diff options
Diffstat (limited to 'arch/powerpc/include/asm/mmu-hash64.h')
-rw-r--r-- | arch/powerpc/include/asm/mmu-hash64.h | 616 |
1 files changed, 0 insertions, 616 deletions
diff --git a/arch/powerpc/include/asm/mmu-hash64.h b/arch/powerpc/include/asm/mmu-hash64.h deleted file mode 100644 index 0cea4807e26f..000000000000 --- a/arch/powerpc/include/asm/mmu-hash64.h +++ /dev/null @@ -1,616 +0,0 @@ -#ifndef _ASM_POWERPC_MMU_HASH64_H_ -#define _ASM_POWERPC_MMU_HASH64_H_ -/* - * PowerPC64 memory management structures - * - * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com> - * PPC64 rework. - * - * This program is free software; you can redistribute it and/or - * modify it under the terms of the GNU General Public License - * as published by the Free Software Foundation; either version - * 2 of the License, or (at your option) any later version. - */ - -#include <asm/asm-compat.h> -#include <asm/page.h> -#include <asm/bug.h> - -/* - * This is necessary to get the definition of PGTABLE_RANGE which we - * need for various slices related matters. Note that this isn't the - * complete pgtable.h but only a portion of it. - */ -#include <asm/book3s/64/pgtable.h> -#include <asm/bug.h> -#include <asm/processor.h> - -/* - * SLB - */ - -#define SLB_NUM_BOLTED 3 -#define SLB_CACHE_ENTRIES 8 -#define SLB_MIN_SIZE 32 - -/* Bits in the SLB ESID word */ -#define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */ - -/* Bits in the SLB VSID word */ -#define SLB_VSID_SHIFT 12 -#define SLB_VSID_SHIFT_1T 24 -#define SLB_VSID_SSIZE_SHIFT 62 -#define SLB_VSID_B ASM_CONST(0xc000000000000000) -#define SLB_VSID_B_256M ASM_CONST(0x0000000000000000) -#define SLB_VSID_B_1T ASM_CONST(0x4000000000000000) -#define SLB_VSID_KS ASM_CONST(0x0000000000000800) -#define SLB_VSID_KP ASM_CONST(0x0000000000000400) -#define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */ -#define SLB_VSID_L ASM_CONST(0x0000000000000100) -#define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */ -#define SLB_VSID_LP ASM_CONST(0x0000000000000030) -#define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000) -#define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010) -#define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020) -#define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030) -#define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP) - -#define SLB_VSID_KERNEL (SLB_VSID_KP) -#define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C) - -#define SLBIE_C (0x08000000) -#define SLBIE_SSIZE_SHIFT 25 - -/* - * Hash table - */ - -#define HPTES_PER_GROUP 8 - -#define HPTE_V_SSIZE_SHIFT 62 -#define HPTE_V_AVPN_SHIFT 7 -#define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80) -#define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT) -#define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL)) -#define HPTE_V_BOLTED ASM_CONST(0x0000000000000010) -#define HPTE_V_LOCK ASM_CONST(0x0000000000000008) -#define HPTE_V_LARGE ASM_CONST(0x0000000000000004) -#define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002) -#define HPTE_V_VALID ASM_CONST(0x0000000000000001) - -#define HPTE_R_PP0 ASM_CONST(0x8000000000000000) -#define HPTE_R_TS ASM_CONST(0x4000000000000000) -#define HPTE_R_KEY_HI ASM_CONST(0x3000000000000000) -#define HPTE_R_RPN_SHIFT 12 -#define HPTE_R_RPN ASM_CONST(0x0ffffffffffff000) -#define HPTE_R_PP ASM_CONST(0x0000000000000003) -#define HPTE_R_N ASM_CONST(0x0000000000000004) -#define HPTE_R_G ASM_CONST(0x0000000000000008) -#define HPTE_R_M ASM_CONST(0x0000000000000010) -#define HPTE_R_I ASM_CONST(0x0000000000000020) -#define HPTE_R_W ASM_CONST(0x0000000000000040) -#define HPTE_R_WIMG ASM_CONST(0x0000000000000078) -#define HPTE_R_C ASM_CONST(0x0000000000000080) -#define HPTE_R_R ASM_CONST(0x0000000000000100) -#define HPTE_R_KEY_LO ASM_CONST(0x0000000000000e00) - -#define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000) -#define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000) - -/* Values for PP (assumes Ks=0, Kp=1) */ -#define PP_RWXX 0 /* Supervisor read/write, User none */ -#define PP_RWRX 1 /* Supervisor read/write, User read */ -#define PP_RWRW 2 /* Supervisor read/write, User read/write */ -#define PP_RXRX 3 /* Supervisor read, User read */ -#define PP_RXXX (HPTE_R_PP0 | 2) /* Supervisor read, user none */ - -/* Fields for tlbiel instruction in architecture 2.06 */ -#define TLBIEL_INVAL_SEL_MASK 0xc00 /* invalidation selector */ -#define TLBIEL_INVAL_PAGE 0x000 /* invalidate a single page */ -#define TLBIEL_INVAL_SET_LPID 0x800 /* invalidate a set for current LPID */ -#define TLBIEL_INVAL_SET 0xc00 /* invalidate a set for all LPIDs */ -#define TLBIEL_INVAL_SET_MASK 0xfff000 /* set number to inval. */ -#define TLBIEL_INVAL_SET_SHIFT 12 - -#define POWER7_TLB_SETS 128 /* # sets in POWER7 TLB */ -#define POWER8_TLB_SETS 512 /* # sets in POWER8 TLB */ -#define POWER9_TLB_SETS_HASH 256 /* # sets in POWER9 TLB Hash mode */ - -#ifndef __ASSEMBLY__ - -struct hash_pte { - __be64 v; - __be64 r; -}; - -extern struct hash_pte *htab_address; -extern unsigned long htab_size_bytes; -extern unsigned long htab_hash_mask; - -/* - * Page size definition - * - * shift : is the "PAGE_SHIFT" value for that page size - * sllp : is a bit mask with the value of SLB L || LP to be or'ed - * directly to a slbmte "vsid" value - * penc : is the HPTE encoding mask for the "LP" field: - * - */ -struct mmu_psize_def -{ - unsigned int shift; /* number of bits */ - int penc[MMU_PAGE_COUNT]; /* HPTE encoding */ - unsigned int tlbiel; /* tlbiel supported for that page size */ - unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */ - unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */ -}; -extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT]; - -static inline int shift_to_mmu_psize(unsigned int shift) -{ - int psize; - - for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) - if (mmu_psize_defs[psize].shift == shift) - return psize; - return -1; -} - -static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize) -{ - if (mmu_psize_defs[mmu_psize].shift) - return mmu_psize_defs[mmu_psize].shift; - BUG(); -} - -#endif /* __ASSEMBLY__ */ - -/* - * Segment sizes. - * These are the values used by hardware in the B field of - * SLB entries and the first dword of MMU hashtable entries. - * The B field is 2 bits; the values 2 and 3 are unused and reserved. - */ -#define MMU_SEGSIZE_256M 0 -#define MMU_SEGSIZE_1T 1 - -/* - * encode page number shift. - * in order to fit the 78 bit va in a 64 bit variable we shift the va by - * 12 bits. This enable us to address upto 76 bit va. - * For hpt hash from a va we can ignore the page size bits of va and for - * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure - * we work in all cases including 4k page size. - */ -#define VPN_SHIFT 12 - -/* - * HPTE Large Page (LP) details - */ -#define LP_SHIFT 12 -#define LP_BITS 8 -#define LP_MASK(i) ((0xFF >> (i)) << LP_SHIFT) - -#ifndef __ASSEMBLY__ - -static inline int slb_vsid_shift(int ssize) -{ - if (ssize == MMU_SEGSIZE_256M) - return SLB_VSID_SHIFT; - return SLB_VSID_SHIFT_1T; -} - -static inline int segment_shift(int ssize) -{ - if (ssize == MMU_SEGSIZE_256M) - return SID_SHIFT; - return SID_SHIFT_1T; -} - -/* - * The current system page and segment sizes - */ -extern int mmu_linear_psize; -extern int mmu_virtual_psize; -extern int mmu_vmalloc_psize; -extern int mmu_vmemmap_psize; -extern int mmu_io_psize; -extern int mmu_kernel_ssize; -extern int mmu_highuser_ssize; -extern u16 mmu_slb_size; -extern unsigned long tce_alloc_start, tce_alloc_end; - -/* - * If the processor supports 64k normal pages but not 64k cache - * inhibited pages, we have to be prepared to switch processes - * to use 4k pages when they create cache-inhibited mappings. - * If this is the case, mmu_ci_restrictions will be set to 1. - */ -extern int mmu_ci_restrictions; - -/* - * This computes the AVPN and B fields of the first dword of a HPTE, - * for use when we want to match an existing PTE. The bottom 7 bits - * of the returned value are zero. - */ -static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize, - int ssize) -{ - unsigned long v; - /* - * The AVA field omits the low-order 23 bits of the 78 bits VA. - * These bits are not needed in the PTE, because the - * low-order b of these bits are part of the byte offset - * into the virtual page and, if b < 23, the high-order - * 23-b of these bits are always used in selecting the - * PTEGs to be searched - */ - v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm); - v <<= HPTE_V_AVPN_SHIFT; - v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT; - return v; -} - -/* - * This function sets the AVPN and L fields of the HPTE appropriately - * using the base page size and actual page size. - */ -static inline unsigned long hpte_encode_v(unsigned long vpn, int base_psize, - int actual_psize, int ssize) -{ - unsigned long v; - v = hpte_encode_avpn(vpn, base_psize, ssize); - if (actual_psize != MMU_PAGE_4K) - v |= HPTE_V_LARGE; - return v; -} - -/* - * This function sets the ARPN, and LP fields of the HPTE appropriately - * for the page size. We assume the pa is already "clean" that is properly - * aligned for the requested page size - */ -static inline unsigned long hpte_encode_r(unsigned long pa, int base_psize, - int actual_psize) -{ - /* A 4K page needs no special encoding */ - if (actual_psize == MMU_PAGE_4K) - return pa & HPTE_R_RPN; - else { - unsigned int penc = mmu_psize_defs[base_psize].penc[actual_psize]; - unsigned int shift = mmu_psize_defs[actual_psize].shift; - return (pa & ~((1ul << shift) - 1)) | (penc << LP_SHIFT); - } -} - -/* - * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size. - */ -static inline unsigned long hpt_vpn(unsigned long ea, - unsigned long vsid, int ssize) -{ - unsigned long mask; - int s_shift = segment_shift(ssize); - - mask = (1ul << (s_shift - VPN_SHIFT)) - 1; - return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask); -} - -/* - * This hashes a virtual address - */ -static inline unsigned long hpt_hash(unsigned long vpn, - unsigned int shift, int ssize) -{ - int mask; - unsigned long hash, vsid; - - /* VPN_SHIFT can be atmost 12 */ - if (ssize == MMU_SEGSIZE_256M) { - mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1; - hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^ - ((vpn & mask) >> (shift - VPN_SHIFT)); - } else { - mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1; - vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT); - hash = vsid ^ (vsid << 25) ^ - ((vpn & mask) >> (shift - VPN_SHIFT)) ; - } - return hash & 0x7fffffffffUL; -} - -#define HPTE_LOCAL_UPDATE 0x1 -#define HPTE_NOHPTE_UPDATE 0x2 - -extern int __hash_page_4K(unsigned long ea, unsigned long access, - unsigned long vsid, pte_t *ptep, unsigned long trap, - unsigned long flags, int ssize, int subpage_prot); -extern int __hash_page_64K(unsigned long ea, unsigned long access, - unsigned long vsid, pte_t *ptep, unsigned long trap, - unsigned long flags, int ssize); -struct mm_struct; -unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap); -extern int hash_page_mm(struct mm_struct *mm, unsigned long ea, - unsigned long access, unsigned long trap, - unsigned long flags); -extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap, - unsigned long dsisr); -int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid, - pte_t *ptep, unsigned long trap, unsigned long flags, - int ssize, unsigned int shift, unsigned int mmu_psize); -#ifdef CONFIG_TRANSPARENT_HUGEPAGE -extern int __hash_page_thp(unsigned long ea, unsigned long access, - unsigned long vsid, pmd_t *pmdp, unsigned long trap, - unsigned long flags, int ssize, unsigned int psize); -#else -static inline int __hash_page_thp(unsigned long ea, unsigned long access, - unsigned long vsid, pmd_t *pmdp, - unsigned long trap, unsigned long flags, - int ssize, unsigned int psize) -{ - BUG(); - return -1; -} -#endif -extern void hash_failure_debug(unsigned long ea, unsigned long access, - unsigned long vsid, unsigned long trap, - int ssize, int psize, int lpsize, - unsigned long pte); -extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend, - unsigned long pstart, unsigned long prot, - int psize, int ssize); -int htab_remove_mapping(unsigned long vstart, unsigned long vend, - int psize, int ssize); -extern void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages); -extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr); - -extern void hpte_init_native(void); -extern void hpte_init_lpar(void); -extern void hpte_init_beat(void); -extern void hpte_init_beat_v3(void); - -extern void slb_initialize(void); -extern void slb_flush_and_rebolt(void); - -extern void slb_vmalloc_update(void); -extern void slb_set_size(u16 size); -#endif /* __ASSEMBLY__ */ - -/* - * VSID allocation (256MB segment) - * - * We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated - * from mmu context id and effective segment id of the address. - * - * For user processes max context id is limited to ((1ul << 19) - 5) - * for kernel space, we use the top 4 context ids to map address as below - * NOTE: each context only support 64TB now. - * 0x7fffc - [ 0xc000000000000000 - 0xc0003fffffffffff ] - * 0x7fffd - [ 0xd000000000000000 - 0xd0003fffffffffff ] - * 0x7fffe - [ 0xe000000000000000 - 0xe0003fffffffffff ] - * 0x7ffff - [ 0xf000000000000000 - 0xf0003fffffffffff ] - * - * The proto-VSIDs are then scrambled into real VSIDs with the - * multiplicative hash: - * - * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS - * - * VSID_MULTIPLIER is prime, so in particular it is - * co-prime to VSID_MODULUS, making this a 1:1 scrambling function. - * Because the modulus is 2^n-1 we can compute it efficiently without - * a divide or extra multiply (see below). The scramble function gives - * robust scattering in the hash table (at least based on some initial - * results). - * - * We also consider VSID 0 special. We use VSID 0 for slb entries mapping - * bad address. This enables us to consolidate bad address handling in - * hash_page. - * - * We also need to avoid the last segment of the last context, because that - * would give a protovsid of 0x1fffffffff. That will result in a VSID 0 - * because of the modulo operation in vsid scramble. But the vmemmap - * (which is what uses region 0xf) will never be close to 64TB in size - * (it's 56 bytes per page of system memory). - */ - -#define CONTEXT_BITS 19 -#define ESID_BITS 18 -#define ESID_BITS_1T 6 - -/* - * 256MB segment - * The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments - * available for user + kernel mapping. The top 4 contexts are used for - * kernel mapping. Each segment contains 2^28 bytes. Each - * context maps 2^46 bytes (64TB) so we can support 2^19-1 contexts - * (19 == 37 + 28 - 46). - */ -#define MAX_USER_CONTEXT ((ASM_CONST(1) << CONTEXT_BITS) - 5) - -/* - * This should be computed such that protovosid * vsid_mulitplier - * doesn't overflow 64 bits. It should also be co-prime to vsid_modulus - */ -#define VSID_MULTIPLIER_256M ASM_CONST(12538073) /* 24-bit prime */ -#define VSID_BITS_256M (CONTEXT_BITS + ESID_BITS) -#define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1) - -#define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */ -#define VSID_BITS_1T (CONTEXT_BITS + ESID_BITS_1T) -#define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1) - - -#define USER_VSID_RANGE (1UL << (ESID_BITS + SID_SHIFT)) - -/* - * This macro generates asm code to compute the VSID scramble - * function. Used in slb_allocate() and do_stab_bolted. The function - * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS - * - * rt = register continaing the proto-VSID and into which the - * VSID will be stored - * rx = scratch register (clobbered) - * - * - rt and rx must be different registers - * - The answer will end up in the low VSID_BITS bits of rt. The higher - * bits may contain other garbage, so you may need to mask the - * result. - */ -#define ASM_VSID_SCRAMBLE(rt, rx, size) \ - lis rx,VSID_MULTIPLIER_##size@h; \ - ori rx,rx,VSID_MULTIPLIER_##size@l; \ - mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \ - \ - srdi rx,rt,VSID_BITS_##size; \ - clrldi rt,rt,(64-VSID_BITS_##size); \ - add rt,rt,rx; /* add high and low bits */ \ - /* NOTE: explanation based on VSID_BITS_##size = 36 \ - * Now, r3 == VSID (mod 2^36-1), and lies between 0 and \ - * 2^36-1+2^28-1. That in particular means that if r3 >= \ - * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \ - * the bit clear, r3 already has the answer we want, if it \ - * doesn't, the answer is the low 36 bits of r3+1. So in all \ - * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\ - addi rx,rt,1; \ - srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \ - add rt,rt,rx - -/* 4 bits per slice and we have one slice per 1TB */ -#define SLICE_ARRAY_SIZE (PGTABLE_RANGE >> 41) - -#ifndef __ASSEMBLY__ - -#ifdef CONFIG_PPC_SUBPAGE_PROT -/* - * For the sub-page protection option, we extend the PGD with one of - * these. Basically we have a 3-level tree, with the top level being - * the protptrs array. To optimize speed and memory consumption when - * only addresses < 4GB are being protected, pointers to the first - * four pages of sub-page protection words are stored in the low_prot - * array. - * Each page of sub-page protection words protects 1GB (4 bytes - * protects 64k). For the 3-level tree, each page of pointers then - * protects 8TB. - */ -struct subpage_prot_table { - unsigned long maxaddr; /* only addresses < this are protected */ - unsigned int **protptrs[(TASK_SIZE_USER64 >> 43)]; - unsigned int *low_prot[4]; -}; - -#define SBP_L1_BITS (PAGE_SHIFT - 2) -#define SBP_L2_BITS (PAGE_SHIFT - 3) -#define SBP_L1_COUNT (1 << SBP_L1_BITS) -#define SBP_L2_COUNT (1 << SBP_L2_BITS) -#define SBP_L2_SHIFT (PAGE_SHIFT + SBP_L1_BITS) -#define SBP_L3_SHIFT (SBP_L2_SHIFT + SBP_L2_BITS) - -extern void subpage_prot_free(struct mm_struct *mm); -extern void subpage_prot_init_new_context(struct mm_struct *mm); -#else -static inline void subpage_prot_free(struct mm_struct *mm) {} -static inline void subpage_prot_init_new_context(struct mm_struct *mm) { } -#endif /* CONFIG_PPC_SUBPAGE_PROT */ - -typedef unsigned long mm_context_id_t; -struct spinlock; - -typedef struct { - mm_context_id_t id; - u16 user_psize; /* page size index */ - -#ifdef CONFIG_PPC_MM_SLICES - u64 low_slices_psize; /* SLB page size encodings */ - unsigned char high_slices_psize[SLICE_ARRAY_SIZE]; -#else - u16 sllp; /* SLB page size encoding */ -#endif - unsigned long vdso_base; -#ifdef CONFIG_PPC_SUBPAGE_PROT - struct subpage_prot_table spt; -#endif /* CONFIG_PPC_SUBPAGE_PROT */ -#ifdef CONFIG_PPC_ICSWX - struct spinlock *cop_lockp; /* guard acop and cop_pid */ - unsigned long acop; /* mask of enabled coprocessor types */ - unsigned int cop_pid; /* pid value used with coprocessors */ -#endif /* CONFIG_PPC_ICSWX */ -#ifdef CONFIG_PPC_64K_PAGES - /* for 4K PTE fragment support */ - void *pte_frag; -#endif -#ifdef CONFIG_SPAPR_TCE_IOMMU - struct list_head iommu_group_mem_list; -#endif -} mm_context_t; - - -#if 0 -/* - * The code below is equivalent to this function for arguments - * < 2^VSID_BITS, which is all this should ever be called - * with. However gcc is not clever enough to compute the - * modulus (2^n-1) without a second multiply. - */ -#define vsid_scramble(protovsid, size) \ - ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size)) - -#else /* 1 */ -#define vsid_scramble(protovsid, size) \ - ({ \ - unsigned long x; \ - x = (protovsid) * VSID_MULTIPLIER_##size; \ - x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \ - (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \ - }) -#endif /* 1 */ - -/* Returns the segment size indicator for a user address */ -static inline int user_segment_size(unsigned long addr) -{ - /* Use 1T segments if possible for addresses >= 1T */ - if (addr >= (1UL << SID_SHIFT_1T)) - return mmu_highuser_ssize; - return MMU_SEGSIZE_256M; -} - -static inline unsigned long get_vsid(unsigned long context, unsigned long ea, - int ssize) -{ - /* - * Bad address. We return VSID 0 for that - */ - if ((ea & ~REGION_MASK) >= PGTABLE_RANGE) - return 0; - - if (ssize == MMU_SEGSIZE_256M) - return vsid_scramble((context << ESID_BITS) - | (ea >> SID_SHIFT), 256M); - return vsid_scramble((context << ESID_BITS_1T) - | (ea >> SID_SHIFT_1T), 1T); -} - -/* - * This is only valid for addresses >= PAGE_OFFSET - * - * For kernel space, we use the top 4 context ids to map address as below - * 0x7fffc - [ 0xc000000000000000 - 0xc0003fffffffffff ] - * 0x7fffd - [ 0xd000000000000000 - 0xd0003fffffffffff ] - * 0x7fffe - [ 0xe000000000000000 - 0xe0003fffffffffff ] - * 0x7ffff - [ 0xf000000000000000 - 0xf0003fffffffffff ] - */ -static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize) -{ - unsigned long context; - - /* - * kernel take the top 4 context from the available range - */ - context = (MAX_USER_CONTEXT) + ((ea >> 60) - 0xc) + 1; - return get_vsid(context, ea, ssize); -} - -unsigned htab_shift_for_mem_size(unsigned long mem_size); - -#endif /* __ASSEMBLY__ */ - -#endif /* _ASM_POWERPC_MMU_HASH64_H_ */ |