summaryrefslogtreecommitdiffstats
path: root/arch/powerpc/include/asm/mmu-hash64.h
diff options
context:
space:
mode:
Diffstat (limited to 'arch/powerpc/include/asm/mmu-hash64.h')
-rw-r--r--arch/powerpc/include/asm/mmu-hash64.h616
1 files changed, 0 insertions, 616 deletions
diff --git a/arch/powerpc/include/asm/mmu-hash64.h b/arch/powerpc/include/asm/mmu-hash64.h
deleted file mode 100644
index 0cea4807e26f..000000000000
--- a/arch/powerpc/include/asm/mmu-hash64.h
+++ /dev/null
@@ -1,616 +0,0 @@
-#ifndef _ASM_POWERPC_MMU_HASH64_H_
-#define _ASM_POWERPC_MMU_HASH64_H_
-/*
- * PowerPC64 memory management structures
- *
- * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
- * PPC64 rework.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version
- * 2 of the License, or (at your option) any later version.
- */
-
-#include <asm/asm-compat.h>
-#include <asm/page.h>
-#include <asm/bug.h>
-
-/*
- * This is necessary to get the definition of PGTABLE_RANGE which we
- * need for various slices related matters. Note that this isn't the
- * complete pgtable.h but only a portion of it.
- */
-#include <asm/book3s/64/pgtable.h>
-#include <asm/bug.h>
-#include <asm/processor.h>
-
-/*
- * SLB
- */
-
-#define SLB_NUM_BOLTED 3
-#define SLB_CACHE_ENTRIES 8
-#define SLB_MIN_SIZE 32
-
-/* Bits in the SLB ESID word */
-#define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
-
-/* Bits in the SLB VSID word */
-#define SLB_VSID_SHIFT 12
-#define SLB_VSID_SHIFT_1T 24
-#define SLB_VSID_SSIZE_SHIFT 62
-#define SLB_VSID_B ASM_CONST(0xc000000000000000)
-#define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
-#define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
-#define SLB_VSID_KS ASM_CONST(0x0000000000000800)
-#define SLB_VSID_KP ASM_CONST(0x0000000000000400)
-#define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
-#define SLB_VSID_L ASM_CONST(0x0000000000000100)
-#define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
-#define SLB_VSID_LP ASM_CONST(0x0000000000000030)
-#define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
-#define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
-#define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
-#define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
-#define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
-
-#define SLB_VSID_KERNEL (SLB_VSID_KP)
-#define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
-
-#define SLBIE_C (0x08000000)
-#define SLBIE_SSIZE_SHIFT 25
-
-/*
- * Hash table
- */
-
-#define HPTES_PER_GROUP 8
-
-#define HPTE_V_SSIZE_SHIFT 62
-#define HPTE_V_AVPN_SHIFT 7
-#define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
-#define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
-#define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
-#define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
-#define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
-#define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
-#define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
-#define HPTE_V_VALID ASM_CONST(0x0000000000000001)
-
-#define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
-#define HPTE_R_TS ASM_CONST(0x4000000000000000)
-#define HPTE_R_KEY_HI ASM_CONST(0x3000000000000000)
-#define HPTE_R_RPN_SHIFT 12
-#define HPTE_R_RPN ASM_CONST(0x0ffffffffffff000)
-#define HPTE_R_PP ASM_CONST(0x0000000000000003)
-#define HPTE_R_N ASM_CONST(0x0000000000000004)
-#define HPTE_R_G ASM_CONST(0x0000000000000008)
-#define HPTE_R_M ASM_CONST(0x0000000000000010)
-#define HPTE_R_I ASM_CONST(0x0000000000000020)
-#define HPTE_R_W ASM_CONST(0x0000000000000040)
-#define HPTE_R_WIMG ASM_CONST(0x0000000000000078)
-#define HPTE_R_C ASM_CONST(0x0000000000000080)
-#define HPTE_R_R ASM_CONST(0x0000000000000100)
-#define HPTE_R_KEY_LO ASM_CONST(0x0000000000000e00)
-
-#define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)
-#define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)
-
-/* Values for PP (assumes Ks=0, Kp=1) */
-#define PP_RWXX 0 /* Supervisor read/write, User none */
-#define PP_RWRX 1 /* Supervisor read/write, User read */
-#define PP_RWRW 2 /* Supervisor read/write, User read/write */
-#define PP_RXRX 3 /* Supervisor read, User read */
-#define PP_RXXX (HPTE_R_PP0 | 2) /* Supervisor read, user none */
-
-/* Fields for tlbiel instruction in architecture 2.06 */
-#define TLBIEL_INVAL_SEL_MASK 0xc00 /* invalidation selector */
-#define TLBIEL_INVAL_PAGE 0x000 /* invalidate a single page */
-#define TLBIEL_INVAL_SET_LPID 0x800 /* invalidate a set for current LPID */
-#define TLBIEL_INVAL_SET 0xc00 /* invalidate a set for all LPIDs */
-#define TLBIEL_INVAL_SET_MASK 0xfff000 /* set number to inval. */
-#define TLBIEL_INVAL_SET_SHIFT 12
-
-#define POWER7_TLB_SETS 128 /* # sets in POWER7 TLB */
-#define POWER8_TLB_SETS 512 /* # sets in POWER8 TLB */
-#define POWER9_TLB_SETS_HASH 256 /* # sets in POWER9 TLB Hash mode */
-
-#ifndef __ASSEMBLY__
-
-struct hash_pte {
- __be64 v;
- __be64 r;
-};
-
-extern struct hash_pte *htab_address;
-extern unsigned long htab_size_bytes;
-extern unsigned long htab_hash_mask;
-
-/*
- * Page size definition
- *
- * shift : is the "PAGE_SHIFT" value for that page size
- * sllp : is a bit mask with the value of SLB L || LP to be or'ed
- * directly to a slbmte "vsid" value
- * penc : is the HPTE encoding mask for the "LP" field:
- *
- */
-struct mmu_psize_def
-{
- unsigned int shift; /* number of bits */
- int penc[MMU_PAGE_COUNT]; /* HPTE encoding */
- unsigned int tlbiel; /* tlbiel supported for that page size */
- unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */
- unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */
-};
-extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
-
-static inline int shift_to_mmu_psize(unsigned int shift)
-{
- int psize;
-
- for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
- if (mmu_psize_defs[psize].shift == shift)
- return psize;
- return -1;
-}
-
-static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
-{
- if (mmu_psize_defs[mmu_psize].shift)
- return mmu_psize_defs[mmu_psize].shift;
- BUG();
-}
-
-#endif /* __ASSEMBLY__ */
-
-/*
- * Segment sizes.
- * These are the values used by hardware in the B field of
- * SLB entries and the first dword of MMU hashtable entries.
- * The B field is 2 bits; the values 2 and 3 are unused and reserved.
- */
-#define MMU_SEGSIZE_256M 0
-#define MMU_SEGSIZE_1T 1
-
-/*
- * encode page number shift.
- * in order to fit the 78 bit va in a 64 bit variable we shift the va by
- * 12 bits. This enable us to address upto 76 bit va.
- * For hpt hash from a va we can ignore the page size bits of va and for
- * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
- * we work in all cases including 4k page size.
- */
-#define VPN_SHIFT 12
-
-/*
- * HPTE Large Page (LP) details
- */
-#define LP_SHIFT 12
-#define LP_BITS 8
-#define LP_MASK(i) ((0xFF >> (i)) << LP_SHIFT)
-
-#ifndef __ASSEMBLY__
-
-static inline int slb_vsid_shift(int ssize)
-{
- if (ssize == MMU_SEGSIZE_256M)
- return SLB_VSID_SHIFT;
- return SLB_VSID_SHIFT_1T;
-}
-
-static inline int segment_shift(int ssize)
-{
- if (ssize == MMU_SEGSIZE_256M)
- return SID_SHIFT;
- return SID_SHIFT_1T;
-}
-
-/*
- * The current system page and segment sizes
- */
-extern int mmu_linear_psize;
-extern int mmu_virtual_psize;
-extern int mmu_vmalloc_psize;
-extern int mmu_vmemmap_psize;
-extern int mmu_io_psize;
-extern int mmu_kernel_ssize;
-extern int mmu_highuser_ssize;
-extern u16 mmu_slb_size;
-extern unsigned long tce_alloc_start, tce_alloc_end;
-
-/*
- * If the processor supports 64k normal pages but not 64k cache
- * inhibited pages, we have to be prepared to switch processes
- * to use 4k pages when they create cache-inhibited mappings.
- * If this is the case, mmu_ci_restrictions will be set to 1.
- */
-extern int mmu_ci_restrictions;
-
-/*
- * This computes the AVPN and B fields of the first dword of a HPTE,
- * for use when we want to match an existing PTE. The bottom 7 bits
- * of the returned value are zero.
- */
-static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
- int ssize)
-{
- unsigned long v;
- /*
- * The AVA field omits the low-order 23 bits of the 78 bits VA.
- * These bits are not needed in the PTE, because the
- * low-order b of these bits are part of the byte offset
- * into the virtual page and, if b < 23, the high-order
- * 23-b of these bits are always used in selecting the
- * PTEGs to be searched
- */
- v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
- v <<= HPTE_V_AVPN_SHIFT;
- v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
- return v;
-}
-
-/*
- * This function sets the AVPN and L fields of the HPTE appropriately
- * using the base page size and actual page size.
- */
-static inline unsigned long hpte_encode_v(unsigned long vpn, int base_psize,
- int actual_psize, int ssize)
-{
- unsigned long v;
- v = hpte_encode_avpn(vpn, base_psize, ssize);
- if (actual_psize != MMU_PAGE_4K)
- v |= HPTE_V_LARGE;
- return v;
-}
-
-/*
- * This function sets the ARPN, and LP fields of the HPTE appropriately
- * for the page size. We assume the pa is already "clean" that is properly
- * aligned for the requested page size
- */
-static inline unsigned long hpte_encode_r(unsigned long pa, int base_psize,
- int actual_psize)
-{
- /* A 4K page needs no special encoding */
- if (actual_psize == MMU_PAGE_4K)
- return pa & HPTE_R_RPN;
- else {
- unsigned int penc = mmu_psize_defs[base_psize].penc[actual_psize];
- unsigned int shift = mmu_psize_defs[actual_psize].shift;
- return (pa & ~((1ul << shift) - 1)) | (penc << LP_SHIFT);
- }
-}
-
-/*
- * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
- */
-static inline unsigned long hpt_vpn(unsigned long ea,
- unsigned long vsid, int ssize)
-{
- unsigned long mask;
- int s_shift = segment_shift(ssize);
-
- mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
- return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
-}
-
-/*
- * This hashes a virtual address
- */
-static inline unsigned long hpt_hash(unsigned long vpn,
- unsigned int shift, int ssize)
-{
- int mask;
- unsigned long hash, vsid;
-
- /* VPN_SHIFT can be atmost 12 */
- if (ssize == MMU_SEGSIZE_256M) {
- mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
- hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
- ((vpn & mask) >> (shift - VPN_SHIFT));
- } else {
- mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
- vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
- hash = vsid ^ (vsid << 25) ^
- ((vpn & mask) >> (shift - VPN_SHIFT)) ;
- }
- return hash & 0x7fffffffffUL;
-}
-
-#define HPTE_LOCAL_UPDATE 0x1
-#define HPTE_NOHPTE_UPDATE 0x2
-
-extern int __hash_page_4K(unsigned long ea, unsigned long access,
- unsigned long vsid, pte_t *ptep, unsigned long trap,
- unsigned long flags, int ssize, int subpage_prot);
-extern int __hash_page_64K(unsigned long ea, unsigned long access,
- unsigned long vsid, pte_t *ptep, unsigned long trap,
- unsigned long flags, int ssize);
-struct mm_struct;
-unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
-extern int hash_page_mm(struct mm_struct *mm, unsigned long ea,
- unsigned long access, unsigned long trap,
- unsigned long flags);
-extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
- unsigned long dsisr);
-int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
- pte_t *ptep, unsigned long trap, unsigned long flags,
- int ssize, unsigned int shift, unsigned int mmu_psize);
-#ifdef CONFIG_TRANSPARENT_HUGEPAGE
-extern int __hash_page_thp(unsigned long ea, unsigned long access,
- unsigned long vsid, pmd_t *pmdp, unsigned long trap,
- unsigned long flags, int ssize, unsigned int psize);
-#else
-static inline int __hash_page_thp(unsigned long ea, unsigned long access,
- unsigned long vsid, pmd_t *pmdp,
- unsigned long trap, unsigned long flags,
- int ssize, unsigned int psize)
-{
- BUG();
- return -1;
-}
-#endif
-extern void hash_failure_debug(unsigned long ea, unsigned long access,
- unsigned long vsid, unsigned long trap,
- int ssize, int psize, int lpsize,
- unsigned long pte);
-extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
- unsigned long pstart, unsigned long prot,
- int psize, int ssize);
-int htab_remove_mapping(unsigned long vstart, unsigned long vend,
- int psize, int ssize);
-extern void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
-extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
-
-extern void hpte_init_native(void);
-extern void hpte_init_lpar(void);
-extern void hpte_init_beat(void);
-extern void hpte_init_beat_v3(void);
-
-extern void slb_initialize(void);
-extern void slb_flush_and_rebolt(void);
-
-extern void slb_vmalloc_update(void);
-extern void slb_set_size(u16 size);
-#endif /* __ASSEMBLY__ */
-
-/*
- * VSID allocation (256MB segment)
- *
- * We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
- * from mmu context id and effective segment id of the address.
- *
- * For user processes max context id is limited to ((1ul << 19) - 5)
- * for kernel space, we use the top 4 context ids to map address as below
- * NOTE: each context only support 64TB now.
- * 0x7fffc - [ 0xc000000000000000 - 0xc0003fffffffffff ]
- * 0x7fffd - [ 0xd000000000000000 - 0xd0003fffffffffff ]
- * 0x7fffe - [ 0xe000000000000000 - 0xe0003fffffffffff ]
- * 0x7ffff - [ 0xf000000000000000 - 0xf0003fffffffffff ]
- *
- * The proto-VSIDs are then scrambled into real VSIDs with the
- * multiplicative hash:
- *
- * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
- *
- * VSID_MULTIPLIER is prime, so in particular it is
- * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
- * Because the modulus is 2^n-1 we can compute it efficiently without
- * a divide or extra multiply (see below). The scramble function gives
- * robust scattering in the hash table (at least based on some initial
- * results).
- *
- * We also consider VSID 0 special. We use VSID 0 for slb entries mapping
- * bad address. This enables us to consolidate bad address handling in
- * hash_page.
- *
- * We also need to avoid the last segment of the last context, because that
- * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
- * because of the modulo operation in vsid scramble. But the vmemmap
- * (which is what uses region 0xf) will never be close to 64TB in size
- * (it's 56 bytes per page of system memory).
- */
-
-#define CONTEXT_BITS 19
-#define ESID_BITS 18
-#define ESID_BITS_1T 6
-
-/*
- * 256MB segment
- * The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments
- * available for user + kernel mapping. The top 4 contexts are used for
- * kernel mapping. Each segment contains 2^28 bytes. Each
- * context maps 2^46 bytes (64TB) so we can support 2^19-1 contexts
- * (19 == 37 + 28 - 46).
- */
-#define MAX_USER_CONTEXT ((ASM_CONST(1) << CONTEXT_BITS) - 5)
-
-/*
- * This should be computed such that protovosid * vsid_mulitplier
- * doesn't overflow 64 bits. It should also be co-prime to vsid_modulus
- */
-#define VSID_MULTIPLIER_256M ASM_CONST(12538073) /* 24-bit prime */
-#define VSID_BITS_256M (CONTEXT_BITS + ESID_BITS)
-#define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1)
-
-#define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
-#define VSID_BITS_1T (CONTEXT_BITS + ESID_BITS_1T)
-#define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1)
-
-
-#define USER_VSID_RANGE (1UL << (ESID_BITS + SID_SHIFT))
-
-/*
- * This macro generates asm code to compute the VSID scramble
- * function. Used in slb_allocate() and do_stab_bolted. The function
- * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
- *
- * rt = register continaing the proto-VSID and into which the
- * VSID will be stored
- * rx = scratch register (clobbered)
- *
- * - rt and rx must be different registers
- * - The answer will end up in the low VSID_BITS bits of rt. The higher
- * bits may contain other garbage, so you may need to mask the
- * result.
- */
-#define ASM_VSID_SCRAMBLE(rt, rx, size) \
- lis rx,VSID_MULTIPLIER_##size@h; \
- ori rx,rx,VSID_MULTIPLIER_##size@l; \
- mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
- \
- srdi rx,rt,VSID_BITS_##size; \
- clrldi rt,rt,(64-VSID_BITS_##size); \
- add rt,rt,rx; /* add high and low bits */ \
- /* NOTE: explanation based on VSID_BITS_##size = 36 \
- * Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
- * 2^36-1+2^28-1. That in particular means that if r3 >= \
- * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
- * the bit clear, r3 already has the answer we want, if it \
- * doesn't, the answer is the low 36 bits of r3+1. So in all \
- * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
- addi rx,rt,1; \
- srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \
- add rt,rt,rx
-
-/* 4 bits per slice and we have one slice per 1TB */
-#define SLICE_ARRAY_SIZE (PGTABLE_RANGE >> 41)
-
-#ifndef __ASSEMBLY__
-
-#ifdef CONFIG_PPC_SUBPAGE_PROT
-/*
- * For the sub-page protection option, we extend the PGD with one of
- * these. Basically we have a 3-level tree, with the top level being
- * the protptrs array. To optimize speed and memory consumption when
- * only addresses < 4GB are being protected, pointers to the first
- * four pages of sub-page protection words are stored in the low_prot
- * array.
- * Each page of sub-page protection words protects 1GB (4 bytes
- * protects 64k). For the 3-level tree, each page of pointers then
- * protects 8TB.
- */
-struct subpage_prot_table {
- unsigned long maxaddr; /* only addresses < this are protected */
- unsigned int **protptrs[(TASK_SIZE_USER64 >> 43)];
- unsigned int *low_prot[4];
-};
-
-#define SBP_L1_BITS (PAGE_SHIFT - 2)
-#define SBP_L2_BITS (PAGE_SHIFT - 3)
-#define SBP_L1_COUNT (1 << SBP_L1_BITS)
-#define SBP_L2_COUNT (1 << SBP_L2_BITS)
-#define SBP_L2_SHIFT (PAGE_SHIFT + SBP_L1_BITS)
-#define SBP_L3_SHIFT (SBP_L2_SHIFT + SBP_L2_BITS)
-
-extern void subpage_prot_free(struct mm_struct *mm);
-extern void subpage_prot_init_new_context(struct mm_struct *mm);
-#else
-static inline void subpage_prot_free(struct mm_struct *mm) {}
-static inline void subpage_prot_init_new_context(struct mm_struct *mm) { }
-#endif /* CONFIG_PPC_SUBPAGE_PROT */
-
-typedef unsigned long mm_context_id_t;
-struct spinlock;
-
-typedef struct {
- mm_context_id_t id;
- u16 user_psize; /* page size index */
-
-#ifdef CONFIG_PPC_MM_SLICES
- u64 low_slices_psize; /* SLB page size encodings */
- unsigned char high_slices_psize[SLICE_ARRAY_SIZE];
-#else
- u16 sllp; /* SLB page size encoding */
-#endif
- unsigned long vdso_base;
-#ifdef CONFIG_PPC_SUBPAGE_PROT
- struct subpage_prot_table spt;
-#endif /* CONFIG_PPC_SUBPAGE_PROT */
-#ifdef CONFIG_PPC_ICSWX
- struct spinlock *cop_lockp; /* guard acop and cop_pid */
- unsigned long acop; /* mask of enabled coprocessor types */
- unsigned int cop_pid; /* pid value used with coprocessors */
-#endif /* CONFIG_PPC_ICSWX */
-#ifdef CONFIG_PPC_64K_PAGES
- /* for 4K PTE fragment support */
- void *pte_frag;
-#endif
-#ifdef CONFIG_SPAPR_TCE_IOMMU
- struct list_head iommu_group_mem_list;
-#endif
-} mm_context_t;
-
-
-#if 0
-/*
- * The code below is equivalent to this function for arguments
- * < 2^VSID_BITS, which is all this should ever be called
- * with. However gcc is not clever enough to compute the
- * modulus (2^n-1) without a second multiply.
- */
-#define vsid_scramble(protovsid, size) \
- ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
-
-#else /* 1 */
-#define vsid_scramble(protovsid, size) \
- ({ \
- unsigned long x; \
- x = (protovsid) * VSID_MULTIPLIER_##size; \
- x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
- (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
- })
-#endif /* 1 */
-
-/* Returns the segment size indicator for a user address */
-static inline int user_segment_size(unsigned long addr)
-{
- /* Use 1T segments if possible for addresses >= 1T */
- if (addr >= (1UL << SID_SHIFT_1T))
- return mmu_highuser_ssize;
- return MMU_SEGSIZE_256M;
-}
-
-static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
- int ssize)
-{
- /*
- * Bad address. We return VSID 0 for that
- */
- if ((ea & ~REGION_MASK) >= PGTABLE_RANGE)
- return 0;
-
- if (ssize == MMU_SEGSIZE_256M)
- return vsid_scramble((context << ESID_BITS)
- | (ea >> SID_SHIFT), 256M);
- return vsid_scramble((context << ESID_BITS_1T)
- | (ea >> SID_SHIFT_1T), 1T);
-}
-
-/*
- * This is only valid for addresses >= PAGE_OFFSET
- *
- * For kernel space, we use the top 4 context ids to map address as below
- * 0x7fffc - [ 0xc000000000000000 - 0xc0003fffffffffff ]
- * 0x7fffd - [ 0xd000000000000000 - 0xd0003fffffffffff ]
- * 0x7fffe - [ 0xe000000000000000 - 0xe0003fffffffffff ]
- * 0x7ffff - [ 0xf000000000000000 - 0xf0003fffffffffff ]
- */
-static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
-{
- unsigned long context;
-
- /*
- * kernel take the top 4 context from the available range
- */
- context = (MAX_USER_CONTEXT) + ((ea >> 60) - 0xc) + 1;
- return get_vsid(context, ea, ssize);
-}
-
-unsigned htab_shift_for_mem_size(unsigned long mem_size);
-
-#endif /* __ASSEMBLY__ */
-
-#endif /* _ASM_POWERPC_MMU_HASH64_H_ */