summaryrefslogtreecommitdiffstats
path: root/drivers/mtd/nand/raw/docg4.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/mtd/nand/raw/docg4.c')
-rw-r--r--drivers/mtd/nand/raw/docg4.c1442
1 files changed, 0 insertions, 1442 deletions
diff --git a/drivers/mtd/nand/raw/docg4.c b/drivers/mtd/nand/raw/docg4.c
deleted file mode 100644
index a3f04315c05c..000000000000
--- a/drivers/mtd/nand/raw/docg4.c
+++ /dev/null
@@ -1,1442 +0,0 @@
-/*
- * Copyright © 2012 Mike Dunn <mikedunn@newsguy.com>
- *
- * mtd nand driver for M-Systems DiskOnChip G4
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * Tested on the Palm Treo 680. The G4 is also present on Toshiba Portege, Asus
- * P526, some HTC smartphones (Wizard, Prophet, ...), O2 XDA Zinc, maybe others.
- * Should work on these as well. Let me know!
- *
- * TODO:
- *
- * Mechanism for management of password-protected areas
- *
- * Hamming ecc when reading oob only
- *
- * According to the M-Sys documentation, this device is also available in a
- * "dual-die" configuration having a 256MB capacity, but no mechanism for
- * detecting this variant is documented. Currently this driver assumes 128MB
- * capacity.
- *
- * Support for multiple cascaded devices ("floors"). Not sure which gadgets
- * contain multiple G4s in a cascaded configuration, if any.
- *
- */
-
-#include <linux/kernel.h>
-#include <linux/slab.h>
-#include <linux/init.h>
-#include <linux/string.h>
-#include <linux/sched.h>
-#include <linux/delay.h>
-#include <linux/module.h>
-#include <linux/export.h>
-#include <linux/platform_device.h>
-#include <linux/io.h>
-#include <linux/bitops.h>
-#include <linux/mtd/partitions.h>
-#include <linux/mtd/mtd.h>
-#include <linux/mtd/rawnand.h>
-#include <linux/bch.h>
-#include <linux/bitrev.h>
-#include <linux/jiffies.h>
-
-/*
- * In "reliable mode" consecutive 2k pages are used in parallel (in some
- * fashion) to store the same data. The data can be read back from the
- * even-numbered pages in the normal manner; odd-numbered pages will appear to
- * contain junk. Systems that boot from the docg4 typically write the secondary
- * program loader (SPL) code in this mode. The SPL is loaded by the initial
- * program loader (IPL, stored in the docg4's 2k NOR-like region that is mapped
- * to the reset vector address). This module parameter enables you to use this
- * driver to write the SPL. When in this mode, no more than 2k of data can be
- * written at a time, because the addresses do not increment in the normal
- * manner, and the starting offset must be within an even-numbered 2k region;
- * i.e., invalid starting offsets are 0x800, 0xa00, 0xc00, 0xe00, 0x1800,
- * 0x1a00, ... Reliable mode is a special case and should not be used unless
- * you know what you're doing.
- */
-static bool reliable_mode;
-module_param(reliable_mode, bool, 0);
-MODULE_PARM_DESC(reliable_mode, "pages are programmed in reliable mode");
-
-/*
- * You'll want to ignore badblocks if you're reading a partition that contains
- * data written by the TrueFFS library (i.e., by PalmOS, Windows, etc), since
- * it does not use mtd nand's method for marking bad blocks (using oob area).
- * This will also skip the check of the "page written" flag.
- */
-static bool ignore_badblocks;
-module_param(ignore_badblocks, bool, 0);
-MODULE_PARM_DESC(ignore_badblocks, "no badblock checking performed");
-
-struct docg4_priv {
- struct mtd_info *mtd;
- struct device *dev;
- void __iomem *virtadr;
- int status;
- struct {
- unsigned int command;
- int column;
- int page;
- } last_command;
- uint8_t oob_buf[16];
- uint8_t ecc_buf[7];
- int oob_page;
- struct bch_control *bch;
-};
-
-/*
- * Defines prefixed with DOCG4 are unique to the diskonchip G4. All others are
- * shared with other diskonchip devices (P3, G3 at least).
- *
- * Functions with names prefixed with docg4_ are mtd / nand interface functions
- * (though they may also be called internally). All others are internal.
- */
-
-#define DOC_IOSPACE_DATA 0x0800
-
-/* register offsets */
-#define DOC_CHIPID 0x1000
-#define DOC_DEVICESELECT 0x100a
-#define DOC_ASICMODE 0x100c
-#define DOC_DATAEND 0x101e
-#define DOC_NOP 0x103e
-
-#define DOC_FLASHSEQUENCE 0x1032
-#define DOC_FLASHCOMMAND 0x1034
-#define DOC_FLASHADDRESS 0x1036
-#define DOC_FLASHCONTROL 0x1038
-#define DOC_ECCCONF0 0x1040
-#define DOC_ECCCONF1 0x1042
-#define DOC_HAMMINGPARITY 0x1046
-#define DOC_BCH_SYNDROM(idx) (0x1048 + idx)
-
-#define DOC_ASICMODECONFIRM 0x1072
-#define DOC_CHIPID_INV 0x1074
-#define DOC_POWERMODE 0x107c
-
-#define DOCG4_MYSTERY_REG 0x1050
-
-/* apparently used only to write oob bytes 6 and 7 */
-#define DOCG4_OOB_6_7 0x1052
-
-/* DOC_FLASHSEQUENCE register commands */
-#define DOC_SEQ_RESET 0x00
-#define DOCG4_SEQ_PAGE_READ 0x03
-#define DOCG4_SEQ_FLUSH 0x29
-#define DOCG4_SEQ_PAGEWRITE 0x16
-#define DOCG4_SEQ_PAGEPROG 0x1e
-#define DOCG4_SEQ_BLOCKERASE 0x24
-#define DOCG4_SEQ_SETMODE 0x45
-
-/* DOC_FLASHCOMMAND register commands */
-#define DOCG4_CMD_PAGE_READ 0x00
-#define DOC_CMD_ERASECYCLE2 0xd0
-#define DOCG4_CMD_FLUSH 0x70
-#define DOCG4_CMD_READ2 0x30
-#define DOC_CMD_PROG_BLOCK_ADDR 0x60
-#define DOCG4_CMD_PAGEWRITE 0x80
-#define DOC_CMD_PROG_CYCLE2 0x10
-#define DOCG4_CMD_FAST_MODE 0xa3 /* functionality guessed */
-#define DOC_CMD_RELIABLE_MODE 0x22
-#define DOC_CMD_RESET 0xff
-
-/* DOC_POWERMODE register bits */
-#define DOC_POWERDOWN_READY 0x80
-
-/* DOC_FLASHCONTROL register bits */
-#define DOC_CTRL_CE 0x10
-#define DOC_CTRL_UNKNOWN 0x40
-#define DOC_CTRL_FLASHREADY 0x01
-
-/* DOC_ECCCONF0 register bits */
-#define DOC_ECCCONF0_READ_MODE 0x8000
-#define DOC_ECCCONF0_UNKNOWN 0x2000
-#define DOC_ECCCONF0_ECC_ENABLE 0x1000
-#define DOC_ECCCONF0_DATA_BYTES_MASK 0x07ff
-
-/* DOC_ECCCONF1 register bits */
-#define DOC_ECCCONF1_BCH_SYNDROM_ERR 0x80
-#define DOC_ECCCONF1_ECC_ENABLE 0x07
-#define DOC_ECCCONF1_PAGE_IS_WRITTEN 0x20
-
-/* DOC_ASICMODE register bits */
-#define DOC_ASICMODE_RESET 0x00
-#define DOC_ASICMODE_NORMAL 0x01
-#define DOC_ASICMODE_POWERDOWN 0x02
-#define DOC_ASICMODE_MDWREN 0x04
-#define DOC_ASICMODE_BDETCT_RESET 0x08
-#define DOC_ASICMODE_RSTIN_RESET 0x10
-#define DOC_ASICMODE_RAM_WE 0x20
-
-/* good status values read after read/write/erase operations */
-#define DOCG4_PROGSTATUS_GOOD 0x51
-#define DOCG4_PROGSTATUS_GOOD_2 0xe0
-
-/*
- * On read operations (page and oob-only), the first byte read from I/O reg is a
- * status. On error, it reads 0x73; otherwise, it reads either 0x71 (first read
- * after reset only) or 0x51, so bit 1 is presumed to be an error indicator.
- */
-#define DOCG4_READ_ERROR 0x02 /* bit 1 indicates read error */
-
-/* anatomy of the device */
-#define DOCG4_CHIP_SIZE 0x8000000
-#define DOCG4_PAGE_SIZE 0x200
-#define DOCG4_PAGES_PER_BLOCK 0x200
-#define DOCG4_BLOCK_SIZE (DOCG4_PAGES_PER_BLOCK * DOCG4_PAGE_SIZE)
-#define DOCG4_NUMBLOCKS (DOCG4_CHIP_SIZE / DOCG4_BLOCK_SIZE)
-#define DOCG4_OOB_SIZE 0x10
-#define DOCG4_CHIP_SHIFT 27 /* log_2(DOCG4_CHIP_SIZE) */
-#define DOCG4_PAGE_SHIFT 9 /* log_2(DOCG4_PAGE_SIZE) */
-#define DOCG4_ERASE_SHIFT 18 /* log_2(DOCG4_BLOCK_SIZE) */
-
-/* all but the last byte is included in ecc calculation */
-#define DOCG4_BCH_SIZE (DOCG4_PAGE_SIZE + DOCG4_OOB_SIZE - 1)
-
-#define DOCG4_USERDATA_LEN 520 /* 512 byte page plus 8 oob avail to user */
-
-/* expected values from the ID registers */
-#define DOCG4_IDREG1_VALUE 0x0400
-#define DOCG4_IDREG2_VALUE 0xfbff
-
-/* primitive polynomial used to build the Galois field used by hw ecc gen */
-#define DOCG4_PRIMITIVE_POLY 0x4443
-
-#define DOCG4_M 14 /* Galois field is of order 2^14 */
-#define DOCG4_T 4 /* BCH alg corrects up to 4 bit errors */
-
-#define DOCG4_FACTORY_BBT_PAGE 16 /* page where read-only factory bbt lives */
-#define DOCG4_REDUNDANT_BBT_PAGE 24 /* page where redundant factory bbt lives */
-
-/*
- * Bytes 0, 1 are used as badblock marker.
- * Bytes 2 - 6 are available to the user.
- * Byte 7 is hamming ecc for first 7 oob bytes only.
- * Bytes 8 - 14 are hw-generated ecc covering entire page + oob bytes 0 - 14.
- * Byte 15 (the last) is used by the driver as a "page written" flag.
- */
-static int docg4_ooblayout_ecc(struct mtd_info *mtd, int section,
- struct mtd_oob_region *oobregion)
-{
- if (section)
- return -ERANGE;
-
- oobregion->offset = 7;
- oobregion->length = 9;
-
- return 0;
-}
-
-static int docg4_ooblayout_free(struct mtd_info *mtd, int section,
- struct mtd_oob_region *oobregion)
-{
- if (section)
- return -ERANGE;
-
- oobregion->offset = 2;
- oobregion->length = 5;
-
- return 0;
-}
-
-static const struct mtd_ooblayout_ops docg4_ooblayout_ops = {
- .ecc = docg4_ooblayout_ecc,
- .free = docg4_ooblayout_free,
-};
-
-/*
- * The device has a nop register which M-Sys claims is for the purpose of
- * inserting precise delays. But beware; at least some operations fail if the
- * nop writes are replaced with a generic delay!
- */
-static inline void write_nop(void __iomem *docptr)
-{
- writew(0, docptr + DOC_NOP);
-}
-
-static void docg4_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
-{
- int i;
- struct nand_chip *nand = mtd_to_nand(mtd);
- uint16_t *p = (uint16_t *) buf;
- len >>= 1;
-
- for (i = 0; i < len; i++)
- p[i] = readw(nand->IO_ADDR_R);
-}
-
-static void docg4_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
-{
- int i;
- struct nand_chip *nand = mtd_to_nand(mtd);
- uint16_t *p = (uint16_t *) buf;
- len >>= 1;
-
- for (i = 0; i < len; i++)
- writew(p[i], nand->IO_ADDR_W);
-}
-
-static int poll_status(struct docg4_priv *doc)
-{
- /*
- * Busy-wait for the FLASHREADY bit to be set in the FLASHCONTROL
- * register. Operations known to take a long time (e.g., block erase)
- * should sleep for a while before calling this.
- */
-
- uint16_t flash_status;
- unsigned long timeo;
- void __iomem *docptr = doc->virtadr;
-
- dev_dbg(doc->dev, "%s...\n", __func__);
-
- /* hardware quirk requires reading twice initially */
- flash_status = readw(docptr + DOC_FLASHCONTROL);
-
- timeo = jiffies + msecs_to_jiffies(200); /* generous timeout */
- do {
- cpu_relax();
- flash_status = readb(docptr + DOC_FLASHCONTROL);
- } while (!(flash_status & DOC_CTRL_FLASHREADY) &&
- time_before(jiffies, timeo));
-
- if (unlikely(!(flash_status & DOC_CTRL_FLASHREADY))) {
- dev_err(doc->dev, "%s: timed out!\n", __func__);
- return NAND_STATUS_FAIL;
- }
-
- return 0;
-}
-
-
-static int docg4_wait(struct mtd_info *mtd, struct nand_chip *nand)
-{
-
- struct docg4_priv *doc = nand_get_controller_data(nand);
- int status = NAND_STATUS_WP; /* inverse logic?? */
- dev_dbg(doc->dev, "%s...\n", __func__);
-
- /* report any previously unreported error */
- if (doc->status) {
- status |= doc->status;
- doc->status = 0;
- return status;
- }
-
- status |= poll_status(doc);
- return status;
-}
-
-static void docg4_select_chip(struct mtd_info *mtd, int chip)
-{
- /*
- * Select among multiple cascaded chips ("floors"). Multiple floors are
- * not yet supported, so the only valid non-negative value is 0.
- */
- struct nand_chip *nand = mtd_to_nand(mtd);
- struct docg4_priv *doc = nand_get_controller_data(nand);
- void __iomem *docptr = doc->virtadr;
-
- dev_dbg(doc->dev, "%s: chip %d\n", __func__, chip);
-
- if (chip < 0)
- return; /* deselected */
-
- if (chip > 0)
- dev_warn(doc->dev, "multiple floors currently unsupported\n");
-
- writew(0, docptr + DOC_DEVICESELECT);
-}
-
-static void reset(struct mtd_info *mtd)
-{
- /* full device reset */
-
- struct nand_chip *nand = mtd_to_nand(mtd);
- struct docg4_priv *doc = nand_get_controller_data(nand);
- void __iomem *docptr = doc->virtadr;
-
- writew(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN,
- docptr + DOC_ASICMODE);
- writew(~(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN),
- docptr + DOC_ASICMODECONFIRM);
- write_nop(docptr);
-
- writew(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN,
- docptr + DOC_ASICMODE);
- writew(~(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN),
- docptr + DOC_ASICMODECONFIRM);
-
- writew(DOC_ECCCONF1_ECC_ENABLE, docptr + DOC_ECCCONF1);
-
- poll_status(doc);
-}
-
-static void read_hw_ecc(void __iomem *docptr, uint8_t *ecc_buf)
-{
- /* read the 7 hw-generated ecc bytes */
-
- int i;
- for (i = 0; i < 7; i++) { /* hw quirk; read twice */
- ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i));
- ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i));
- }
-}
-
-static int correct_data(struct mtd_info *mtd, uint8_t *buf, int page)
-{
- /*
- * Called after a page read when hardware reports bitflips.
- * Up to four bitflips can be corrected.
- */
-
- struct nand_chip *nand = mtd_to_nand(mtd);
- struct docg4_priv *doc = nand_get_controller_data(nand);
- void __iomem *docptr = doc->virtadr;
- int i, numerrs, errpos[4];
- const uint8_t blank_read_hwecc[8] = {
- 0xcf, 0x72, 0xfc, 0x1b, 0xa9, 0xc7, 0xb9, 0 };
-
- read_hw_ecc(docptr, doc->ecc_buf); /* read 7 hw-generated ecc bytes */
-
- /* check if read error is due to a blank page */
- if (!memcmp(doc->ecc_buf, blank_read_hwecc, 7))
- return 0; /* yes */
-
- /* skip additional check of "written flag" if ignore_badblocks */
- if (ignore_badblocks == false) {
-
- /*
- * If the hw ecc bytes are not those of a blank page, there's
- * still a chance that the page is blank, but was read with
- * errors. Check the "written flag" in last oob byte, which
- * is set to zero when a page is written. If more than half
- * the bits are set, assume a blank page. Unfortunately, the
- * bit flips(s) are not reported in stats.
- */
-
- if (nand->oob_poi[15]) {
- int bit, numsetbits = 0;
- unsigned long written_flag = nand->oob_poi[15];
- for_each_set_bit(bit, &written_flag, 8)
- numsetbits++;
- if (numsetbits > 4) { /* assume blank */
- dev_warn(doc->dev,
- "error(s) in blank page "
- "at offset %08x\n",
- page * DOCG4_PAGE_SIZE);
- return 0;
- }
- }
- }
-
- /*
- * The hardware ecc unit produces oob_ecc ^ calc_ecc. The kernel's bch
- * algorithm is used to decode this. However the hw operates on page
- * data in a bit order that is the reverse of that of the bch alg,
- * requiring that the bits be reversed on the result. Thanks to Ivan
- * Djelic for his analysis!
- */
- for (i = 0; i < 7; i++)
- doc->ecc_buf[i] = bitrev8(doc->ecc_buf[i]);
-
- numerrs = decode_bch(doc->bch, NULL, DOCG4_USERDATA_LEN, NULL,
- doc->ecc_buf, NULL, errpos);
-
- if (numerrs == -EBADMSG) {
- dev_warn(doc->dev, "uncorrectable errors at offset %08x\n",
- page * DOCG4_PAGE_SIZE);
- return -EBADMSG;
- }
-
- BUG_ON(numerrs < 0); /* -EINVAL, or anything other than -EBADMSG */
-
- /* undo last step in BCH alg (modulo mirroring not needed) */
- for (i = 0; i < numerrs; i++)
- errpos[i] = (errpos[i] & ~7)|(7-(errpos[i] & 7));
-
- /* fix the errors */
- for (i = 0; i < numerrs; i++) {
-
- /* ignore if error within oob ecc bytes */
- if (errpos[i] > DOCG4_USERDATA_LEN * 8)
- continue;
-
- /* if error within oob area preceeding ecc bytes... */
- if (errpos[i] > DOCG4_PAGE_SIZE * 8)
- change_bit(errpos[i] - DOCG4_PAGE_SIZE * 8,
- (unsigned long *)nand->oob_poi);
-
- else /* error in page data */
- change_bit(errpos[i], (unsigned long *)buf);
- }
-
- dev_notice(doc->dev, "%d error(s) corrected at offset %08x\n",
- numerrs, page * DOCG4_PAGE_SIZE);
-
- return numerrs;
-}
-
-static uint8_t docg4_read_byte(struct mtd_info *mtd)
-{
- struct nand_chip *nand = mtd_to_nand(mtd);
- struct docg4_priv *doc = nand_get_controller_data(nand);
-
- dev_dbg(doc->dev, "%s\n", __func__);
-
- if (doc->last_command.command == NAND_CMD_STATUS) {
- int status;
-
- /*
- * Previous nand command was status request, so nand
- * infrastructure code expects to read the status here. If an
- * error occurred in a previous operation, report it.
- */
- doc->last_command.command = 0;
-
- if (doc->status) {
- status = doc->status;
- doc->status = 0;
- }
-
- /* why is NAND_STATUS_WP inverse logic?? */
- else
- status = NAND_STATUS_WP | NAND_STATUS_READY;
-
- return status;
- }
-
- dev_warn(doc->dev, "unexpected call to read_byte()\n");
-
- return 0;
-}
-
-static void write_addr(struct docg4_priv *doc, uint32_t docg4_addr)
-{
- /* write the four address bytes packed in docg4_addr to the device */
-
- void __iomem *docptr = doc->virtadr;
- writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
- docg4_addr >>= 8;
- writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
- docg4_addr >>= 8;
- writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
- docg4_addr >>= 8;
- writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
-}
-
-static int read_progstatus(struct docg4_priv *doc)
-{
- /*
- * This apparently checks the status of programming. Done after an
- * erasure, and after page data is written. On error, the status is
- * saved, to be later retrieved by the nand infrastructure code.
- */
- void __iomem *docptr = doc->virtadr;
-
- /* status is read from the I/O reg */
- uint16_t status1 = readw(docptr + DOC_IOSPACE_DATA);
- uint16_t status2 = readw(docptr + DOC_IOSPACE_DATA);
- uint16_t status3 = readw(docptr + DOCG4_MYSTERY_REG);
-
- dev_dbg(doc->dev, "docg4: %s: %02x %02x %02x\n",
- __func__, status1, status2, status3);
-
- if (status1 != DOCG4_PROGSTATUS_GOOD
- || status2 != DOCG4_PROGSTATUS_GOOD_2
- || status3 != DOCG4_PROGSTATUS_GOOD_2) {
- doc->status = NAND_STATUS_FAIL;
- dev_warn(doc->dev, "read_progstatus failed: "
- "%02x, %02x, %02x\n", status1, status2, status3);
- return -EIO;
- }
- return 0;
-}
-
-static int pageprog(struct mtd_info *mtd)
-{
- /*
- * Final step in writing a page. Writes the contents of its
- * internal buffer out to the flash array, or some such.
- */
-
- struct nand_chip *nand = mtd_to_nand(mtd);
- struct docg4_priv *doc = nand_get_controller_data(nand);
- void __iomem *docptr = doc->virtadr;
- int retval = 0;
-
- dev_dbg(doc->dev, "docg4: %s\n", __func__);
-
- writew(DOCG4_SEQ_PAGEPROG, docptr + DOC_FLASHSEQUENCE);
- writew(DOC_CMD_PROG_CYCLE2, docptr + DOC_FLASHCOMMAND);
- write_nop(docptr);
- write_nop(docptr);
-
- /* Just busy-wait; usleep_range() slows things down noticeably. */
- poll_status(doc);
-
- writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE);
- writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND);
- writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0);
- write_nop(docptr);
- write_nop(docptr);
- write_nop(docptr);
- write_nop(docptr);
- write_nop(docptr);
-
- retval = read_progstatus(doc);
- writew(0, docptr + DOC_DATAEND);
- write_nop(docptr);
- poll_status(doc);
- write_nop(docptr);
-
- return retval;
-}
-
-static void sequence_reset(struct mtd_info *mtd)
-{
- /* common starting sequence for all operations */
-
- struct nand_chip *nand = mtd_to_nand(mtd);
- struct docg4_priv *doc = nand_get_controller_data(nand);
- void __iomem *docptr = doc->virtadr;
-
- writew(DOC_CTRL_UNKNOWN | DOC_CTRL_CE, docptr + DOC_FLASHCONTROL);
- writew(DOC_SEQ_RESET, docptr + DOC_FLASHSEQUENCE);
- writew(DOC_CMD_RESET, docptr + DOC_FLASHCOMMAND);
- write_nop(docptr);
- write_nop(docptr);
- poll_status(doc);
- write_nop(docptr);
-}
-
-static void read_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr)
-{
- /* first step in reading a page */
-
- struct nand_chip *nand = mtd_to_nand(mtd);
- struct docg4_priv *doc = nand_get_controller_data(nand);
- void __iomem *docptr = doc->virtadr;
-
- dev_dbg(doc->dev,
- "docg4: %s: g4 page %08x\n", __func__, docg4_addr);
-
- sequence_reset(mtd);
-
- writew(DOCG4_SEQ_PAGE_READ, docptr + DOC_FLASHSEQUENCE);
- writew(DOCG4_CMD_PAGE_READ, docptr + DOC_FLASHCOMMAND);
- write_nop(docptr);
-
- write_addr(doc, docg4_addr);
-
- write_nop(docptr);
- writew(DOCG4_CMD_READ2, docptr + DOC_FLASHCOMMAND);
- write_nop(docptr);
- write_nop(docptr);
-
- poll_status(doc);
-}
-
-static void write_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr)
-{
- /* first step in writing a page */
-
- struct nand_chip *nand = mtd_to_nand(mtd);
- struct docg4_priv *doc = nand_get_controller_data(nand);
- void __iomem *docptr = doc->virtadr;
-
- dev_dbg(doc->dev,
- "docg4: %s: g4 addr: %x\n", __func__, docg4_addr);
- sequence_reset(mtd);
-
- if (unlikely(reliable_mode)) {
- writew(DOCG4_SEQ_SETMODE, docptr + DOC_FLASHSEQUENCE);
- writew(DOCG4_CMD_FAST_MODE, docptr + DOC_FLASHCOMMAND);
- writew(DOC_CMD_RELIABLE_MODE, docptr + DOC_FLASHCOMMAND);
- write_nop(docptr);
- }
-
- writew(DOCG4_SEQ_PAGEWRITE, docptr + DOC_FLASHSEQUENCE);
- writew(DOCG4_CMD_PAGEWRITE, docptr + DOC_FLASHCOMMAND);
- write_nop(docptr);
- write_addr(doc, docg4_addr);
- write_nop(docptr);
- write_nop(docptr);
- poll_status(doc);
-}
-
-static uint32_t mtd_to_docg4_address(int page, int column)
-{
- /*
- * Convert mtd address to format used by the device, 32 bit packed.
- *
- * Some notes on G4 addressing... The M-Sys documentation on this device
- * claims that pages are 2K in length, and indeed, the format of the
- * address used by the device reflects that. But within each page are
- * four 512 byte "sub-pages", each with its own oob data that is
- * read/written immediately after the 512 bytes of page data. This oob
- * data contains the ecc bytes for the preceeding 512 bytes.
- *
- * Rather than tell the mtd nand infrastructure that page size is 2k,
- * with four sub-pages each, we engage in a little subterfuge and tell
- * the infrastructure code that pages are 512 bytes in size. This is
- * done because during the course of reverse-engineering the device, I
- * never observed an instance where an entire 2K "page" was read or
- * written as a unit. Each "sub-page" is always addressed individually,
- * its data read/written, and ecc handled before the next "sub-page" is
- * addressed.
- *
- * This requires us to convert addresses passed by the mtd nand
- * infrastructure code to those used by the device.
- *
- * The address that is written to the device consists of four bytes: the
- * first two are the 2k page number, and the second is the index into
- * the page. The index is in terms of 16-bit half-words and includes
- * the preceeding oob data, so e.g., the index into the second
- * "sub-page" is 0x108, and the full device address of the start of mtd
- * page 0x201 is 0x00800108.
- */
- int g4_page = page / 4; /* device's 2K page */
- int g4_index = (page % 4) * 0x108 + column/2; /* offset into page */
- return (g4_page << 16) | g4_index; /* pack */
-}
-
-static void docg4_command(struct mtd_info *mtd, unsigned command, int column,
- int page_addr)
-{
- /* handle standard nand commands */
-
- struct nand_chip *nand = mtd_to_nand(mtd);
- struct docg4_priv *doc = nand_get_controller_data(nand);
- uint32_t g4_addr = mtd_to_docg4_address(page_addr, column);
-
- dev_dbg(doc->dev, "%s %x, page_addr=%x, column=%x\n",
- __func__, command, page_addr, column);
-
- /*
- * Save the command and its arguments. This enables emulation of
- * standard flash devices, and also some optimizations.
- */
- doc->last_command.command = command;
- doc->last_command.column = column;
- doc->last_command.page = page_addr;
-
- switch (command) {
-
- case NAND_CMD_RESET:
- reset(mtd);
- break;
-
- case NAND_CMD_READ0:
- read_page_prologue(mtd, g4_addr);
- break;
-
- case NAND_CMD_STATUS:
- /* next call to read_byte() will expect a status */
- break;
-
- case NAND_CMD_SEQIN:
- if (unlikely(reliable_mode)) {
- uint16_t g4_page = g4_addr >> 16;
-
- /* writes to odd-numbered 2k pages are invalid */
- if (g4_page & 0x01)
- dev_warn(doc->dev,
- "invalid reliable mode address\n");
- }
-
- write_page_prologue(mtd, g4_addr);
-
- /* hack for deferred write of oob bytes */
- if (doc->oob_page == page_addr)
- memcpy(nand->oob_poi, doc->oob_buf, 16);
- break;
-
- case NAND_CMD_PAGEPROG:
- pageprog(mtd);
- break;
-
- /* we don't expect these, based on review of nand_base.c */
- case NAND_CMD_READOOB:
- case NAND_CMD_READID:
- case NAND_CMD_ERASE1:
- case NAND_CMD_ERASE2:
- dev_warn(doc->dev, "docg4_command: "
- "unexpected nand command 0x%x\n", command);
- break;
-
- }
-}
-
-static int read_page(struct mtd_info *mtd, struct nand_chip *nand,
- uint8_t *buf, int page, bool use_ecc)
-{
- struct docg4_priv *doc = nand_get_controller_data(nand);
- void __iomem *docptr = doc->virtadr;
- uint16_t status, edc_err, *buf16;
- int bits_corrected = 0;
-
- dev_dbg(doc->dev, "%s: page %08x\n", __func__, page);
-
- nand_read_page_op(nand, page, 0, NULL, 0);
-
- writew(DOC_ECCCONF0_READ_MODE |
- DOC_ECCCONF0_ECC_ENABLE |
- DOC_ECCCONF0_UNKNOWN |
- DOCG4_BCH_SIZE,
- docptr + DOC_ECCCONF0);
- write_nop(docptr);
- write_nop(docptr);
- write_nop(docptr);
- write_nop(docptr);
- write_nop(docptr);
-
- /* the 1st byte from the I/O reg is a status; the rest is page data */
- status = readw(docptr + DOC_IOSPACE_DATA);
- if (status & DOCG4_READ_ERROR) {
- dev_err(doc->dev,
- "docg4_read_page: bad status: 0x%02x\n", status);
- writew(0, docptr + DOC_DATAEND);
- return -EIO;
- }
-
- dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status);
-
- docg4_read_buf(mtd, buf, DOCG4_PAGE_SIZE); /* read the page data */
-
- /* this device always reads oob after page data */
- /* first 14 oob bytes read from I/O reg */
- docg4_read_buf(mtd, nand->oob_poi, 14);
-
- /* last 2 read from another reg */
- buf16 = (uint16_t *)(nand->oob_poi + 14);
- *buf16 = readw(docptr + DOCG4_MYSTERY_REG);
-
- write_nop(docptr);
-
- if (likely(use_ecc == true)) {
-
- /* read the register that tells us if bitflip(s) detected */
- edc_err = readw(docptr + DOC_ECCCONF1);
- edc_err = readw(docptr + DOC_ECCCONF1);
- dev_dbg(doc->dev, "%s: edc_err = 0x%02x\n", __func__, edc_err);
-
- /* If bitflips are reported, attempt to correct with ecc */
- if (edc_err & DOC_ECCCONF1_BCH_SYNDROM_ERR) {
- bits_corrected = correct_data(mtd, buf, page);
- if (bits_corrected == -EBADMSG)
- mtd->ecc_stats.failed++;
- else
- mtd->ecc_stats.corrected += bits_corrected;
- }
- }
-
- writew(0, docptr + DOC_DATAEND);
- if (bits_corrected == -EBADMSG) /* uncorrectable errors */
- return 0;
- return bits_corrected;
-}
-
-
-static int docg4_read_page_raw(struct mtd_info *mtd, struct nand_chip *nand,
- uint8_t *buf, int oob_required, int page)
-{
- return read_page(mtd, nand, buf, page, false);
-}
-
-static int docg4_read_page(struct mtd_info *mtd, struct nand_chip *nand,
- uint8_t *buf, int oob_required, int page)
-{
- return read_page(mtd, nand, buf, page, true);
-}
-
-static int docg4_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
- int page)
-{
- struct docg4_priv *doc = nand_get_controller_data(nand);
- void __iomem *docptr = doc->virtadr;
- uint16_t status;
-
- dev_dbg(doc->dev, "%s: page %x\n", __func__, page);
-
- nand_read_page_op(nand, page, nand->ecc.size, NULL, 0);
-
- writew(DOC_ECCCONF0_READ_MODE | DOCG4_OOB_SIZE, docptr + DOC_ECCCONF0);
- write_nop(docptr);
- write_nop(docptr);
- write_nop(docptr);
- write_nop(docptr);
- write_nop(docptr);
-
- /* the 1st byte from the I/O reg is a status; the rest is oob data */
- status = readw(docptr + DOC_IOSPACE_DATA);
- if (status & DOCG4_READ_ERROR) {
- dev_warn(doc->dev,
- "docg4_read_oob failed: status = 0x%02x\n", status);
- return -EIO;
- }
-
- dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status);
-
- docg4_read_buf(mtd, nand->oob_poi, 16);
-
- write_nop(docptr);
- write_nop(docptr);
- write_nop(docptr);
- writew(0, docptr + DOC_DATAEND);
- write_nop(docptr);
-
- return 0;
-}
-
-static int docg4_erase_block(struct mtd_info *mtd, int page)
-{
- struct nand_chip *nand = mtd_to_nand(mtd);
- struct docg4_priv *doc = nand_get_controller_data(nand);
- void __iomem *docptr = doc->virtadr;
- uint16_t g4_page;
- int status;
-
- dev_dbg(doc->dev, "%s: page %04x\n", __func__, page);
-
- sequence_reset(mtd);
-
- writew(DOCG4_SEQ_BLOCKERASE, docptr + DOC_FLASHSEQUENCE);
- writew(DOC_CMD_PROG_BLOCK_ADDR, docptr + DOC_FLASHCOMMAND);
- write_nop(docptr);
-
- /* only 2 bytes of address are written to specify erase block */
- g4_page = (uint16_t)(page / 4); /* to g4's 2k page addressing */
- writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS);
- g4_page >>= 8;
- writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS);
- write_nop(docptr);
-
- /* start the erasure */
- writew(DOC_CMD_ERASECYCLE2, docptr + DOC_FLASHCOMMAND);
- write_nop(docptr);
- write_nop(docptr);
-
- usleep_range(500, 1000); /* erasure is long; take a snooze */
- poll_status(doc);
- writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE);
- writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND);
- writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0);
- write_nop(docptr);
- write_nop(docptr);
- write_nop(docptr);
- write_nop(docptr);
- write_nop(docptr);
-
- read_progstatus(doc);
-
- writew(0, docptr + DOC_DATAEND);
- write_nop(docptr);
- poll_status(doc);
- write_nop(docptr);
-
- status = nand->waitfunc(mtd, nand);
- if (status < 0)
- return status;
-
- return status & NAND_STATUS_FAIL ? -EIO : 0;
-}
-
-static int write_page(struct mtd_info *mtd, struct nand_chip *nand,
- const uint8_t *buf, int page, bool use_ecc)
-{
- struct docg4_priv *doc = nand_get_controller_data(nand);
- void __iomem *docptr = doc->virtadr;
- uint8_t ecc_buf[8];
-
- dev_dbg(doc->dev, "%s...\n", __func__);
-
- nand_prog_page_begin_op(nand, page, 0, NULL, 0);
-
- writew(DOC_ECCCONF0_ECC_ENABLE |
- DOC_ECCCONF0_UNKNOWN |
- DOCG4_BCH_SIZE,
- docptr + DOC_ECCCONF0);
- write_nop(docptr);
-
- /* write the page data */
- docg4_write_buf16(mtd, buf, DOCG4_PAGE_SIZE);
-
- /* oob bytes 0 through 5 are written to I/O reg */
- docg4_write_buf16(mtd, nand->oob_poi, 6);
-
- /* oob byte 6 written to a separate reg */
- writew(nand->oob_poi[6], docptr + DOCG4_OOB_6_7);
-
- write_nop(docptr);
- write_nop(docptr);
-
- /* write hw-generated ecc bytes to oob */
- if (likely(use_ecc == true)) {
- /* oob byte 7 is hamming code */
- uint8_t hamming = readb(docptr + DOC_HAMMINGPARITY);
- hamming = readb(docptr + DOC_HAMMINGPARITY); /* 2nd read */
- writew(hamming, docptr + DOCG4_OOB_6_7);
- write_nop(docptr);
-
- /* read the 7 bch bytes from ecc regs */
- read_hw_ecc(docptr, ecc_buf);
- ecc_buf[7] = 0; /* clear the "page written" flag */
- }
-
- /* write user-supplied bytes to oob */
- else {
- writew(nand->oob_poi[7], docptr + DOCG4_OOB_6_7);
- write_nop(docptr);
- memcpy(ecc_buf, &nand->oob_poi[8], 8);
- }
-
- docg4_write_buf16(mtd, ecc_buf, 8);
- write_nop(docptr);
- write_nop(docptr);
- writew(0, docptr + DOC_DATAEND);
- write_nop(docptr);
-
- return nand_prog_page_end_op(nand);
-}
-
-static int docg4_write_page_raw(struct mtd_info *mtd, struct nand_chip *nand,
- const uint8_t *buf, int oob_required, int page)
-{
- return write_page(mtd, nand, buf, page, false);
-}
-
-static int docg4_write_page(struct mtd_info *mtd, struct nand_chip *nand,
- const uint8_t *buf, int oob_required, int page)
-{
- return write_page(mtd, nand, buf, page, true);
-}
-
-static int docg4_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
- int page)
-{
- /*
- * Writing oob-only is not really supported, because MLC nand must write
- * oob bytes at the same time as page data. Nonetheless, we save the
- * oob buffer contents here, and then write it along with the page data
- * if the same page is subsequently written. This allows user space
- * utilities that write the oob data prior to the page data to work
- * (e.g., nandwrite). The disdvantage is that, if the intention was to
- * write oob only, the operation is quietly ignored. Also, oob can get
- * corrupted if two concurrent processes are running nandwrite.
- */
-
- /* note that bytes 7..14 are hw generated hamming/ecc and overwritten */
- struct docg4_priv *doc = nand_get_controller_data(nand);
- doc->oob_page = page;
- memcpy(doc->oob_buf, nand->oob_poi, 16);
- return 0;
-}
-
-static int __init read_factory_bbt(struct mtd_info *mtd)
-{
- /*
- * The device contains a read-only factory bad block table. Read it and
- * update the memory-based bbt accordingly.
- */
-
- struct nand_chip *nand = mtd_to_nand(mtd);
- struct docg4_priv *doc = nand_get_controller_data(nand);
- uint32_t g4_addr = mtd_to_docg4_address(DOCG4_FACTORY_BBT_PAGE, 0);
- uint8_t *buf;
- int i, block;
- __u32 eccfailed_stats = mtd->ecc_stats.failed;
-
- buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL);
- if (buf == NULL)
- return -ENOMEM;
-
- read_page_prologue(mtd, g4_addr);
- docg4_read_page(mtd, nand, buf, 0, DOCG4_FACTORY_BBT_PAGE);
-
- /*
- * If no memory-based bbt was created, exit. This will happen if module
- * parameter ignore_badblocks is set. Then why even call this function?
- * For an unknown reason, block erase always fails if it's the first
- * operation after device power-up. The above read ensures it never is.
- * Ugly, I know.
- */
- if (nand->bbt == NULL) /* no memory-based bbt */
- goto exit;
-
- if (mtd->ecc_stats.failed > eccfailed_stats) {
- /*
- * Whoops, an ecc failure ocurred reading the factory bbt.
- * It is stored redundantly, so we get another chance.
- */
- eccfailed_stats = mtd->ecc_stats.failed;
- docg4_read_page(mtd, nand, buf, 0, DOCG4_REDUNDANT_BBT_PAGE);
- if (mtd->ecc_stats.failed > eccfailed_stats) {
- dev_warn(doc->dev,
- "The factory bbt could not be read!\n");
- goto exit;
- }
- }
-
- /*
- * Parse factory bbt and update memory-based bbt. Factory bbt format is
- * simple: one bit per block, block numbers increase left to right (msb
- * to lsb). Bit clear means bad block.
- */
- for (i = block = 0; block < DOCG4_NUMBLOCKS; block += 8, i++) {
- int bitnum;
- unsigned long bits = ~buf[i];
- for_each_set_bit(bitnum, &bits, 8) {
- int badblock = block + 7 - bitnum;
- nand->bbt[badblock / 4] |=
- 0x03 << ((badblock % 4) * 2);
- mtd->ecc_stats.badblocks++;
- dev_notice(doc->dev, "factory-marked bad block: %d\n",
- badblock);
- }
- }
- exit:
- kfree(buf);
- return 0;
-}
-
-static int docg4_block_markbad(struct mtd_info *mtd, loff_t ofs)
-{
- /*
- * Mark a block as bad. Bad blocks are marked in the oob area of the
- * first page of the block. The default scan_bbt() in the nand
- * infrastructure code works fine for building the memory-based bbt
- * during initialization, as does the nand infrastructure function that
- * checks if a block is bad by reading the bbt. This function replaces
- * the nand default because writes to oob-only are not supported.
- */
-
- int ret, i;
- uint8_t *buf;
- struct nand_chip *nand = mtd_to_nand(mtd);
- struct docg4_priv *doc = nand_get_controller_data(nand);
- struct nand_bbt_descr *bbtd = nand->badblock_pattern;
- int page = (int)(ofs >> nand->page_shift);
- uint32_t g4_addr = mtd_to_docg4_address(page, 0);
-
- dev_dbg(doc->dev, "%s: %08llx\n", __func__, ofs);
-
- if (unlikely(ofs & (DOCG4_BLOCK_SIZE - 1)))
- dev_warn(doc->dev, "%s: ofs %llx not start of block!\n",
- __func__, ofs);
-
- /* allocate blank buffer for page data */
- buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL);
- if (buf == NULL)
- return -ENOMEM;
-
- /* write bit-wise negation of pattern to oob buffer */
- memset(nand->oob_poi, 0xff, mtd->oobsize);
- for (i = 0; i < bbtd->len; i++)
- nand->oob_poi[bbtd->offs + i] = ~bbtd->pattern[i];
-
- /* write first page of block */
- write_page_prologue(mtd, g4_addr);
- docg4_write_page(mtd, nand, buf, 1, page);
- ret = pageprog(mtd);
-
- kfree(buf);
-
- return ret;
-}
-
-static int docg4_block_neverbad(struct mtd_info *mtd, loff_t ofs)
-{
- /* only called when module_param ignore_badblocks is set */
- return 0;
-}
-
-static int docg4_suspend(struct platform_device *pdev, pm_message_t state)
-{
- /*
- * Put the device into "deep power-down" mode. Note that CE# must be
- * deasserted for this to take effect. The xscale, e.g., can be
- * configured to float this signal when the processor enters power-down,
- * and a suitable pull-up ensures its deassertion.
- */
-
- int i;
- uint8_t pwr_down;
- struct docg4_priv *doc = platform_get_drvdata(pdev);
- void __iomem *docptr = doc->virtadr;
-
- dev_dbg(doc->dev, "%s...\n", __func__);
-
- /* poll the register that tells us we're ready to go to sleep */
- for (i = 0; i < 10; i++) {
- pwr_down = readb(docptr + DOC_POWERMODE);
- if (pwr_down & DOC_POWERDOWN_READY)
- break;
- usleep_range(1000, 4000);
- }
-
- if (pwr_down & DOC_POWERDOWN_READY) {
- dev_err(doc->dev, "suspend failed; "
- "timeout polling DOC_POWERDOWN_READY\n");
- return -EIO;
- }
-
- writew(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN,
- docptr + DOC_ASICMODE);
- writew(~(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN),
- docptr + DOC_ASICMODECONFIRM);
-
- write_nop(docptr);
-
- return 0;
-}
-
-static int docg4_resume(struct platform_device *pdev)
-{
-
- /*
- * Exit power-down. Twelve consecutive reads of the address below
- * accomplishes this, assuming CE# has been asserted.
- */
-
- struct docg4_priv *doc = platform_get_drvdata(pdev);
- void __iomem *docptr = doc->virtadr;
- int i;
-
- dev_dbg(doc->dev, "%s...\n", __func__);
-
- for (i = 0; i < 12; i++)
- readb(docptr + 0x1fff);
-
- return 0;
-}
-
-static void __init init_mtd_structs(struct mtd_info *mtd)
-{
- /* initialize mtd and nand data structures */
-
- /*
- * Note that some of the following initializations are not usually
- * required within a nand driver because they are performed by the nand
- * infrastructure code as part of nand_scan(). In this case they need
- * to be initialized here because we skip call to nand_scan_ident() (the
- * first half of nand_scan()). The call to nand_scan_ident() could be
- * skipped because for this device the chip id is not read in the manner
- * of a standard nand device.
- */
-
- struct nand_chip *nand = mtd_to_nand(mtd);
- struct docg4_priv *doc = nand_get_controller_data(nand);
-
- mtd->size = DOCG4_CHIP_SIZE;
- mtd->name = "Msys_Diskonchip_G4";
- mtd->writesize = DOCG4_PAGE_SIZE;
- mtd->erasesize = DOCG4_BLOCK_SIZE;
- mtd->oobsize = DOCG4_OOB_SIZE;
- mtd_set_ooblayout(mtd, &docg4_ooblayout_ops);
- nand->chipsize = DOCG4_CHIP_SIZE;
- nand->chip_shift = DOCG4_CHIP_SHIFT;
- nand->bbt_erase_shift = nand->phys_erase_shift = DOCG4_ERASE_SHIFT;
- nand->chip_delay = 20;
- nand->page_shift = DOCG4_PAGE_SHIFT;
- nand->pagemask = 0x3ffff;
- nand->badblockpos = NAND_LARGE_BADBLOCK_POS;
- nand->badblockbits = 8;
- nand->ecc.mode = NAND_ECC_HW_SYNDROME;
- nand->ecc.size = DOCG4_PAGE_SIZE;
- nand->ecc.prepad = 8;
- nand->ecc.bytes = 8;
- nand->ecc.strength = DOCG4_T;
- nand->options = NAND_BUSWIDTH_16 | NAND_NO_SUBPAGE_WRITE;
- nand->IO_ADDR_R = nand->IO_ADDR_W = doc->virtadr + DOC_IOSPACE_DATA;
- nand->controller = &nand->dummy_controller;
- nand_controller_init(nand->controller);
-
- /* methods */
- nand->cmdfunc = docg4_command;
- nand->waitfunc = docg4_wait;
- nand->select_chip = docg4_select_chip;
- nand->read_byte = docg4_read_byte;
- nand->block_markbad = docg4_block_markbad;
- nand->read_buf = docg4_read_buf;
- nand->write_buf = docg4_write_buf16;
- nand->erase = docg4_erase_block;
- nand->set_features = nand_get_set_features_notsupp;
- nand->get_features = nand_get_set_features_notsupp;
- nand->ecc.read_page = docg4_read_page;
- nand->ecc.write_page = docg4_write_page;
- nand->ecc.read_page_raw = docg4_read_page_raw;
- nand->ecc.write_page_raw = docg4_write_page_raw;
- nand->ecc.read_oob = docg4_read_oob;
- nand->ecc.write_oob = docg4_write_oob;
-
- /*
- * The way the nand infrastructure code is written, a memory-based bbt
- * is not created if NAND_SKIP_BBTSCAN is set. With no memory bbt,
- * nand->block_bad() is used. So when ignoring bad blocks, we skip the
- * scan and define a dummy block_bad() which always returns 0.
- */
- if (ignore_badblocks) {
- nand->options |= NAND_SKIP_BBTSCAN;
- nand->block_bad = docg4_block_neverbad;
- }
-
-}
-
-static int __init read_id_reg(struct mtd_info *mtd)
-{
- struct nand_chip *nand = mtd_to_nand(mtd);
- struct docg4_priv *doc = nand_get_controller_data(nand);
- void __iomem *docptr = doc->virtadr;
- uint16_t id1, id2;
-
- /* check for presence of g4 chip by reading id registers */
- id1 = readw(docptr + DOC_CHIPID);
- id1 = readw(docptr + DOCG4_MYSTERY_REG);
- id2 = readw(docptr + DOC_CHIPID_INV);
- id2 = readw(docptr + DOCG4_MYSTERY_REG);
-
- if (id1 == DOCG4_IDREG1_VALUE && id2 == DOCG4_IDREG2_VALUE) {
- dev_info(doc->dev,
- "NAND device: 128MiB Diskonchip G4 detected\n");
- return 0;
- }
-
- return -ENODEV;
-}
-
-static char const *part_probes[] = { "cmdlinepart", "saftlpart", NULL };
-
-static int docg4_attach_chip(struct nand_chip *chip)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
- struct docg4_priv *doc = (struct docg4_priv *)(chip + 1);
- int ret;
-
- init_mtd_structs(mtd);
-
- /* Initialize kernel BCH algorithm */
- doc->bch = init_bch(DOCG4_M, DOCG4_T, DOCG4_PRIMITIVE_POLY);
- if (!doc->bch)
- return -EINVAL;
-
- reset(mtd);
-
- ret = read_id_reg(mtd);
- if (ret)
- free_bch(doc->bch);
-
- return ret;
-}
-
-static void docg4_detach_chip(struct nand_chip *chip)
-{
- struct docg4_priv *doc = (struct docg4_priv *)(chip + 1);
-
- free_bch(doc->bch);
-}
-
-static const struct nand_controller_ops docg4_controller_ops = {
- .attach_chip = docg4_attach_chip,
- .detach_chip = docg4_detach_chip,
-};
-
-static int __init probe_docg4(struct platform_device *pdev)
-{
- struct mtd_info *mtd;
- struct nand_chip *nand;
- void __iomem *virtadr;
- struct docg4_priv *doc;
- int len, retval;
- struct resource *r;
- struct device *dev = &pdev->dev;
-
- r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
- if (r == NULL) {
- dev_err(dev, "no io memory resource defined!\n");
- return -ENODEV;
- }
-
- virtadr = ioremap(r->start, resource_size(r));
- if (!virtadr) {
- dev_err(dev, "Diskonchip ioremap failed: %pR\n", r);
- return -EIO;
- }
-
- len = sizeof(struct nand_chip) + sizeof(struct docg4_priv);
- nand = kzalloc(len, GFP_KERNEL);
- if (nand == NULL) {
- retval = -ENOMEM;
- goto unmap;
- }
-
- mtd = nand_to_mtd(nand);
- doc = (struct docg4_priv *) (nand + 1);
- nand_set_controller_data(nand, doc);
- mtd->dev.parent = &pdev->dev;
- doc->virtadr = virtadr;
- doc->dev = dev;
- platform_set_drvdata(pdev, doc);
-
- /*
- * Running nand_scan() with maxchips == 0 will skip nand_scan_ident(),
- * which is a specific operation with this driver and done in the
- * ->attach_chip callback.
- */
- nand->dummy_controller.ops = &docg4_controller_ops;
- retval = nand_scan(mtd, 0);
- if (retval)
- goto free_nand;
-
- retval = read_factory_bbt(mtd);
- if (retval)
- goto cleanup_nand;
-
- retval = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
- if (retval)
- goto cleanup_nand;
-
- doc->mtd = mtd;
-
- return 0;
-
-cleanup_nand:
- nand_cleanup(nand);
-free_nand:
- kfree(nand);
-unmap:
- iounmap(virtadr);
-
- return retval;
-}
-
-static int __exit cleanup_docg4(struct platform_device *pdev)
-{
- struct docg4_priv *doc = platform_get_drvdata(pdev);
- nand_release(doc->mtd);
- kfree(mtd_to_nand(doc->mtd));
- iounmap(doc->virtadr);
- return 0;
-}
-
-static struct platform_driver docg4_driver = {
- .driver = {
- .name = "docg4",
- },
- .suspend = docg4_suspend,
- .resume = docg4_resume,
- .remove = __exit_p(cleanup_docg4),
-};
-
-module_platform_driver_probe(docg4_driver, probe_docg4);
-
-MODULE_LICENSE("GPL");
-MODULE_AUTHOR("Mike Dunn");
-MODULE_DESCRIPTION("M-Systems DiskOnChip G4 device driver");