summaryrefslogtreecommitdiffstats
path: root/fs/reiserfs/fix_node.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/reiserfs/fix_node.c')
-rw-r--r--fs/reiserfs/fix_node.c2822
1 files changed, 0 insertions, 2822 deletions
diff --git a/fs/reiserfs/fix_node.c b/fs/reiserfs/fix_node.c
deleted file mode 100644
index 6c13a8d9a73c..000000000000
--- a/fs/reiserfs/fix_node.c
+++ /dev/null
@@ -1,2822 +0,0 @@
-/*
- * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
- */
-
-#include <linux/time.h>
-#include <linux/slab.h>
-#include <linux/string.h>
-#include "reiserfs.h"
-#include <linux/buffer_head.h>
-
-/*
- * To make any changes in the tree we find a node that contains item
- * to be changed/deleted or position in the node we insert a new item
- * to. We call this node S. To do balancing we need to decide what we
- * will shift to left/right neighbor, or to a new node, where new item
- * will be etc. To make this analysis simpler we build virtual
- * node. Virtual node is an array of items, that will replace items of
- * node S. (For instance if we are going to delete an item, virtual
- * node does not contain it). Virtual node keeps information about
- * item sizes and types, mergeability of first and last items, sizes
- * of all entries in directory item. We use this array of items when
- * calculating what we can shift to neighbors and how many nodes we
- * have to have if we do not any shiftings, if we shift to left/right
- * neighbor or to both.
- */
-
-/*
- * Takes item number in virtual node, returns number of item
- * that it has in source buffer
- */
-static inline int old_item_num(int new_num, int affected_item_num, int mode)
-{
- if (mode == M_PASTE || mode == M_CUT || new_num < affected_item_num)
- return new_num;
-
- if (mode == M_INSERT) {
-
- RFALSE(new_num == 0,
- "vs-8005: for INSERT mode and item number of inserted item");
-
- return new_num - 1;
- }
-
- RFALSE(mode != M_DELETE,
- "vs-8010: old_item_num: mode must be M_DELETE (mode = \'%c\'",
- mode);
- /* delete mode */
- return new_num + 1;
-}
-
-static void create_virtual_node(struct tree_balance *tb, int h)
-{
- struct item_head *ih;
- struct virtual_node *vn = tb->tb_vn;
- int new_num;
- struct buffer_head *Sh; /* this comes from tb->S[h] */
-
- Sh = PATH_H_PBUFFER(tb->tb_path, h);
-
- /* size of changed node */
- vn->vn_size =
- MAX_CHILD_SIZE(Sh) - B_FREE_SPACE(Sh) + tb->insert_size[h];
-
- /* for internal nodes array if virtual items is not created */
- if (h) {
- vn->vn_nr_item = (vn->vn_size - DC_SIZE) / (DC_SIZE + KEY_SIZE);
- return;
- }
-
- /* number of items in virtual node */
- vn->vn_nr_item =
- B_NR_ITEMS(Sh) + ((vn->vn_mode == M_INSERT) ? 1 : 0) -
- ((vn->vn_mode == M_DELETE) ? 1 : 0);
-
- /* first virtual item */
- vn->vn_vi = (struct virtual_item *)(tb->tb_vn + 1);
- memset(vn->vn_vi, 0, vn->vn_nr_item * sizeof(struct virtual_item));
- vn->vn_free_ptr += vn->vn_nr_item * sizeof(struct virtual_item);
-
- /* first item in the node */
- ih = item_head(Sh, 0);
-
- /* define the mergeability for 0-th item (if it is not being deleted) */
- if (op_is_left_mergeable(&ih->ih_key, Sh->b_size)
- && (vn->vn_mode != M_DELETE || vn->vn_affected_item_num))
- vn->vn_vi[0].vi_type |= VI_TYPE_LEFT_MERGEABLE;
-
- /*
- * go through all items that remain in the virtual
- * node (except for the new (inserted) one)
- */
- for (new_num = 0; new_num < vn->vn_nr_item; new_num++) {
- int j;
- struct virtual_item *vi = vn->vn_vi + new_num;
- int is_affected =
- ((new_num != vn->vn_affected_item_num) ? 0 : 1);
-
- if (is_affected && vn->vn_mode == M_INSERT)
- continue;
-
- /* get item number in source node */
- j = old_item_num(new_num, vn->vn_affected_item_num,
- vn->vn_mode);
-
- vi->vi_item_len += ih_item_len(ih + j) + IH_SIZE;
- vi->vi_ih = ih + j;
- vi->vi_item = ih_item_body(Sh, ih + j);
- vi->vi_uarea = vn->vn_free_ptr;
-
- /*
- * FIXME: there is no check that item operation did not
- * consume too much memory
- */
- vn->vn_free_ptr +=
- op_create_vi(vn, vi, is_affected, tb->insert_size[0]);
- if (tb->vn_buf + tb->vn_buf_size < vn->vn_free_ptr)
- reiserfs_panic(tb->tb_sb, "vs-8030",
- "virtual node space consumed");
-
- if (!is_affected)
- /* this is not being changed */
- continue;
-
- if (vn->vn_mode == M_PASTE || vn->vn_mode == M_CUT) {
- vn->vn_vi[new_num].vi_item_len += tb->insert_size[0];
- /* pointer to data which is going to be pasted */
- vi->vi_new_data = vn->vn_data;
- }
- }
-
- /* virtual inserted item is not defined yet */
- if (vn->vn_mode == M_INSERT) {
- struct virtual_item *vi = vn->vn_vi + vn->vn_affected_item_num;
-
- RFALSE(vn->vn_ins_ih == NULL,
- "vs-8040: item header of inserted item is not specified");
- vi->vi_item_len = tb->insert_size[0];
- vi->vi_ih = vn->vn_ins_ih;
- vi->vi_item = vn->vn_data;
- vi->vi_uarea = vn->vn_free_ptr;
-
- op_create_vi(vn, vi, 0 /*not pasted or cut */ ,
- tb->insert_size[0]);
- }
-
- /*
- * set right merge flag we take right delimiting key and
- * check whether it is a mergeable item
- */
- if (tb->CFR[0]) {
- struct reiserfs_key *key;
-
- key = internal_key(tb->CFR[0], tb->rkey[0]);
- if (op_is_left_mergeable(key, Sh->b_size)
- && (vn->vn_mode != M_DELETE
- || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1))
- vn->vn_vi[vn->vn_nr_item - 1].vi_type |=
- VI_TYPE_RIGHT_MERGEABLE;
-
-#ifdef CONFIG_REISERFS_CHECK
- if (op_is_left_mergeable(key, Sh->b_size) &&
- !(vn->vn_mode != M_DELETE
- || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1)) {
- /*
- * we delete last item and it could be merged
- * with right neighbor's first item
- */
- if (!
- (B_NR_ITEMS(Sh) == 1
- && is_direntry_le_ih(item_head(Sh, 0))
- && ih_entry_count(item_head(Sh, 0)) == 1)) {
- /*
- * node contains more than 1 item, or item
- * is not directory item, or this item
- * contains more than 1 entry
- */
- print_block(Sh, 0, -1, -1);
- reiserfs_panic(tb->tb_sb, "vs-8045",
- "rdkey %k, affected item==%d "
- "(mode==%c) Must be %c",
- key, vn->vn_affected_item_num,
- vn->vn_mode, M_DELETE);
- }
- }
-#endif
-
- }
-}
-
-/*
- * Using virtual node check, how many items can be
- * shifted to left neighbor
- */
-static void check_left(struct tree_balance *tb, int h, int cur_free)
-{
- int i;
- struct virtual_node *vn = tb->tb_vn;
- struct virtual_item *vi;
- int d_size, ih_size;
-
- RFALSE(cur_free < 0, "vs-8050: cur_free (%d) < 0", cur_free);
-
- /* internal level */
- if (h > 0) {
- tb->lnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
- return;
- }
-
- /* leaf level */
-
- if (!cur_free || !vn->vn_nr_item) {
- /* no free space or nothing to move */
- tb->lnum[h] = 0;
- tb->lbytes = -1;
- return;
- }
-
- RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
- "vs-8055: parent does not exist or invalid");
-
- vi = vn->vn_vi;
- if ((unsigned int)cur_free >=
- (vn->vn_size -
- ((vi->vi_type & VI_TYPE_LEFT_MERGEABLE) ? IH_SIZE : 0))) {
- /* all contents of S[0] fits into L[0] */
-
- RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
- "vs-8055: invalid mode or balance condition failed");
-
- tb->lnum[0] = vn->vn_nr_item;
- tb->lbytes = -1;
- return;
- }
-
- d_size = 0, ih_size = IH_SIZE;
-
- /* first item may be merge with last item in left neighbor */
- if (vi->vi_type & VI_TYPE_LEFT_MERGEABLE)
- d_size = -((int)IH_SIZE), ih_size = 0;
-
- tb->lnum[0] = 0;
- for (i = 0; i < vn->vn_nr_item;
- i++, ih_size = IH_SIZE, d_size = 0, vi++) {
- d_size += vi->vi_item_len;
- if (cur_free >= d_size) {
- /* the item can be shifted entirely */
- cur_free -= d_size;
- tb->lnum[0]++;
- continue;
- }
-
- /* the item cannot be shifted entirely, try to split it */
- /*
- * check whether L[0] can hold ih and at least one byte
- * of the item body
- */
-
- /* cannot shift even a part of the current item */
- if (cur_free <= ih_size) {
- tb->lbytes = -1;
- return;
- }
- cur_free -= ih_size;
-
- tb->lbytes = op_check_left(vi, cur_free, 0, 0);
- if (tb->lbytes != -1)
- /* count partially shifted item */
- tb->lnum[0]++;
-
- break;
- }
-
- return;
-}
-
-/*
- * Using virtual node check, how many items can be
- * shifted to right neighbor
- */
-static void check_right(struct tree_balance *tb, int h, int cur_free)
-{
- int i;
- struct virtual_node *vn = tb->tb_vn;
- struct virtual_item *vi;
- int d_size, ih_size;
-
- RFALSE(cur_free < 0, "vs-8070: cur_free < 0");
-
- /* internal level */
- if (h > 0) {
- tb->rnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
- return;
- }
-
- /* leaf level */
-
- if (!cur_free || !vn->vn_nr_item) {
- /* no free space */
- tb->rnum[h] = 0;
- tb->rbytes = -1;
- return;
- }
-
- RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
- "vs-8075: parent does not exist or invalid");
-
- vi = vn->vn_vi + vn->vn_nr_item - 1;
- if ((unsigned int)cur_free >=
- (vn->vn_size -
- ((vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) ? IH_SIZE : 0))) {
- /* all contents of S[0] fits into R[0] */
-
- RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
- "vs-8080: invalid mode or balance condition failed");
-
- tb->rnum[h] = vn->vn_nr_item;
- tb->rbytes = -1;
- return;
- }
-
- d_size = 0, ih_size = IH_SIZE;
-
- /* last item may be merge with first item in right neighbor */
- if (vi->vi_type & VI_TYPE_RIGHT_MERGEABLE)
- d_size = -(int)IH_SIZE, ih_size = 0;
-
- tb->rnum[0] = 0;
- for (i = vn->vn_nr_item - 1; i >= 0;
- i--, d_size = 0, ih_size = IH_SIZE, vi--) {
- d_size += vi->vi_item_len;
- if (cur_free >= d_size) {
- /* the item can be shifted entirely */
- cur_free -= d_size;
- tb->rnum[0]++;
- continue;
- }
-
- /*
- * check whether R[0] can hold ih and at least one
- * byte of the item body
- */
-
- /* cannot shift even a part of the current item */
- if (cur_free <= ih_size) {
- tb->rbytes = -1;
- return;
- }
-
- /*
- * R[0] can hold the header of the item and at least
- * one byte of its body
- */
- cur_free -= ih_size; /* cur_free is still > 0 */
-
- tb->rbytes = op_check_right(vi, cur_free);
- if (tb->rbytes != -1)
- /* count partially shifted item */
- tb->rnum[0]++;
-
- break;
- }
-
- return;
-}
-
-/*
- * from - number of items, which are shifted to left neighbor entirely
- * to - number of item, which are shifted to right neighbor entirely
- * from_bytes - number of bytes of boundary item (or directory entries)
- * which are shifted to left neighbor
- * to_bytes - number of bytes of boundary item (or directory entries)
- * which are shifted to right neighbor
- */
-static int get_num_ver(int mode, struct tree_balance *tb, int h,
- int from, int from_bytes,
- int to, int to_bytes, short *snum012, int flow)
-{
- int i;
- int units;
- struct virtual_node *vn = tb->tb_vn;
- int total_node_size, max_node_size, current_item_size;
- int needed_nodes;
-
- /* position of item we start filling node from */
- int start_item;
-
- /* position of item we finish filling node by */
- int end_item;
-
- /*
- * number of first bytes (entries for directory) of start_item-th item
- * we do not include into node that is being filled
- */
- int start_bytes;
-
- /*
- * number of last bytes (entries for directory) of end_item-th item
- * we do node include into node that is being filled
- */
- int end_bytes;
-
- /*
- * these are positions in virtual item of items, that are split
- * between S[0] and S1new and S1new and S2new
- */
- int split_item_positions[2];
-
- split_item_positions[0] = -1;
- split_item_positions[1] = -1;
-
- /*
- * We only create additional nodes if we are in insert or paste mode
- * or we are in replace mode at the internal level. If h is 0 and
- * the mode is M_REPLACE then in fix_nodes we change the mode to
- * paste or insert before we get here in the code.
- */
- RFALSE(tb->insert_size[h] < 0 || (mode != M_INSERT && mode != M_PASTE),
- "vs-8100: insert_size < 0 in overflow");
-
- max_node_size = MAX_CHILD_SIZE(PATH_H_PBUFFER(tb->tb_path, h));
-
- /*
- * snum012 [0-2] - number of items, that lay
- * to S[0], first new node and second new node
- */
- snum012[3] = -1; /* s1bytes */
- snum012[4] = -1; /* s2bytes */
-
- /* internal level */
- if (h > 0) {
- i = ((to - from) * (KEY_SIZE + DC_SIZE) + DC_SIZE);
- if (i == max_node_size)
- return 1;
- return (i / max_node_size + 1);
- }
-
- /* leaf level */
- needed_nodes = 1;
- total_node_size = 0;
-
- /* start from 'from'-th item */
- start_item = from;
- /* skip its first 'start_bytes' units */
- start_bytes = ((from_bytes != -1) ? from_bytes : 0);
-
- /* last included item is the 'end_item'-th one */
- end_item = vn->vn_nr_item - to - 1;
- /* do not count last 'end_bytes' units of 'end_item'-th item */
- end_bytes = (to_bytes != -1) ? to_bytes : 0;
-
- /*
- * go through all item beginning from the start_item-th item
- * and ending by the end_item-th item. Do not count first
- * 'start_bytes' units of 'start_item'-th item and last
- * 'end_bytes' of 'end_item'-th item
- */
- for (i = start_item; i <= end_item; i++) {
- struct virtual_item *vi = vn->vn_vi + i;
- int skip_from_end = ((i == end_item) ? end_bytes : 0);
-
- RFALSE(needed_nodes > 3, "vs-8105: too many nodes are needed");
-
- /* get size of current item */
- current_item_size = vi->vi_item_len;
-
- /*
- * do not take in calculation head part (from_bytes)
- * of from-th item
- */
- current_item_size -=
- op_part_size(vi, 0 /*from start */ , start_bytes);
-
- /* do not take in calculation tail part of last item */
- current_item_size -=
- op_part_size(vi, 1 /*from end */ , skip_from_end);
-
- /* if item fits into current node entierly */
- if (total_node_size + current_item_size <= max_node_size) {
- snum012[needed_nodes - 1]++;
- total_node_size += current_item_size;
- start_bytes = 0;
- continue;
- }
-
- /*
- * virtual item length is longer, than max size of item in
- * a node. It is impossible for direct item
- */
- if (current_item_size > max_node_size) {
- RFALSE(is_direct_le_ih(vi->vi_ih),
- "vs-8110: "
- "direct item length is %d. It can not be longer than %d",
- current_item_size, max_node_size);
- /* we will try to split it */
- flow = 1;
- }
-
- /* as we do not split items, take new node and continue */
- if (!flow) {
- needed_nodes++;
- i--;
- total_node_size = 0;
- continue;
- }
-
- /*
- * calculate number of item units which fit into node being
- * filled
- */
- {
- int free_space;
-
- free_space = max_node_size - total_node_size - IH_SIZE;
- units =
- op_check_left(vi, free_space, start_bytes,
- skip_from_end);
- /*
- * nothing fits into current node, take new
- * node and continue
- */
- if (units == -1) {
- needed_nodes++, i--, total_node_size = 0;
- continue;
- }
- }
-
- /* something fits into the current node */
- start_bytes += units;
- snum012[needed_nodes - 1 + 3] = units;
-
- if (needed_nodes > 2)
- reiserfs_warning(tb->tb_sb, "vs-8111",
- "split_item_position is out of range");
- snum012[needed_nodes - 1]++;
- split_item_positions[needed_nodes - 1] = i;
- needed_nodes++;
- /* continue from the same item with start_bytes != -1 */
- start_item = i;
- i--;
- total_node_size = 0;
- }
-
- /*
- * sum012[4] (if it is not -1) contains number of units of which
- * are to be in S1new, snum012[3] - to be in S0. They are supposed
- * to be S1bytes and S2bytes correspondingly, so recalculate
- */
- if (snum012[4] > 0) {
- int split_item_num;
- int bytes_to_r, bytes_to_l;
- int bytes_to_S1new;
-
- split_item_num = split_item_positions[1];
- bytes_to_l =
- ((from == split_item_num
- && from_bytes != -1) ? from_bytes : 0);
- bytes_to_r =
- ((end_item == split_item_num
- && end_bytes != -1) ? end_bytes : 0);
- bytes_to_S1new =
- ((split_item_positions[0] ==
- split_item_positions[1]) ? snum012[3] : 0);
-
- /* s2bytes */
- snum012[4] =
- op_unit_num(&vn->vn_vi[split_item_num]) - snum012[4] -
- bytes_to_r - bytes_to_l - bytes_to_S1new;
-
- if (vn->vn_vi[split_item_num].vi_index != TYPE_DIRENTRY &&
- vn->vn_vi[split_item_num].vi_index != TYPE_INDIRECT)
- reiserfs_warning(tb->tb_sb, "vs-8115",
- "not directory or indirect item");
- }
-
- /* now we know S2bytes, calculate S1bytes */
- if (snum012[3] > 0) {
- int split_item_num;
- int bytes_to_r, bytes_to_l;
- int bytes_to_S2new;
-
- split_item_num = split_item_positions[0];
- bytes_to_l =
- ((from == split_item_num
- && from_bytes != -1) ? from_bytes : 0);
- bytes_to_r =
- ((end_item == split_item_num
- && end_bytes != -1) ? end_bytes : 0);
- bytes_to_S2new =
- ((split_item_positions[0] == split_item_positions[1]
- && snum012[4] != -1) ? snum012[4] : 0);
-
- /* s1bytes */
- snum012[3] =
- op_unit_num(&vn->vn_vi[split_item_num]) - snum012[3] -
- bytes_to_r - bytes_to_l - bytes_to_S2new;
- }
-
- return needed_nodes;
-}
-
-
-/*
- * Set parameters for balancing.
- * Performs write of results of analysis of balancing into structure tb,
- * where it will later be used by the functions that actually do the balancing.
- * Parameters:
- * tb tree_balance structure;
- * h current level of the node;
- * lnum number of items from S[h] that must be shifted to L[h];
- * rnum number of items from S[h] that must be shifted to R[h];
- * blk_num number of blocks that S[h] will be splitted into;
- * s012 number of items that fall into splitted nodes.
- * lbytes number of bytes which flow to the left neighbor from the
- * item that is not shifted entirely
- * rbytes number of bytes which flow to the right neighbor from the
- * item that is not shifted entirely
- * s1bytes number of bytes which flow to the first new node when
- * S[0] splits (this number is contained in s012 array)
- */
-
-static void set_parameters(struct tree_balance *tb, int h, int lnum,
- int rnum, int blk_num, short *s012, int lb, int rb)
-{
-
- tb->lnum[h] = lnum;
- tb->rnum[h] = rnum;
- tb->blknum[h] = blk_num;
-
- /* only for leaf level */
- if (h == 0) {
- if (s012 != NULL) {
- tb->s0num = *s012++;
- tb->snum[0] = *s012++;
- tb->snum[1] = *s012++;
- tb->sbytes[0] = *s012++;
- tb->sbytes[1] = *s012;
- }
- tb->lbytes = lb;
- tb->rbytes = rb;
- }
- PROC_INFO_ADD(tb->tb_sb, lnum[h], lnum);
- PROC_INFO_ADD(tb->tb_sb, rnum[h], rnum);
-
- PROC_INFO_ADD(tb->tb_sb, lbytes[h], lb);
- PROC_INFO_ADD(tb->tb_sb, rbytes[h], rb);
-}
-
-/*
- * check if node disappears if we shift tb->lnum[0] items to left
- * neighbor and tb->rnum[0] to the right one.
- */
-static int is_leaf_removable(struct tree_balance *tb)
-{
- struct virtual_node *vn = tb->tb_vn;
- int to_left, to_right;
- int size;
- int remain_items;
-
- /*
- * number of items that will be shifted to left (right) neighbor
- * entirely
- */
- to_left = tb->lnum[0] - ((tb->lbytes != -1) ? 1 : 0);
- to_right = tb->rnum[0] - ((tb->rbytes != -1) ? 1 : 0);
- remain_items = vn->vn_nr_item;
-
- /* how many items remain in S[0] after shiftings to neighbors */
- remain_items -= (to_left + to_right);
-
- /* all content of node can be shifted to neighbors */
- if (remain_items < 1) {
- set_parameters(tb, 0, to_left, vn->vn_nr_item - to_left, 0,
- NULL, -1, -1);
- return 1;
- }
-
- /* S[0] is not removable */
- if (remain_items > 1 || tb->lbytes == -1 || tb->rbytes == -1)
- return 0;
-
- /* check whether we can divide 1 remaining item between neighbors */
-
- /* get size of remaining item (in item units) */
- size = op_unit_num(&vn->vn_vi[to_left]);
-
- if (tb->lbytes + tb->rbytes >= size) {
- set_parameters(tb, 0, to_left + 1, to_right + 1, 0, NULL,
- tb->lbytes, -1);
- return 1;
- }
-
- return 0;
-}
-
-/* check whether L, S, R can be joined in one node */
-static int are_leaves_removable(struct tree_balance *tb, int lfree, int rfree)
-{
- struct virtual_node *vn = tb->tb_vn;
- int ih_size;
- struct buffer_head *S0;
-
- S0 = PATH_H_PBUFFER(tb->tb_path, 0);
-
- ih_size = 0;
- if (vn->vn_nr_item) {
- if (vn->vn_vi[0].vi_type & VI_TYPE_LEFT_MERGEABLE)
- ih_size += IH_SIZE;
-
- if (vn->vn_vi[vn->vn_nr_item - 1].
- vi_type & VI_TYPE_RIGHT_MERGEABLE)
- ih_size += IH_SIZE;
- } else {
- /* there was only one item and it will be deleted */
- struct item_head *ih;
-
- RFALSE(B_NR_ITEMS(S0) != 1,
- "vs-8125: item number must be 1: it is %d",
- B_NR_ITEMS(S0));
-
- ih = item_head(S0, 0);
- if (tb->CFR[0]
- && !comp_short_le_keys(&ih->ih_key,
- internal_key(tb->CFR[0],
- tb->rkey[0])))
- /*
- * Directory must be in correct state here: that is
- * somewhere at the left side should exist first
- * directory item. But the item being deleted can
- * not be that first one because its right neighbor
- * is item of the same directory. (But first item
- * always gets deleted in last turn). So, neighbors
- * of deleted item can be merged, so we can save
- * ih_size
- */
- if (is_direntry_le_ih(ih)) {
- ih_size = IH_SIZE;
-
- /*
- * we might check that left neighbor exists
- * and is of the same directory
- */
- RFALSE(le_ih_k_offset(ih) == DOT_OFFSET,
- "vs-8130: first directory item can not be removed until directory is not empty");
- }
-
- }
-
- if (MAX_CHILD_SIZE(S0) + vn->vn_size <= rfree + lfree + ih_size) {
- set_parameters(tb, 0, -1, -1, -1, NULL, -1, -1);
- PROC_INFO_INC(tb->tb_sb, leaves_removable);
- return 1;
- }
- return 0;
-
-}
-
-/* when we do not split item, lnum and rnum are numbers of entire items */
-#define SET_PAR_SHIFT_LEFT \
-if (h)\
-{\
- int to_l;\
- \
- to_l = (MAX_NR_KEY(Sh)+1 - lpar + vn->vn_nr_item + 1) / 2 -\
- (MAX_NR_KEY(Sh) + 1 - lpar);\
- \
- set_parameters (tb, h, to_l, 0, lnver, NULL, -1, -1);\
-}\
-else \
-{\
- if (lset==LEFT_SHIFT_FLOW)\
- set_parameters (tb, h, lpar, 0, lnver, snum012+lset,\
- tb->lbytes, -1);\
- else\
- set_parameters (tb, h, lpar - (tb->lbytes!=-1), 0, lnver, snum012+lset,\
- -1, -1);\
-}
-
-#define SET_PAR_SHIFT_RIGHT \
-if (h)\
-{\
- int to_r;\
- \
- to_r = (MAX_NR_KEY(Sh)+1 - rpar + vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - rpar);\
- \
- set_parameters (tb, h, 0, to_r, rnver, NULL, -1, -1);\
-}\
-else \
-{\
- if (rset==RIGHT_SHIFT_FLOW)\
- set_parameters (tb, h, 0, rpar, rnver, snum012+rset,\
- -1, tb->rbytes);\
- else\
- set_parameters (tb, h, 0, rpar - (tb->rbytes!=-1), rnver, snum012+rset,\
- -1, -1);\
-}
-
-static void free_buffers_in_tb(struct tree_balance *tb)
-{
- int i;
-
- pathrelse(tb->tb_path);
-
- for (i = 0; i < MAX_HEIGHT; i++) {
- brelse(tb->L[i]);
- brelse(tb->R[i]);
- brelse(tb->FL[i]);
- brelse(tb->FR[i]);
- brelse(tb->CFL[i]);
- brelse(tb->CFR[i]);
-
- tb->L[i] = NULL;
- tb->R[i] = NULL;
- tb->FL[i] = NULL;
- tb->FR[i] = NULL;
- tb->CFL[i] = NULL;
- tb->CFR[i] = NULL;
- }
-}
-
-/*
- * Get new buffers for storing new nodes that are created while balancing.
- * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked;
- * CARRY_ON - schedule didn't occur while the function worked;
- * NO_DISK_SPACE - no disk space.
- */
-/* The function is NOT SCHEDULE-SAFE! */
-static int get_empty_nodes(struct tree_balance *tb, int h)
-{
- struct buffer_head *new_bh, *Sh = PATH_H_PBUFFER(tb->tb_path, h);
- b_blocknr_t *blocknr, blocknrs[MAX_AMOUNT_NEEDED] = { 0, };
- int counter, number_of_freeblk;
- int amount_needed; /* number of needed empty blocks */
- int retval = CARRY_ON;
- struct super_block *sb = tb->tb_sb;
-
- /*
- * number_of_freeblk is the number of empty blocks which have been
- * acquired for use by the balancing algorithm minus the number of
- * empty blocks used in the previous levels of the analysis,
- * number_of_freeblk = tb->cur_blknum can be non-zero if a schedule
- * occurs after empty blocks are acquired, and the balancing analysis
- * is then restarted, amount_needed is the number needed by this
- * level (h) of the balancing analysis.
- *
- * Note that for systems with many processes writing, it would be
- * more layout optimal to calculate the total number needed by all
- * levels and then to run reiserfs_new_blocks to get all of them at
- * once.
- */
-
- /*
- * Initiate number_of_freeblk to the amount acquired prior to the
- * restart of the analysis or 0 if not restarted, then subtract the
- * amount needed by all of the levels of the tree below h.
- */
- /* blknum includes S[h], so we subtract 1 in this calculation */
- for (counter = 0, number_of_freeblk = tb->cur_blknum;
- counter < h; counter++)
- number_of_freeblk -=
- (tb->blknum[counter]) ? (tb->blknum[counter] -
- 1) : 0;
-
- /* Allocate missing empty blocks. */
- /* if Sh == 0 then we are getting a new root */
- amount_needed = (Sh) ? (tb->blknum[h] - 1) : 1;
- /*
- * Amount_needed = the amount that we need more than the
- * amount that we have.
- */
- if (amount_needed > number_of_freeblk)
- amount_needed -= number_of_freeblk;
- else /* If we have enough already then there is nothing to do. */
- return CARRY_ON;
-
- /*
- * No need to check quota - is not allocated for blocks used
- * for formatted nodes
- */
- if (reiserfs_new_form_blocknrs(tb, blocknrs,
- amount_needed) == NO_DISK_SPACE)
- return NO_DISK_SPACE;
-
- /* for each blocknumber we just got, get a buffer and stick it on FEB */
- for (blocknr = blocknrs, counter = 0;
- counter < amount_needed; blocknr++, counter++) {
-
- RFALSE(!*blocknr,
- "PAP-8135: reiserfs_new_blocknrs failed when got new blocks");
-
- new_bh = sb_getblk(sb, *blocknr);
- RFALSE(buffer_dirty(new_bh) ||
- buffer_journaled(new_bh) ||
- buffer_journal_dirty(new_bh),
- "PAP-8140: journaled or dirty buffer %b for the new block",
- new_bh);
-
- /* Put empty buffers into the array. */
- RFALSE(tb->FEB[tb->cur_blknum],
- "PAP-8141: busy slot for new buffer");
-
- set_buffer_journal_new(new_bh);
- tb->FEB[tb->cur_blknum++] = new_bh;
- }
-
- if (retval == CARRY_ON && FILESYSTEM_CHANGED_TB(tb))
- retval = REPEAT_SEARCH;
-
- return retval;
-}
-
-/*
- * Get free space of the left neighbor, which is stored in the parent
- * node of the left neighbor.
- */
-static int get_lfree(struct tree_balance *tb, int h)
-{
- struct buffer_head *l, *f;
- int order;
-
- if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
- (l = tb->FL[h]) == NULL)
- return 0;
-
- if (f == l)
- order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) - 1;
- else {
- order = B_NR_ITEMS(l);
- f = l;
- }
-
- return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
-}
-
-/*
- * Get free space of the right neighbor,
- * which is stored in the parent node of the right neighbor.
- */
-static int get_rfree(struct tree_balance *tb, int h)
-{
- struct buffer_head *r, *f;
- int order;
-
- if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
- (r = tb->FR[h]) == NULL)
- return 0;
-
- if (f == r)
- order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) + 1;
- else {
- order = 0;
- f = r;
- }
-
- return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
-
-}
-
-/* Check whether left neighbor is in memory. */
-static int is_left_neighbor_in_cache(struct tree_balance *tb, int h)
-{
- struct buffer_head *father, *left;
- struct super_block *sb = tb->tb_sb;
- b_blocknr_t left_neighbor_blocknr;
- int left_neighbor_position;
-
- /* Father of the left neighbor does not exist. */
- if (!tb->FL[h])
- return 0;
-
- /* Calculate father of the node to be balanced. */
- father = PATH_H_PBUFFER(tb->tb_path, h + 1);
-
- RFALSE(!father ||
- !B_IS_IN_TREE(father) ||
- !B_IS_IN_TREE(tb->FL[h]) ||
- !buffer_uptodate(father) ||
- !buffer_uptodate(tb->FL[h]),
- "vs-8165: F[h] (%b) or FL[h] (%b) is invalid",
- father, tb->FL[h]);
-
- /*
- * Get position of the pointer to the left neighbor
- * into the left father.
- */
- left_neighbor_position = (father == tb->FL[h]) ?
- tb->lkey[h] : B_NR_ITEMS(tb->FL[h]);
- /* Get left neighbor block number. */
- left_neighbor_blocknr =
- B_N_CHILD_NUM(tb->FL[h], left_neighbor_position);
- /* Look for the left neighbor in the cache. */
- if ((left = sb_find_get_block(sb, left_neighbor_blocknr))) {
-
- RFALSE(buffer_uptodate(left) && !B_IS_IN_TREE(left),
- "vs-8170: left neighbor (%b %z) is not in the tree",
- left, left);
- put_bh(left);
- return 1;
- }
-
- return 0;
-}
-
-#define LEFT_PARENTS 'l'
-#define RIGHT_PARENTS 'r'
-
-static void decrement_key(struct cpu_key *key)
-{
- /* call item specific function for this key */
- item_ops[cpu_key_k_type(key)]->decrement_key(key);
-}
-
-/*
- * Calculate far left/right parent of the left/right neighbor of the
- * current node, that is calculate the left/right (FL[h]/FR[h]) neighbor
- * of the parent F[h].
- * Calculate left/right common parent of the current node and L[h]/R[h].
- * Calculate left/right delimiting key position.
- * Returns: PATH_INCORRECT - path in the tree is not correct
- * SCHEDULE_OCCURRED - schedule occurred while the function worked
- * CARRY_ON - schedule didn't occur while the function
- * worked
- */
-static int get_far_parent(struct tree_balance *tb,
- int h,
- struct buffer_head **pfather,
- struct buffer_head **pcom_father, char c_lr_par)
-{
- struct buffer_head *parent;
- INITIALIZE_PATH(s_path_to_neighbor_father);
- struct treepath *path = tb->tb_path;
- struct cpu_key s_lr_father_key;
- int counter,
- position = INT_MAX,
- first_last_position = 0,
- path_offset = PATH_H_PATH_OFFSET(path, h);
-
- /*
- * Starting from F[h] go upwards in the tree, and look for the common
- * ancestor of F[h], and its neighbor l/r, that should be obtained.
- */
-
- counter = path_offset;
-
- RFALSE(counter < FIRST_PATH_ELEMENT_OFFSET,
- "PAP-8180: invalid path length");
-
- for (; counter > FIRST_PATH_ELEMENT_OFFSET; counter--) {
- /*
- * Check whether parent of the current buffer in the path
- * is really parent in the tree.
- */
- if (!B_IS_IN_TREE
- (parent = PATH_OFFSET_PBUFFER(path, counter - 1)))
- return REPEAT_SEARCH;
-
- /* Check whether position in the parent is correct. */
- if ((position =
- PATH_OFFSET_POSITION(path,
- counter - 1)) >
- B_NR_ITEMS(parent))
- return REPEAT_SEARCH;
-
- /*
- * Check whether parent at the path really points
- * to the child.
- */
- if (B_N_CHILD_NUM(parent, position) !=
- PATH_OFFSET_PBUFFER(path, counter)->b_blocknr)
- return REPEAT_SEARCH;
-
- /*
- * Return delimiting key if position in the parent is not
- * equal to first/last one.
- */
- if (c_lr_par == RIGHT_PARENTS)
- first_last_position = B_NR_ITEMS(parent);
- if (position != first_last_position) {
- *pcom_father = parent;
- get_bh(*pcom_father);
- /*(*pcom_father = parent)->b_count++; */
- break;
- }
- }
-
- /* if we are in the root of the tree, then there is no common father */
- if (counter == FIRST_PATH_ELEMENT_OFFSET) {
- /*
- * Check whether first buffer in the path is the
- * root of the tree.
- */
- if (PATH_OFFSET_PBUFFER
- (tb->tb_path,
- FIRST_PATH_ELEMENT_OFFSET)->b_blocknr ==
- SB_ROOT_BLOCK(tb->tb_sb)) {
- *pfather = *pcom_father = NULL;
- return CARRY_ON;
- }
- return REPEAT_SEARCH;
- }
-
- RFALSE(B_LEVEL(*pcom_father) <= DISK_LEAF_NODE_LEVEL,
- "PAP-8185: (%b %z) level too small",
- *pcom_father, *pcom_father);
-
- /* Check whether the common parent is locked. */
-
- if (buffer_locked(*pcom_father)) {
-
- /* Release the write lock while the buffer is busy */
- int depth = reiserfs_write_unlock_nested(tb->tb_sb);
- __wait_on_buffer(*pcom_father);
- reiserfs_write_lock_nested(tb->tb_sb, depth);
- if (FILESYSTEM_CHANGED_TB(tb)) {
- brelse(*pcom_father);
- return REPEAT_SEARCH;
- }
- }
-
- /*
- * So, we got common parent of the current node and its
- * left/right neighbor. Now we are getting the parent of the
- * left/right neighbor.
- */
-
- /* Form key to get parent of the left/right neighbor. */
- le_key2cpu_key(&s_lr_father_key,
- internal_key(*pcom_father,
- (c_lr_par ==
- LEFT_PARENTS) ? (tb->lkey[h - 1] =
- position -
- 1) : (tb->rkey[h -
- 1] =
- position)));
-
- if (c_lr_par == LEFT_PARENTS)
- decrement_key(&s_lr_father_key);
-
- if (search_by_key
- (tb->tb_sb, &s_lr_father_key, &s_path_to_neighbor_father,
- h + 1) == IO_ERROR)
- /* path is released */
- return IO_ERROR;
-
- if (FILESYSTEM_CHANGED_TB(tb)) {
- pathrelse(&s_path_to_neighbor_father);
- brelse(*pcom_father);
- return REPEAT_SEARCH;
- }
-
- *pfather = PATH_PLAST_BUFFER(&s_path_to_neighbor_father);
-
- RFALSE(B_LEVEL(*pfather) != h + 1,
- "PAP-8190: (%b %z) level too small", *pfather, *pfather);
- RFALSE(s_path_to_neighbor_father.path_length <
- FIRST_PATH_ELEMENT_OFFSET, "PAP-8192: path length is too small");
-
- s_path_to_neighbor_father.path_length--;
- pathrelse(&s_path_to_neighbor_father);
- return CARRY_ON;
-}
-
-/*
- * Get parents of neighbors of node in the path(S[path_offset]) and
- * common parents of S[path_offset] and L[path_offset]/R[path_offset]:
- * F[path_offset], FL[path_offset], FR[path_offset], CFL[path_offset],
- * CFR[path_offset].
- * Calculate numbers of left and right delimiting keys position:
- * lkey[path_offset], rkey[path_offset].
- * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked
- * CARRY_ON - schedule didn't occur while the function worked
- */
-static int get_parents(struct tree_balance *tb, int h)
-{
- struct treepath *path = tb->tb_path;
- int position,
- ret,
- path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h);
- struct buffer_head *curf, *curcf;
-
- /* Current node is the root of the tree or will be root of the tree */
- if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
- /*
- * The root can not have parents.
- * Release nodes which previously were obtained as
- * parents of the current node neighbors.
- */
- brelse(tb->FL[h]);
- brelse(tb->CFL[h]);
- brelse(tb->FR[h]);
- brelse(tb->CFR[h]);
- tb->FL[h] = NULL;
- tb->CFL[h] = NULL;
- tb->FR[h] = NULL;
- tb->CFR[h] = NULL;
- return CARRY_ON;
- }
-
- /* Get parent FL[path_offset] of L[path_offset]. */
- position = PATH_OFFSET_POSITION(path, path_offset - 1);
- if (position) {
- /* Current node is not the first child of its parent. */
- curf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
- curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
- get_bh(curf);
- get_bh(curf);
- tb->lkey[h] = position - 1;
- } else {
- /*
- * Calculate current parent of L[path_offset], which is the
- * left neighbor of the current node. Calculate current
- * common parent of L[path_offset] and the current node.
- * Note that CFL[path_offset] not equal FL[path_offset] and
- * CFL[path_offset] not equal F[path_offset].
- * Calculate lkey[path_offset].
- */
- if ((ret = get_far_parent(tb, h + 1, &curf,
- &curcf,
- LEFT_PARENTS)) != CARRY_ON)
- return ret;
- }
-
- brelse(tb->FL[h]);
- tb->FL[h] = curf; /* New initialization of FL[h]. */
- brelse(tb->CFL[h]);
- tb->CFL[h] = curcf; /* New initialization of CFL[h]. */
-
- RFALSE((curf && !B_IS_IN_TREE(curf)) ||
- (curcf && !B_IS_IN_TREE(curcf)),
- "PAP-8195: FL (%b) or CFL (%b) is invalid", curf, curcf);
-
- /* Get parent FR[h] of R[h]. */
-
- /* Current node is the last child of F[h]. FR[h] != F[h]. */
- if (position == B_NR_ITEMS(PATH_H_PBUFFER(path, h + 1))) {
- /*
- * Calculate current parent of R[h], which is the right
- * neighbor of F[h]. Calculate current common parent of
- * R[h] and current node. Note that CFR[h] not equal
- * FR[path_offset] and CFR[h] not equal F[h].
- */
- if ((ret =
- get_far_parent(tb, h + 1, &curf, &curcf,
- RIGHT_PARENTS)) != CARRY_ON)
- return ret;
- } else {
- /* Current node is not the last child of its parent F[h]. */
- curf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
- curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
- get_bh(curf);
- get_bh(curf);
- tb->rkey[h] = position;
- }
-
- brelse(tb->FR[h]);
- /* New initialization of FR[path_offset]. */
- tb->FR[h] = curf;
-
- brelse(tb->CFR[h]);
- /* New initialization of CFR[path_offset]. */
- tb->CFR[h] = curcf;
-
- RFALSE((curf && !B_IS_IN_TREE(curf)) ||
- (curcf && !B_IS_IN_TREE(curcf)),
- "PAP-8205: FR (%b) or CFR (%b) is invalid", curf, curcf);
-
- return CARRY_ON;
-}
-
-/*
- * it is possible to remove node as result of shiftings to
- * neighbors even when we insert or paste item.
- */
-static inline int can_node_be_removed(int mode, int lfree, int sfree, int rfree,
- struct tree_balance *tb, int h)
-{
- struct buffer_head *Sh = PATH_H_PBUFFER(tb->tb_path, h);
- int levbytes = tb->insert_size[h];
- struct item_head *ih;
- struct reiserfs_key *r_key = NULL;
-
- ih = item_head(Sh, 0);
- if (tb->CFR[h])
- r_key = internal_key(tb->CFR[h], tb->rkey[h]);
-
- if (lfree + rfree + sfree < MAX_CHILD_SIZE(Sh) + levbytes
- /* shifting may merge items which might save space */
- -
- ((!h
- && op_is_left_mergeable(&ih->ih_key, Sh->b_size)) ? IH_SIZE : 0)
- -
- ((!h && r_key
- && op_is_left_mergeable(r_key, Sh->b_size)) ? IH_SIZE : 0)
- + ((h) ? KEY_SIZE : 0)) {
- /* node can not be removed */
- if (sfree >= levbytes) {
- /* new item fits into node S[h] without any shifting */
- if (!h)
- tb->s0num =
- B_NR_ITEMS(Sh) +
- ((mode == M_INSERT) ? 1 : 0);
- set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
- return NO_BALANCING_NEEDED;
- }
- }
- PROC_INFO_INC(tb->tb_sb, can_node_be_removed[h]);
- return !NO_BALANCING_NEEDED;
-}
-
-/*
- * Check whether current node S[h] is balanced when increasing its size by
- * Inserting or Pasting.
- * Calculate parameters for balancing for current level h.
- * Parameters:
- * tb tree_balance structure;
- * h current level of the node;
- * inum item number in S[h];
- * mode i - insert, p - paste;
- * Returns: 1 - schedule occurred;
- * 0 - balancing for higher levels needed;
- * -1 - no balancing for higher levels needed;
- * -2 - no disk space.
- */
-/* ip means Inserting or Pasting */
-static int ip_check_balance(struct tree_balance *tb, int h)
-{
- struct virtual_node *vn = tb->tb_vn;
- /*
- * Number of bytes that must be inserted into (value is negative
- * if bytes are deleted) buffer which contains node being balanced.
- * The mnemonic is that the attempted change in node space used
- * level is levbytes bytes.
- */
- int levbytes;
- int ret;
-
- int lfree, sfree, rfree /* free space in L, S and R */ ;
-
- /*
- * nver is short for number of vertixes, and lnver is the number if
- * we shift to the left, rnver is the number if we shift to the
- * right, and lrnver is the number if we shift in both directions.
- * The goal is to minimize first the number of vertixes, and second,
- * the number of vertixes whose contents are changed by shifting,
- * and third the number of uncached vertixes whose contents are
- * changed by shifting and must be read from disk.
- */
- int nver, lnver, rnver, lrnver;
-
- /*
- * used at leaf level only, S0 = S[0] is the node being balanced,
- * sInum [ I = 0,1,2 ] is the number of items that will
- * remain in node SI after balancing. S1 and S2 are new
- * nodes that might be created.
- */
-
- /*
- * we perform 8 calls to get_num_ver(). For each call we
- * calculate five parameters. where 4th parameter is s1bytes
- * and 5th - s2bytes
- *
- * s0num, s1num, s2num for 8 cases
- * 0,1 - do not shift and do not shift but bottle
- * 2 - shift only whole item to left
- * 3 - shift to left and bottle as much as possible
- * 4,5 - shift to right (whole items and as much as possible
- * 6,7 - shift to both directions (whole items and as much as possible)
- */
- short snum012[40] = { 0, };
-
- /* Sh is the node whose balance is currently being checked */
- struct buffer_head *Sh;
-
- Sh = PATH_H_PBUFFER(tb->tb_path, h);
- levbytes = tb->insert_size[h];
-
- /* Calculate balance parameters for creating new root. */
- if (!Sh) {
- if (!h)
- reiserfs_panic(tb->tb_sb, "vs-8210",
- "S[0] can not be 0");
- switch (ret = get_empty_nodes(tb, h)) {
- /* no balancing for higher levels needed */
- case CARRY_ON:
- set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
- return NO_BALANCING_NEEDED;
-
- case NO_DISK_SPACE:
- case REPEAT_SEARCH:
- return ret;
- default:
- reiserfs_panic(tb->tb_sb, "vs-8215", "incorrect "
- "return value of get_empty_nodes");
- }
- }
-
- /* get parents of S[h] neighbors. */
- ret = get_parents(tb, h);
- if (ret != CARRY_ON)
- return ret;
-
- sfree = B_FREE_SPACE(Sh);
-
- /* get free space of neighbors */
- rfree = get_rfree(tb, h);
- lfree = get_lfree(tb, h);
-
- /* and new item fits into node S[h] without any shifting */
- if (can_node_be_removed(vn->vn_mode, lfree, sfree, rfree, tb, h) ==
- NO_BALANCING_NEEDED)
- return NO_BALANCING_NEEDED;
-
- create_virtual_node(tb, h);
-
- /*
- * determine maximal number of items we can shift to the left
- * neighbor (in tb structure) and the maximal number of bytes
- * that can flow to the left neighbor from the left most liquid
- * item that cannot be shifted from S[0] entirely (returned value)
- */
- check_left(tb, h, lfree);
-
- /*
- * determine maximal number of items we can shift to the right
- * neighbor (in tb structure) and the maximal number of bytes
- * that can flow to the right neighbor from the right most liquid
- * item that cannot be shifted from S[0] entirely (returned value)
- */
- check_right(tb, h, rfree);
-
- /*
- * all contents of internal node S[h] can be moved into its
- * neighbors, S[h] will be removed after balancing
- */
- if (h && (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)) {
- int to_r;
-
- /*
- * Since we are working on internal nodes, and our internal
- * nodes have fixed size entries, then we can balance by the
- * number of items rather than the space they consume. In this
- * routine we set the left node equal to the right node,
- * allowing a difference of less than or equal to 1 child
- * pointer.
- */
- to_r =
- ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
- vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
- tb->rnum[h]);
- set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
- -1, -1);
- return CARRY_ON;
- }
-
- /*
- * this checks balance condition, that any two neighboring nodes
- * can not fit in one node
- */
- RFALSE(h &&
- (tb->lnum[h] >= vn->vn_nr_item + 1 ||
- tb->rnum[h] >= vn->vn_nr_item + 1),
- "vs-8220: tree is not balanced on internal level");
- RFALSE(!h && ((tb->lnum[h] >= vn->vn_nr_item && (tb->lbytes == -1)) ||
- (tb->rnum[h] >= vn->vn_nr_item && (tb->rbytes == -1))),
- "vs-8225: tree is not balanced on leaf level");
-
- /*
- * all contents of S[0] can be moved into its neighbors
- * S[0] will be removed after balancing.
- */
- if (!h && is_leaf_removable(tb))
- return CARRY_ON;
-
- /*
- * why do we perform this check here rather than earlier??
- * Answer: we can win 1 node in some cases above. Moreover we
- * checked it above, when we checked, that S[0] is not removable
- * in principle
- */
-
- /* new item fits into node S[h] without any shifting */
- if (sfree >= levbytes) {
- if (!h)
- tb->s0num = vn->vn_nr_item;
- set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
- return NO_BALANCING_NEEDED;
- }
-
- {
- int lpar, rpar, nset, lset, rset, lrset;
- /* regular overflowing of the node */
-
- /*
- * get_num_ver works in 2 modes (FLOW & NO_FLOW)
- * lpar, rpar - number of items we can shift to left/right
- * neighbor (including splitting item)
- * nset, lset, rset, lrset - shows, whether flowing items
- * give better packing
- */
-#define FLOW 1
-#define NO_FLOW 0 /* do not any splitting */
-
- /* we choose one of the following */
-#define NOTHING_SHIFT_NO_FLOW 0
-#define NOTHING_SHIFT_FLOW 5
-#define LEFT_SHIFT_NO_FLOW 10
-#define LEFT_SHIFT_FLOW 15
-#define RIGHT_SHIFT_NO_FLOW 20
-#define RIGHT_SHIFT_FLOW 25
-#define LR_SHIFT_NO_FLOW 30
-#define LR_SHIFT_FLOW 35
-
- lpar = tb->lnum[h];
- rpar = tb->rnum[h];
-
- /*
- * calculate number of blocks S[h] must be split into when
- * nothing is shifted to the neighbors, as well as number of
- * items in each part of the split node (s012 numbers),
- * and number of bytes (s1bytes) of the shared drop which
- * flow to S1 if any
- */
- nset = NOTHING_SHIFT_NO_FLOW;
- nver = get_num_ver(vn->vn_mode, tb, h,
- 0, -1, h ? vn->vn_nr_item : 0, -1,
- snum012, NO_FLOW);
-
- if (!h) {
- int nver1;
-
- /*
- * note, that in this case we try to bottle
- * between S[0] and S1 (S1 - the first new node)
- */
- nver1 = get_num_ver(vn->vn_mode, tb, h,
- 0, -1, 0, -1,
- snum012 + NOTHING_SHIFT_FLOW, FLOW);
- if (nver > nver1)
- nset = NOTHING_SHIFT_FLOW, nver = nver1;
- }
-
- /*
- * calculate number of blocks S[h] must be split into when
- * l_shift_num first items and l_shift_bytes of the right
- * most liquid item to be shifted are shifted to the left
- * neighbor, as well as number of items in each part of the
- * splitted node (s012 numbers), and number of bytes
- * (s1bytes) of the shared drop which flow to S1 if any
- */
- lset = LEFT_SHIFT_NO_FLOW;
- lnver = get_num_ver(vn->vn_mode, tb, h,
- lpar - ((h || tb->lbytes == -1) ? 0 : 1),
- -1, h ? vn->vn_nr_item : 0, -1,
- snum012 + LEFT_SHIFT_NO_FLOW, NO_FLOW);
- if (!h) {
- int lnver1;
-
- lnver1 = get_num_ver(vn->vn_mode, tb, h,
- lpar -
- ((tb->lbytes != -1) ? 1 : 0),
- tb->lbytes, 0, -1,
- snum012 + LEFT_SHIFT_FLOW, FLOW);
- if (lnver > lnver1)
- lset = LEFT_SHIFT_FLOW, lnver = lnver1;
- }
-
- /*
- * calculate number of blocks S[h] must be split into when
- * r_shift_num first items and r_shift_bytes of the left most
- * liquid item to be shifted are shifted to the right neighbor,
- * as well as number of items in each part of the splitted
- * node (s012 numbers), and number of bytes (s1bytes) of the
- * shared drop which flow to S1 if any
- */
- rset = RIGHT_SHIFT_NO_FLOW;
- rnver = get_num_ver(vn->vn_mode, tb, h,
- 0, -1,
- h ? (vn->vn_nr_item - rpar) : (rpar -
- ((tb->
- rbytes !=
- -1) ? 1 :
- 0)), -1,
- snum012 + RIGHT_SHIFT_NO_FLOW, NO_FLOW);
- if (!h) {
- int rnver1;
-
- rnver1 = get_num_ver(vn->vn_mode, tb, h,
- 0, -1,
- (rpar -
- ((tb->rbytes != -1) ? 1 : 0)),
- tb->rbytes,
- snum012 + RIGHT_SHIFT_FLOW, FLOW);
-
- if (rnver > rnver1)
- rset = RIGHT_SHIFT_FLOW, rnver = rnver1;
- }
-
- /*
- * calculate number of blocks S[h] must be split into when
- * items are shifted in both directions, as well as number
- * of items in each part of the splitted node (s012 numbers),
- * and number of bytes (s1bytes) of the shared drop which
- * flow to S1 if any
- */
- lrset = LR_SHIFT_NO_FLOW;
- lrnver = get_num_ver(vn->vn_mode, tb, h,
- lpar - ((h || tb->lbytes == -1) ? 0 : 1),
- -1,
- h ? (vn->vn_nr_item - rpar) : (rpar -
- ((tb->
- rbytes !=
- -1) ? 1 :
- 0)), -1,
- snum012 + LR_SHIFT_NO_FLOW, NO_FLOW);
- if (!h) {
- int lrnver1;
-
- lrnver1 = get_num_ver(vn->vn_mode, tb, h,
- lpar -
- ((tb->lbytes != -1) ? 1 : 0),
- tb->lbytes,
- (rpar -
- ((tb->rbytes != -1) ? 1 : 0)),
- tb->rbytes,
- snum012 + LR_SHIFT_FLOW, FLOW);
- if (lrnver > lrnver1)
- lrset = LR_SHIFT_FLOW, lrnver = lrnver1;
- }
-
- /*
- * Our general shifting strategy is:
- * 1) to minimized number of new nodes;
- * 2) to minimized number of neighbors involved in shifting;
- * 3) to minimized number of disk reads;
- */
-
- /* we can win TWO or ONE nodes by shifting in both directions */
- if (lrnver < lnver && lrnver < rnver) {
- RFALSE(h &&
- (tb->lnum[h] != 1 ||
- tb->rnum[h] != 1 ||
- lrnver != 1 || rnver != 2 || lnver != 2
- || h != 1), "vs-8230: bad h");
- if (lrset == LR_SHIFT_FLOW)
- set_parameters(tb, h, tb->lnum[h], tb->rnum[h],
- lrnver, snum012 + lrset,
- tb->lbytes, tb->rbytes);
- else
- set_parameters(tb, h,
- tb->lnum[h] -
- ((tb->lbytes == -1) ? 0 : 1),
- tb->rnum[h] -
- ((tb->rbytes == -1) ? 0 : 1),
- lrnver, snum012 + lrset, -1, -1);
-
- return CARRY_ON;
- }
-
- /*
- * if shifting doesn't lead to better packing
- * then don't shift
- */
- if (nver == lrnver) {
- set_parameters(tb, h, 0, 0, nver, snum012 + nset, -1,
- -1);
- return CARRY_ON;
- }
-
- /*
- * now we know that for better packing shifting in only one
- * direction either to the left or to the right is required
- */
-
- /*
- * if shifting to the left is better than
- * shifting to the right
- */
- if (lnver < rnver) {
- SET_PAR_SHIFT_LEFT;
- return CARRY_ON;
- }
-
- /*
- * if shifting to the right is better than
- * shifting to the left
- */
- if (lnver > rnver) {
- SET_PAR_SHIFT_RIGHT;
- return CARRY_ON;
- }
-
- /*
- * now shifting in either direction gives the same number
- * of nodes and we can make use of the cached neighbors
- */
- if (is_left_neighbor_in_cache(tb, h)) {
- SET_PAR_SHIFT_LEFT;
- return CARRY_ON;
- }
-
- /*
- * shift to the right independently on whether the
- * right neighbor in cache or not
- */
- SET_PAR_SHIFT_RIGHT;
- return CARRY_ON;
- }
-}
-
-/*
- * Check whether current node S[h] is balanced when Decreasing its size by
- * Deleting or Cutting for INTERNAL node of S+tree.
- * Calculate parameters for balancing for current level h.
- * Parameters:
- * tb tree_balance structure;
- * h current level of the node;
- * inum item number in S[h];
- * mode i - insert, p - paste;
- * Returns: 1 - schedule occurred;
- * 0 - balancing for higher levels needed;
- * -1 - no balancing for higher levels needed;
- * -2 - no disk space.
- *
- * Note: Items of internal nodes have fixed size, so the balance condition for
- * the internal part of S+tree is as for the B-trees.
- */
-static int dc_check_balance_internal(struct tree_balance *tb, int h)
-{
- struct virtual_node *vn = tb->tb_vn;
-
- /*
- * Sh is the node whose balance is currently being checked,
- * and Fh is its father.
- */
- struct buffer_head *Sh, *Fh;
- int ret;
- int lfree, rfree /* free space in L and R */ ;
-
- Sh = PATH_H_PBUFFER(tb->tb_path, h);
- Fh = PATH_H_PPARENT(tb->tb_path, h);
-
- /*
- * using tb->insert_size[h], which is negative in this case,
- * create_virtual_node calculates:
- * new_nr_item = number of items node would have if operation is
- * performed without balancing (new_nr_item);
- */
- create_virtual_node(tb, h);
-
- if (!Fh) { /* S[h] is the root. */
- /* no balancing for higher levels needed */
- if (vn->vn_nr_item > 0) {
- set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
- return NO_BALANCING_NEEDED;
- }
- /*
- * new_nr_item == 0.
- * Current root will be deleted resulting in
- * decrementing the tree height.
- */
- set_parameters(tb, h, 0, 0, 0, NULL, -1, -1);
- return CARRY_ON;
- }
-
- if ((ret = get_parents(tb, h)) != CARRY_ON)
- return ret;
-
- /* get free space of neighbors */
- rfree = get_rfree(tb, h);
- lfree = get_lfree(tb, h);
-
- /* determine maximal number of items we can fit into neighbors */
- check_left(tb, h, lfree);
- check_right(tb, h, rfree);
-
- /*
- * Balance condition for the internal node is valid.
- * In this case we balance only if it leads to better packing.
- */
- if (vn->vn_nr_item >= MIN_NR_KEY(Sh)) {
- /*
- * Here we join S[h] with one of its neighbors,
- * which is impossible with greater values of new_nr_item.
- */
- if (vn->vn_nr_item == MIN_NR_KEY(Sh)) {
- /* All contents of S[h] can be moved to L[h]. */
- if (tb->lnum[h] >= vn->vn_nr_item + 1) {
- int n;
- int order_L;
-
- order_L =
- ((n =
- PATH_H_B_ITEM_ORDER(tb->tb_path,
- h)) ==
- 0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
- n = dc_size(B_N_CHILD(tb->FL[h], order_L)) /
- (DC_SIZE + KEY_SIZE);
- set_parameters(tb, h, -n - 1, 0, 0, NULL, -1,
- -1);
- return CARRY_ON;
- }
-
- /* All contents of S[h] can be moved to R[h]. */
- if (tb->rnum[h] >= vn->vn_nr_item + 1) {
- int n;
- int order_R;
-
- order_R =
- ((n =
- PATH_H_B_ITEM_ORDER(tb->tb_path,
- h)) ==
- B_NR_ITEMS(Fh)) ? 0 : n + 1;
- n = dc_size(B_N_CHILD(tb->FR[h], order_R)) /
- (DC_SIZE + KEY_SIZE);
- set_parameters(tb, h, 0, -n - 1, 0, NULL, -1,
- -1);
- return CARRY_ON;
- }
- }
-
- /*
- * All contents of S[h] can be moved to the neighbors
- * (L[h] & R[h]).
- */
- if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
- int to_r;
-
- to_r =
- ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] -
- tb->rnum[h] + vn->vn_nr_item + 1) / 2 -
- (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]);
- set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r,
- 0, NULL, -1, -1);
- return CARRY_ON;
- }
-
- /* Balancing does not lead to better packing. */
- set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
- return NO_BALANCING_NEEDED;
- }
-
- /*
- * Current node contain insufficient number of items.
- * Balancing is required.
- */
- /* Check whether we can merge S[h] with left neighbor. */
- if (tb->lnum[h] >= vn->vn_nr_item + 1)
- if (is_left_neighbor_in_cache(tb, h)
- || tb->rnum[h] < vn->vn_nr_item + 1 || !tb->FR[h]) {
- int n;
- int order_L;
-
- order_L =
- ((n =
- PATH_H_B_ITEM_ORDER(tb->tb_path,
- h)) ==
- 0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
- n = dc_size(B_N_CHILD(tb->FL[h], order_L)) / (DC_SIZE +
- KEY_SIZE);
- set_parameters(tb, h, -n - 1, 0, 0, NULL, -1, -1);
- return CARRY_ON;
- }
-
- /* Check whether we can merge S[h] with right neighbor. */
- if (tb->rnum[h] >= vn->vn_nr_item + 1) {
- int n;
- int order_R;
-
- order_R =
- ((n =
- PATH_H_B_ITEM_ORDER(tb->tb_path,
- h)) == B_NR_ITEMS(Fh)) ? 0 : (n + 1);
- n = dc_size(B_N_CHILD(tb->FR[h], order_R)) / (DC_SIZE +
- KEY_SIZE);
- set_parameters(tb, h, 0, -n - 1, 0, NULL, -1, -1);
- return CARRY_ON;
- }
-
- /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
- if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
- int to_r;
-
- to_r =
- ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
- vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
- tb->rnum[h]);
- set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
- -1, -1);
- return CARRY_ON;
- }
-
- /* For internal nodes try to borrow item from a neighbor */
- RFALSE(!tb->FL[h] && !tb->FR[h], "vs-8235: trying to borrow for root");
-
- /* Borrow one or two items from caching neighbor */
- if (is_left_neighbor_in_cache(tb, h) || !tb->FR[h]) {
- int from_l;
-
- from_l =
- (MAX_NR_KEY(Sh) + 1 - tb->lnum[h] + vn->vn_nr_item +
- 1) / 2 - (vn->vn_nr_item + 1);
- set_parameters(tb, h, -from_l, 0, 1, NULL, -1, -1);
- return CARRY_ON;
- }
-
- set_parameters(tb, h, 0,
- -((MAX_NR_KEY(Sh) + 1 - tb->rnum[h] + vn->vn_nr_item +
- 1) / 2 - (vn->vn_nr_item + 1)), 1, NULL, -1, -1);
- return CARRY_ON;
-}
-
-/*
- * Check whether current node S[h] is balanced when Decreasing its size by
- * Deleting or Truncating for LEAF node of S+tree.
- * Calculate parameters for balancing for current level h.
- * Parameters:
- * tb tree_balance structure;
- * h current level of the node;
- * inum item number in S[h];
- * mode i - insert, p - paste;
- * Returns: 1 - schedule occurred;
- * 0 - balancing for higher levels needed;
- * -1 - no balancing for higher levels needed;
- * -2 - no disk space.
- */
-static int dc_check_balance_leaf(struct tree_balance *tb, int h)
-{
- struct virtual_node *vn = tb->tb_vn;
-
- /*
- * Number of bytes that must be deleted from
- * (value is negative if bytes are deleted) buffer which
- * contains node being balanced. The mnemonic is that the
- * attempted change in node space used level is levbytes bytes.
- */
- int levbytes;
-
- /* the maximal item size */
- int maxsize, ret;
-
- /*
- * S0 is the node whose balance is currently being checked,
- * and F0 is its father.
- */
- struct buffer_head *S0, *F0;
- int lfree, rfree /* free space in L and R */ ;
-
- S0 = PATH_H_PBUFFER(tb->tb_path, 0);
- F0 = PATH_H_PPARENT(tb->tb_path, 0);
-
- levbytes = tb->insert_size[h];
-
- maxsize = MAX_CHILD_SIZE(S0); /* maximal possible size of an item */
-
- if (!F0) { /* S[0] is the root now. */
-
- RFALSE(-levbytes >= maxsize - B_FREE_SPACE(S0),
- "vs-8240: attempt to create empty buffer tree");
-
- set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
- return NO_BALANCING_NEEDED;
- }
-
- if ((ret = get_parents(tb, h)) != CARRY_ON)
- return ret;
-
- /* get free space of neighbors */
- rfree = get_rfree(tb, h);
- lfree = get_lfree(tb, h);
-
- create_virtual_node(tb, h);
-
- /* if 3 leaves can be merge to one, set parameters and return */
- if (are_leaves_removable(tb, lfree, rfree))
- return CARRY_ON;
-
- /*
- * determine maximal number of items we can shift to the left/right
- * neighbor and the maximal number of bytes that can flow to the
- * left/right neighbor from the left/right most liquid item that
- * cannot be shifted from S[0] entirely
- */
- check_left(tb, h, lfree);
- check_right(tb, h, rfree);
-
- /* check whether we can merge S with left neighbor. */
- if (tb->lnum[0] >= vn->vn_nr_item && tb->lbytes == -1)
- if (is_left_neighbor_in_cache(tb, h) || ((tb->rnum[0] - ((tb->rbytes == -1) ? 0 : 1)) < vn->vn_nr_item) || /* S can not be merged with R */
- !tb->FR[h]) {
-
- RFALSE(!tb->FL[h],
- "vs-8245: dc_check_balance_leaf: FL[h] must exist");
-
- /* set parameter to merge S[0] with its left neighbor */
- set_parameters(tb, h, -1, 0, 0, NULL, -1, -1);
- return CARRY_ON;
- }
-
- /* check whether we can merge S[0] with right neighbor. */
- if (tb->rnum[0] >= vn->vn_nr_item && tb->rbytes == -1) {
- set_parameters(tb, h, 0, -1, 0, NULL, -1, -1);
- return CARRY_ON;
- }
-
- /*
- * All contents of S[0] can be moved to the neighbors (L[0] & R[0]).
- * Set parameters and return
- */
- if (is_leaf_removable(tb))
- return CARRY_ON;
-
- /* Balancing is not required. */
- tb->s0num = vn->vn_nr_item;
- set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
- return NO_BALANCING_NEEDED;
-}
-
-/*
- * Check whether current node S[h] is balanced when Decreasing its size by
- * Deleting or Cutting.
- * Calculate parameters for balancing for current level h.
- * Parameters:
- * tb tree_balance structure;
- * h current level of the node;
- * inum item number in S[h];
- * mode d - delete, c - cut.
- * Returns: 1 - schedule occurred;
- * 0 - balancing for higher levels needed;
- * -1 - no balancing for higher levels needed;
- * -2 - no disk space.
- */
-static int dc_check_balance(struct tree_balance *tb, int h)
-{
- RFALSE(!(PATH_H_PBUFFER(tb->tb_path, h)),
- "vs-8250: S is not initialized");
-
- if (h)
- return dc_check_balance_internal(tb, h);
- else
- return dc_check_balance_leaf(tb, h);
-}
-
-/*
- * Check whether current node S[h] is balanced.
- * Calculate parameters for balancing for current level h.
- * Parameters:
- *
- * tb tree_balance structure:
- *
- * tb is a large structure that must be read about in the header
- * file at the same time as this procedure if the reader is
- * to successfully understand this procedure
- *
- * h current level of the node;
- * inum item number in S[h];
- * mode i - insert, p - paste, d - delete, c - cut.
- * Returns: 1 - schedule occurred;
- * 0 - balancing for higher levels needed;
- * -1 - no balancing for higher levels needed;
- * -2 - no disk space.
- */
-static int check_balance(int mode,
- struct tree_balance *tb,
- int h,
- int inum,
- int pos_in_item,
- struct item_head *ins_ih, const void *data)
-{
- struct virtual_node *vn;
-
- vn = tb->tb_vn = (struct virtual_node *)(tb->vn_buf);
- vn->vn_free_ptr = (char *)(tb->tb_vn + 1);
- vn->vn_mode = mode;
- vn->vn_affected_item_num = inum;
- vn->vn_pos_in_item = pos_in_item;
- vn->vn_ins_ih = ins_ih;
- vn->vn_data = data;
-
- RFALSE(mode == M_INSERT && !vn->vn_ins_ih,
- "vs-8255: ins_ih can not be 0 in insert mode");
-
- /* Calculate balance parameters when size of node is increasing. */
- if (tb->insert_size[h] > 0)
- return ip_check_balance(tb, h);
-
- /* Calculate balance parameters when size of node is decreasing. */
- return dc_check_balance(tb, h);
-}
-
-/* Check whether parent at the path is the really parent of the current node.*/
-static int get_direct_parent(struct tree_balance *tb, int h)
-{
- struct buffer_head *bh;
- struct treepath *path = tb->tb_path;
- int position,
- path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h);
-
- /* We are in the root or in the new root. */
- if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
-
- RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET - 1,
- "PAP-8260: invalid offset in the path");
-
- if (PATH_OFFSET_PBUFFER(path, FIRST_PATH_ELEMENT_OFFSET)->
- b_blocknr == SB_ROOT_BLOCK(tb->tb_sb)) {
- /* Root is not changed. */
- PATH_OFFSET_PBUFFER(path, path_offset - 1) = NULL;
- PATH_OFFSET_POSITION(path, path_offset - 1) = 0;
- return CARRY_ON;
- }
- /* Root is changed and we must recalculate the path. */
- return REPEAT_SEARCH;
- }
-
- /* Parent in the path is not in the tree. */
- if (!B_IS_IN_TREE
- (bh = PATH_OFFSET_PBUFFER(path, path_offset - 1)))
- return REPEAT_SEARCH;
-
- if ((position =
- PATH_OFFSET_POSITION(path,
- path_offset - 1)) > B_NR_ITEMS(bh))
- return REPEAT_SEARCH;
-
- /* Parent in the path is not parent of the current node in the tree. */
- if (B_N_CHILD_NUM(bh, position) !=
- PATH_OFFSET_PBUFFER(path, path_offset)->b_blocknr)
- return REPEAT_SEARCH;
-
- if (buffer_locked(bh)) {
- int depth = reiserfs_write_unlock_nested(tb->tb_sb);
- __wait_on_buffer(bh);
- reiserfs_write_lock_nested(tb->tb_sb, depth);
- if (FILESYSTEM_CHANGED_TB(tb))
- return REPEAT_SEARCH;
- }
-
- /*
- * Parent in the path is unlocked and really parent
- * of the current node.
- */
- return CARRY_ON;
-}
-
-/*
- * Using lnum[h] and rnum[h] we should determine what neighbors
- * of S[h] we
- * need in order to balance S[h], and get them if necessary.
- * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked;
- * CARRY_ON - schedule didn't occur while the function worked;
- */
-static int get_neighbors(struct tree_balance *tb, int h)
-{
- int child_position,
- path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h + 1);
- unsigned long son_number;
- struct super_block *sb = tb->tb_sb;
- struct buffer_head *bh;
- int depth;
-
- PROC_INFO_INC(sb, get_neighbors[h]);
-
- if (tb->lnum[h]) {
- /* We need left neighbor to balance S[h]. */
- PROC_INFO_INC(sb, need_l_neighbor[h]);
- bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset);
-
- RFALSE(bh == tb->FL[h] &&
- !PATH_OFFSET_POSITION(tb->tb_path, path_offset),
- "PAP-8270: invalid position in the parent");
-
- child_position =
- (bh ==
- tb->FL[h]) ? tb->lkey[h] : B_NR_ITEMS(tb->
- FL[h]);
- son_number = B_N_CHILD_NUM(tb->FL[h], child_position);
- depth = reiserfs_write_unlock_nested(tb->tb_sb);
- bh = sb_bread(sb, son_number);
- reiserfs_write_lock_nested(tb->tb_sb, depth);
- if (!bh)
- return IO_ERROR;
- if (FILESYSTEM_CHANGED_TB(tb)) {
- brelse(bh);
- PROC_INFO_INC(sb, get_neighbors_restart[h]);
- return REPEAT_SEARCH;
- }
-
- RFALSE(!B_IS_IN_TREE(tb->FL[h]) ||
- child_position > B_NR_ITEMS(tb->FL[h]) ||
- B_N_CHILD_NUM(tb->FL[h], child_position) !=
- bh->b_blocknr, "PAP-8275: invalid parent");
- RFALSE(!B_IS_IN_TREE(bh), "PAP-8280: invalid child");
- RFALSE(!h &&
- B_FREE_SPACE(bh) !=
- MAX_CHILD_SIZE(bh) -
- dc_size(B_N_CHILD(tb->FL[0], child_position)),
- "PAP-8290: invalid child size of left neighbor");
-
- brelse(tb->L[h]);
- tb->L[h] = bh;
- }
-
- /* We need right neighbor to balance S[path_offset]. */
- if (tb->rnum[h]) {
- PROC_INFO_INC(sb, need_r_neighbor[h]);
- bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset);
-
- RFALSE(bh == tb->FR[h] &&
- PATH_OFFSET_POSITION(tb->tb_path,
- path_offset) >=
- B_NR_ITEMS(bh),
- "PAP-8295: invalid position in the parent");
-
- child_position =
- (bh == tb->FR[h]) ? tb->rkey[h] + 1 : 0;
- son_number = B_N_CHILD_NUM(tb->FR[h], child_position);
- depth = reiserfs_write_unlock_nested(tb->tb_sb);
- bh = sb_bread(sb, son_number);
- reiserfs_write_lock_nested(tb->tb_sb, depth);
- if (!bh)
- return IO_ERROR;
- if (FILESYSTEM_CHANGED_TB(tb)) {
- brelse(bh);
- PROC_INFO_INC(sb, get_neighbors_restart[h]);
- return REPEAT_SEARCH;
- }
- brelse(tb->R[h]);
- tb->R[h] = bh;
-
- RFALSE(!h
- && B_FREE_SPACE(bh) !=
- MAX_CHILD_SIZE(bh) -
- dc_size(B_N_CHILD(tb->FR[0], child_position)),
- "PAP-8300: invalid child size of right neighbor (%d != %d - %d)",
- B_FREE_SPACE(bh), MAX_CHILD_SIZE(bh),
- dc_size(B_N_CHILD(tb->FR[0], child_position)));
-
- }
- return CARRY_ON;
-}
-
-static int get_virtual_node_size(struct super_block *sb, struct buffer_head *bh)
-{
- int max_num_of_items;
- int max_num_of_entries;
- unsigned long blocksize = sb->s_blocksize;
-
-#define MIN_NAME_LEN 1
-
- max_num_of_items = (blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN);
- max_num_of_entries = (blocksize - BLKH_SIZE - IH_SIZE) /
- (DEH_SIZE + MIN_NAME_LEN);
-
- return sizeof(struct virtual_node) +
- max(max_num_of_items * sizeof(struct virtual_item),
- sizeof(struct virtual_item) +
- struct_size_t(struct direntry_uarea, entry_sizes,
- max_num_of_entries));
-}
-
-/*
- * maybe we should fail balancing we are going to perform when kmalloc
- * fails several times. But now it will loop until kmalloc gets
- * required memory
- */
-static int get_mem_for_virtual_node(struct tree_balance *tb)
-{
- int check_fs = 0;
- int size;
- char *buf;
-
- size = get_virtual_node_size(tb->tb_sb, PATH_PLAST_BUFFER(tb->tb_path));
-
- /* we have to allocate more memory for virtual node */
- if (size > tb->vn_buf_size) {
- if (tb->vn_buf) {
- /* free memory allocated before */
- kfree(tb->vn_buf);
- /* this is not needed if kfree is atomic */
- check_fs = 1;
- }
-
- /* virtual node requires now more memory */
- tb->vn_buf_size = size;
-
- /* get memory for virtual item */
- buf = kmalloc(size, GFP_ATOMIC | __GFP_NOWARN);
- if (!buf) {
- /*
- * getting memory with GFP_KERNEL priority may involve
- * balancing now (due to indirect_to_direct conversion
- * on dcache shrinking). So, release path and collected
- * resources here
- */
- free_buffers_in_tb(tb);
- buf = kmalloc(size, GFP_NOFS);
- if (!buf) {
- tb->vn_buf_size = 0;
- }
- tb->vn_buf = buf;
- schedule();
- return REPEAT_SEARCH;
- }
-
- tb->vn_buf = buf;
- }
-
- if (check_fs && FILESYSTEM_CHANGED_TB(tb))
- return REPEAT_SEARCH;
-
- return CARRY_ON;
-}
-
-#ifdef CONFIG_REISERFS_CHECK
-static void tb_buffer_sanity_check(struct super_block *sb,
- struct buffer_head *bh,
- const char *descr, int level)
-{
- if (bh) {
- if (atomic_read(&(bh->b_count)) <= 0)
-
- reiserfs_panic(sb, "jmacd-1", "negative or zero "
- "reference counter for buffer %s[%d] "
- "(%b)", descr, level, bh);
-
- if (!buffer_uptodate(bh))
- reiserfs_panic(sb, "jmacd-2", "buffer is not up "
- "to date %s[%d] (%b)",
- descr, level, bh);
-
- if (!B_IS_IN_TREE(bh))
- reiserfs_panic(sb, "jmacd-3", "buffer is not "
- "in tree %s[%d] (%b)",
- descr, level, bh);
-
- if (bh->b_bdev != sb->s_bdev)
- reiserfs_panic(sb, "jmacd-4", "buffer has wrong "
- "device %s[%d] (%b)",
- descr, level, bh);
-
- if (bh->b_size != sb->s_blocksize)
- reiserfs_panic(sb, "jmacd-5", "buffer has wrong "
- "blocksize %s[%d] (%b)",
- descr, level, bh);
-
- if (bh->b_blocknr > SB_BLOCK_COUNT(sb))
- reiserfs_panic(sb, "jmacd-6", "buffer block "
- "number too high %s[%d] (%b)",
- descr, level, bh);
- }
-}
-#else
-static void tb_buffer_sanity_check(struct super_block *sb,
- struct buffer_head *bh,
- const char *descr, int level)
-{;
-}
-#endif
-
-static int clear_all_dirty_bits(struct super_block *s, struct buffer_head *bh)
-{
- return reiserfs_prepare_for_journal(s, bh, 0);
-}
-
-static int wait_tb_buffers_until_unlocked(struct tree_balance *tb)
-{
- struct buffer_head *locked;
-#ifdef CONFIG_REISERFS_CHECK
- int repeat_counter = 0;
-#endif
- int i;
-
- do {
-
- locked = NULL;
-
- for (i = tb->tb_path->path_length;
- !locked && i > ILLEGAL_PATH_ELEMENT_OFFSET; i--) {
- if (PATH_OFFSET_PBUFFER(tb->tb_path, i)) {
- /*
- * if I understand correctly, we can only
- * be sure the last buffer in the path is
- * in the tree --clm
- */
-#ifdef CONFIG_REISERFS_CHECK
- if (PATH_PLAST_BUFFER(tb->tb_path) ==
- PATH_OFFSET_PBUFFER(tb->tb_path, i))
- tb_buffer_sanity_check(tb->tb_sb,
- PATH_OFFSET_PBUFFER
- (tb->tb_path,
- i), "S",
- tb->tb_path->
- path_length - i);
-#endif
- if (!clear_all_dirty_bits(tb->tb_sb,
- PATH_OFFSET_PBUFFER
- (tb->tb_path,
- i))) {
- locked =
- PATH_OFFSET_PBUFFER(tb->tb_path,
- i);
- }
- }
- }
-
- for (i = 0; !locked && i < MAX_HEIGHT && tb->insert_size[i];
- i++) {
-
- if (tb->lnum[i]) {
-
- if (tb->L[i]) {
- tb_buffer_sanity_check(tb->tb_sb,
- tb->L[i],
- "L", i);
- if (!clear_all_dirty_bits
- (tb->tb_sb, tb->L[i]))
- locked = tb->L[i];
- }
-
- if (!locked && tb->FL[i]) {
- tb_buffer_sanity_check(tb->tb_sb,
- tb->FL[i],
- "FL", i);
- if (!clear_all_dirty_bits
- (tb->tb_sb, tb->FL[i]))
- locked = tb->FL[i];
- }
-
- if (!locked && tb->CFL[i]) {
- tb_buffer_sanity_check(tb->tb_sb,
- tb->CFL[i],
- "CFL", i);
- if (!clear_all_dirty_bits
- (tb->tb_sb, tb->CFL[i]))
- locked = tb->CFL[i];
- }
-
- }
-
- if (!locked && (tb->rnum[i])) {
-
- if (tb->R[i]) {
- tb_buffer_sanity_check(tb->tb_sb,
- tb->R[i],
- "R", i);
- if (!clear_all_dirty_bits
- (tb->tb_sb, tb->R[i]))
- locked = tb->R[i];
- }
-
- if (!locked && tb->FR[i]) {
- tb_buffer_sanity_check(tb->tb_sb,
- tb->FR[i],
- "FR", i);
- if (!clear_all_dirty_bits
- (tb->tb_sb, tb->FR[i]))
- locked = tb->FR[i];
- }
-
- if (!locked && tb->CFR[i]) {
- tb_buffer_sanity_check(tb->tb_sb,
- tb->CFR[i],
- "CFR", i);
- if (!clear_all_dirty_bits
- (tb->tb_sb, tb->CFR[i]))
- locked = tb->CFR[i];
- }
- }
- }
-
- /*
- * as far as I can tell, this is not required. The FEB list
- * seems to be full of newly allocated nodes, which will
- * never be locked, dirty, or anything else.
- * To be safe, I'm putting in the checks and waits in.
- * For the moment, they are needed to keep the code in
- * journal.c from complaining about the buffer.
- * That code is inside CONFIG_REISERFS_CHECK as well. --clm
- */
- for (i = 0; !locked && i < MAX_FEB_SIZE; i++) {
- if (tb->FEB[i]) {
- if (!clear_all_dirty_bits
- (tb->tb_sb, tb->FEB[i]))
- locked = tb->FEB[i];
- }
- }
-
- if (locked) {
- int depth;
-#ifdef CONFIG_REISERFS_CHECK
- repeat_counter++;
- if ((repeat_counter % 10000) == 0) {
- reiserfs_warning(tb->tb_sb, "reiserfs-8200",
- "too many iterations waiting "
- "for buffer to unlock "
- "(%b)", locked);
-
- /* Don't loop forever. Try to recover from possible error. */
-
- return (FILESYSTEM_CHANGED_TB(tb)) ?
- REPEAT_SEARCH : CARRY_ON;
- }
-#endif
- depth = reiserfs_write_unlock_nested(tb->tb_sb);
- __wait_on_buffer(locked);
- reiserfs_write_lock_nested(tb->tb_sb, depth);
- if (FILESYSTEM_CHANGED_TB(tb))
- return REPEAT_SEARCH;
- }
-
- } while (locked);
-
- return CARRY_ON;
-}
-
-/*
- * Prepare for balancing, that is
- * get all necessary parents, and neighbors;
- * analyze what and where should be moved;
- * get sufficient number of new nodes;
- * Balancing will start only after all resources will be collected at a time.
- *
- * When ported to SMP kernels, only at the last moment after all needed nodes
- * are collected in cache, will the resources be locked using the usual
- * textbook ordered lock acquisition algorithms. Note that ensuring that
- * this code neither write locks what it does not need to write lock nor locks
- * out of order will be a pain in the butt that could have been avoided.
- * Grumble grumble. -Hans
- *
- * fix is meant in the sense of render unchanging
- *
- * Latency might be improved by first gathering a list of what buffers
- * are needed and then getting as many of them in parallel as possible? -Hans
- *
- * Parameters:
- * op_mode i - insert, d - delete, c - cut (truncate), p - paste (append)
- * tb tree_balance structure;
- * inum item number in S[h];
- * pos_in_item - comment this if you can
- * ins_ih item head of item being inserted
- * data inserted item or data to be pasted
- * Returns: 1 - schedule occurred while the function worked;
- * 0 - schedule didn't occur while the function worked;
- * -1 - if no_disk_space
- */
-
-int fix_nodes(int op_mode, struct tree_balance *tb,
- struct item_head *ins_ih, const void *data)
-{
- int ret, h, item_num = PATH_LAST_POSITION(tb->tb_path);
- int pos_in_item;
-
- /*
- * we set wait_tb_buffers_run when we have to restore any dirty
- * bits cleared during wait_tb_buffers_run
- */
- int wait_tb_buffers_run = 0;
- struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path);
-
- ++REISERFS_SB(tb->tb_sb)->s_fix_nodes;
-
- pos_in_item = tb->tb_path->pos_in_item;
-
- tb->fs_gen = get_generation(tb->tb_sb);
-
- /*
- * we prepare and log the super here so it will already be in the
- * transaction when do_balance needs to change it.
- * This way do_balance won't have to schedule when trying to prepare
- * the super for logging
- */
- reiserfs_prepare_for_journal(tb->tb_sb,
- SB_BUFFER_WITH_SB(tb->tb_sb), 1);
- journal_mark_dirty(tb->transaction_handle,
- SB_BUFFER_WITH_SB(tb->tb_sb));
- if (FILESYSTEM_CHANGED_TB(tb))
- return REPEAT_SEARCH;
-
- /* if it possible in indirect_to_direct conversion */
- if (buffer_locked(tbS0)) {
- int depth = reiserfs_write_unlock_nested(tb->tb_sb);
- __wait_on_buffer(tbS0);
- reiserfs_write_lock_nested(tb->tb_sb, depth);
- if (FILESYSTEM_CHANGED_TB(tb))
- return REPEAT_SEARCH;
- }
-#ifdef CONFIG_REISERFS_CHECK
- if (REISERFS_SB(tb->tb_sb)->cur_tb) {
- print_cur_tb("fix_nodes");
- reiserfs_panic(tb->tb_sb, "PAP-8305",
- "there is pending do_balance");
- }
-
- if (!buffer_uptodate(tbS0) || !B_IS_IN_TREE(tbS0))
- reiserfs_panic(tb->tb_sb, "PAP-8320", "S[0] (%b %z) is "
- "not uptodate at the beginning of fix_nodes "
- "or not in tree (mode %c)",
- tbS0, tbS0, op_mode);
-
- /* Check parameters. */
- switch (op_mode) {
- case M_INSERT:
- if (item_num <= 0 || item_num > B_NR_ITEMS(tbS0))
- reiserfs_panic(tb->tb_sb, "PAP-8330", "Incorrect "
- "item number %d (in S0 - %d) in case "
- "of insert", item_num,
- B_NR_ITEMS(tbS0));
- break;
- case M_PASTE:
- case M_DELETE:
- case M_CUT:
- if (item_num < 0 || item_num >= B_NR_ITEMS(tbS0)) {
- print_block(tbS0, 0, -1, -1);
- reiserfs_panic(tb->tb_sb, "PAP-8335", "Incorrect "
- "item number(%d); mode = %c "
- "insert_size = %d",
- item_num, op_mode,
- tb->insert_size[0]);
- }
- break;
- default:
- reiserfs_panic(tb->tb_sb, "PAP-8340", "Incorrect mode "
- "of operation");
- }
-#endif
-
- if (get_mem_for_virtual_node(tb) == REPEAT_SEARCH)
- /* FIXME: maybe -ENOMEM when tb->vn_buf == 0? Now just repeat */
- return REPEAT_SEARCH;
-
- /* Starting from the leaf level; for all levels h of the tree. */
- for (h = 0; h < MAX_HEIGHT && tb->insert_size[h]; h++) {
- ret = get_direct_parent(tb, h);
- if (ret != CARRY_ON)
- goto repeat;
-
- ret = check_balance(op_mode, tb, h, item_num,
- pos_in_item, ins_ih, data);
- if (ret != CARRY_ON) {
- if (ret == NO_BALANCING_NEEDED) {
- /* No balancing for higher levels needed. */
- ret = get_neighbors(tb, h);
- if (ret != CARRY_ON)
- goto repeat;
- if (h != MAX_HEIGHT - 1)
- tb->insert_size[h + 1] = 0;
- /*
- * ok, analysis and resource gathering
- * are complete
- */
- break;
- }
- goto repeat;
- }
-
- ret = get_neighbors(tb, h);
- if (ret != CARRY_ON)
- goto repeat;
-
- /*
- * No disk space, or schedule occurred and analysis may be
- * invalid and needs to be redone.
- */
- ret = get_empty_nodes(tb, h);
- if (ret != CARRY_ON)
- goto repeat;
-
- /*
- * We have a positive insert size but no nodes exist on this
- * level, this means that we are creating a new root.
- */
- if (!PATH_H_PBUFFER(tb->tb_path, h)) {
-
- RFALSE(tb->blknum[h] != 1,
- "PAP-8350: creating new empty root");
-
- if (h < MAX_HEIGHT - 1)
- tb->insert_size[h + 1] = 0;
- } else if (!PATH_H_PBUFFER(tb->tb_path, h + 1)) {
- /*
- * The tree needs to be grown, so this node S[h]
- * which is the root node is split into two nodes,
- * and a new node (S[h+1]) will be created to
- * become the root node.
- */
- if (tb->blknum[h] > 1) {
-
- RFALSE(h == MAX_HEIGHT - 1,
- "PAP-8355: attempt to create too high of a tree");
-
- tb->insert_size[h + 1] =
- (DC_SIZE +
- KEY_SIZE) * (tb->blknum[h] - 1) +
- DC_SIZE;
- } else if (h < MAX_HEIGHT - 1)
- tb->insert_size[h + 1] = 0;
- } else
- tb->insert_size[h + 1] =
- (DC_SIZE + KEY_SIZE) * (tb->blknum[h] - 1);
- }
-
- ret = wait_tb_buffers_until_unlocked(tb);
- if (ret == CARRY_ON) {
- if (FILESYSTEM_CHANGED_TB(tb)) {
- wait_tb_buffers_run = 1;
- ret = REPEAT_SEARCH;
- goto repeat;
- } else {
- return CARRY_ON;
- }
- } else {
- wait_tb_buffers_run = 1;
- goto repeat;
- }
-
-repeat:
- /*
- * fix_nodes was unable to perform its calculation due to
- * filesystem got changed under us, lack of free disk space or i/o
- * failure. If the first is the case - the search will be
- * repeated. For now - free all resources acquired so far except
- * for the new allocated nodes
- */
- {
- int i;
-
- /* Release path buffers. */
- if (wait_tb_buffers_run) {
- pathrelse_and_restore(tb->tb_sb, tb->tb_path);
- } else {
- pathrelse(tb->tb_path);
- }
- /* brelse all resources collected for balancing */
- for (i = 0; i < MAX_HEIGHT; i++) {
- if (wait_tb_buffers_run) {
- reiserfs_restore_prepared_buffer(tb->tb_sb,
- tb->L[i]);
- reiserfs_restore_prepared_buffer(tb->tb_sb,
- tb->R[i]);
- reiserfs_restore_prepared_buffer(tb->tb_sb,
- tb->FL[i]);
- reiserfs_restore_prepared_buffer(tb->tb_sb,
- tb->FR[i]);
- reiserfs_restore_prepared_buffer(tb->tb_sb,
- tb->
- CFL[i]);
- reiserfs_restore_prepared_buffer(tb->tb_sb,
- tb->
- CFR[i]);
- }
-
- brelse(tb->L[i]);
- brelse(tb->R[i]);
- brelse(tb->FL[i]);
- brelse(tb->FR[i]);
- brelse(tb->CFL[i]);
- brelse(tb->CFR[i]);
-
- tb->L[i] = NULL;
- tb->R[i] = NULL;
- tb->FL[i] = NULL;
- tb->FR[i] = NULL;
- tb->CFL[i] = NULL;
- tb->CFR[i] = NULL;
- }
-
- if (wait_tb_buffers_run) {
- for (i = 0; i < MAX_FEB_SIZE; i++) {
- if (tb->FEB[i])
- reiserfs_restore_prepared_buffer
- (tb->tb_sb, tb->FEB[i]);
- }
- }
- return ret;
- }
-
-}
-
-void unfix_nodes(struct tree_balance *tb)
-{
- int i;
-
- /* Release path buffers. */
- pathrelse_and_restore(tb->tb_sb, tb->tb_path);
-
- /* brelse all resources collected for balancing */
- for (i = 0; i < MAX_HEIGHT; i++) {
- reiserfs_restore_prepared_buffer(tb->tb_sb, tb->L[i]);
- reiserfs_restore_prepared_buffer(tb->tb_sb, tb->R[i]);
- reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FL[i]);
- reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FR[i]);
- reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFL[i]);
- reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFR[i]);
-
- brelse(tb->L[i]);
- brelse(tb->R[i]);
- brelse(tb->FL[i]);
- brelse(tb->FR[i]);
- brelse(tb->CFL[i]);
- brelse(tb->CFR[i]);
- }
-
- /* deal with list of allocated (used and unused) nodes */
- for (i = 0; i < MAX_FEB_SIZE; i++) {
- if (tb->FEB[i]) {
- b_blocknr_t blocknr = tb->FEB[i]->b_blocknr;
- /*
- * de-allocated block which was not used by
- * balancing and bforget about buffer for it
- */
- brelse(tb->FEB[i]);
- reiserfs_free_block(tb->transaction_handle, NULL,
- blocknr, 0);
- }
- if (tb->used[i]) {
- /* release used as new nodes including a new root */
- brelse(tb->used[i]);
- }
- }
-
- kfree(tb->vn_buf);
-
-}