diff options
Diffstat (limited to 'kernel/rcu')
-rw-r--r-- | kernel/rcu/srcutree.c | 67 |
1 files changed, 51 insertions, 16 deletions
diff --git a/kernel/rcu/srcutree.c b/kernel/rcu/srcutree.c index 68b8d8b150db..d2d2e31c42b1 100644 --- a/kernel/rcu/srcutree.c +++ b/kernel/rcu/srcutree.c @@ -469,24 +469,59 @@ static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx) /* * If the locks are the same as the unlocks, then there must have - * been no readers on this index at some time in between. This does - * not mean that there are no more readers, as one could have read - * the current index but not have incremented the lock counter yet. + * been no readers on this index at some point in this function. + * But there might be more readers, as a task might have read + * the current ->srcu_idx but not yet have incremented its CPU's + * ->srcu_lock_count[idx] counter. In fact, it is possible + * that most of the tasks have been preempted between fetching + * ->srcu_idx and incrementing ->srcu_lock_count[idx]. And there + * could be almost (ULONG_MAX / sizeof(struct task_struct)) tasks + * in a system whose address space was fully populated with memory. + * Call this quantity Nt. * - * So suppose that the updater is preempted here for so long - * that more than ULONG_MAX non-nested readers come and go in - * the meantime. It turns out that this cannot result in overflow - * because if a reader modifies its unlock count after we read it - * above, then that reader's next load of ->srcu_idx is guaranteed - * to get the new value, which will cause it to operate on the - * other bank of counters, where it cannot contribute to the - * overflow of these counters. This means that there is a maximum - * of 2*NR_CPUS increments, which cannot overflow given current - * systems, especially not on 64-bit systems. + * So suppose that the updater is preempted at this point in the + * code for a long time. That now-preempted updater has already + * flipped ->srcu_idx (possibly during the preceding grace period), + * done an smp_mb() (again, possibly during the preceding grace + * period), and summed up the ->srcu_unlock_count[idx] counters. + * How many times can a given one of the aforementioned Nt tasks + * increment the old ->srcu_idx value's ->srcu_lock_count[idx] + * counter, in the absence of nesting? * - * OK, how about nesting? This does impose a limit on nesting - * of floor(ULONG_MAX/NR_CPUS/2), which should be sufficient, - * especially on 64-bit systems. + * It can clearly do so once, given that it has already fetched + * the old value of ->srcu_idx and is just about to use that value + * to index its increment of ->srcu_lock_count[idx]. But as soon as + * it leaves that SRCU read-side critical section, it will increment + * ->srcu_unlock_count[idx], which must follow the updater's above + * read from that same value. Thus, as soon the reading task does + * an smp_mb() and a later fetch from ->srcu_idx, that task will be + * guaranteed to get the new index. Except that the increment of + * ->srcu_unlock_count[idx] in __srcu_read_unlock() is after the + * smp_mb(), and the fetch from ->srcu_idx in __srcu_read_lock() + * is before the smp_mb(). Thus, that task might not see the new + * value of ->srcu_idx until the -second- __srcu_read_lock(), + * which in turn means that this task might well increment + * ->srcu_lock_count[idx] for the old value of ->srcu_idx twice, + * not just once. + * + * However, it is important to note that a given smp_mb() takes + * effect not just for the task executing it, but also for any + * later task running on that same CPU. + * + * That is, there can be almost Nt + Nc further increments of + * ->srcu_lock_count[idx] for the old index, where Nc is the number + * of CPUs. But this is OK because the size of the task_struct + * structure limits the value of Nt and current systems limit Nc + * to a few thousand. + * + * OK, but what about nesting? This does impose a limit on + * nesting of half of the size of the task_struct structure + * (measured in bytes), which should be sufficient. A late 2022 + * TREE01 rcutorture run reported this size to be no less than + * 9408 bytes, allowing up to 4704 levels of nesting, which is + * comfortably beyond excessive. Especially on 64-bit systems, + * which are unlikely to be configured with an address space fully + * populated with memory, at least not anytime soon. */ return srcu_readers_lock_idx(ssp, idx) == unlocks; } |