_LICENSE("GPL v2"); |