summaryrefslogtreecommitdiffstats
path: root/arch/x86/include/asm/kvm_host.h (follow)
Commit message (Collapse)AuthorAgeFilesLines
* KVM: MMU: record maximum physical address width in kvm_mmu_extended_roleYu Zhang2019-02-221-0/+1
| | | | | | | | | | | | | | | | | Previously, commit 7dcd57552008 ("x86/kvm/mmu: check if tdp/shadow MMU reconfiguration is needed") offered some optimization to avoid the unnecessary reconfiguration. Yet one scenario is broken - when cpuid changes VM's maximum physical address width, reconfiguration is needed to reset the reserved bits. Also, the TDP may need to reset its shadow_root_level when this value is changed. To fix this, a new field, maxphyaddr, is introduced in the extended role structure to keep track of the configured guest physical address width. Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* x86/kvm/mmu: fix switch between root and guest MMUsVitaly Kuznetsov2019-02-221-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Commit 14c07ad89f4d ("x86/kvm/mmu: introduce guest_mmu") brought one subtle change: previously, when switching back from L2 to L1, we were resetting MMU hooks (like mmu->get_cr3()) in kvm_init_mmu() called from nested_vmx_load_cr3() and now we do that in nested_ept_uninit_mmu_context() when we re-target vcpu->arch.mmu pointer. The change itself looks logical: if nested_ept_init_mmu_context() changes something than nested_ept_uninit_mmu_context() restores it back. There is, however, one thing: the following call chain: nested_vmx_load_cr3() kvm_mmu_new_cr3() __kvm_mmu_new_cr3() fast_cr3_switch() cached_root_available() now happens with MMU hooks pointing to the new MMU (root MMU in our case) while previously it was happening with the old one. cached_root_available() tries to stash current root but it is incorrect to read current CR3 with mmu->get_cr3(), we need to use old_mmu->get_cr3() which in case we're switching from L2 to L1 is guest_mmu. (BTW, in shadow page tables case this is a non-issue because we don't switch MMU). While we could've tried to guess that we're switching between MMUs and call the right ->get_cr3() from cached_root_available() this seems to be overly complicated. Instead, just stash the corresponding CR3 when setting root_hpa and make cached_root_available() use the stashed value. Fixes: 14c07ad89f4d ("x86/kvm/mmu: introduce guest_mmu") Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* KVM: x86: Use jmp to invoke kvm_spurious_fault() from .fixupSean Christopherson2018-12-211-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ____kvm_handle_fault_on_reboot() provides a generic exception fixup handler that is used to cleanly handle faults on VMX/SVM instructions during reboot (or at least try to). If there isn't a reboot in progress, ____kvm_handle_fault_on_reboot() treats any exception as fatal to KVM and invokes kvm_spurious_fault(), which in turn generates a BUG() to get a stack trace and die. When it was originally added by commit 4ecac3fd6dc2 ("KVM: Handle virtualization instruction #UD faults during reboot"), the "call" to kvm_spurious_fault() was handcoded as PUSH+JMP, where the PUSH'd value is the RIP of the faulting instructing. The PUSH+JMP trickery is necessary because the exception fixup handler code lies outside of its associated function, e.g. right after the function. An actual CALL from the .fixup code would show a slightly bogus stack trace, e.g. an extra "random" function would be inserted into the trace, as the return RIP on the stack would point to no known function (and the unwinder will likely try to guess who owns the RIP). Unfortunately, the JMP was replaced with a CALL when the macro was reworked to not spin indefinitely during reboot (commit b7c4145ba2eb "KVM: Don't spin on virt instruction faults during reboot"). This causes the aforementioned behavior where a bogus function is inserted into the stack trace, e.g. my builds like to blame free_kvm_area(). Revert the CALL back to a JMP. The changelog for commit b7c4145ba2eb ("KVM: Don't spin on virt instruction faults during reboot") contains nothing that indicates the switch to CALL was deliberate. This is backed up by the fact that the PUSH <insn RIP> was left intact. Note that an alternative to the PUSH+JMP magic would be to JMP back to the "real" code and CALL from there, but that would require adding a JMP in the non-faulting path to avoid calling kvm_spurious_fault() and would add no value, i.e. the stack trace would be the same. Using CALL: ------------[ cut here ]------------ kernel BUG at /home/sean/go/src/kernel.org/linux/arch/x86/kvm/x86.c:356! invalid opcode: 0000 [#1] SMP CPU: 4 PID: 1057 Comm: qemu-system-x86 Not tainted 4.20.0-rc6+ #75 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 RIP: 0010:kvm_spurious_fault+0x5/0x10 [kvm] Code: <0f> 0b 66 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 41 55 49 89 fd 41 RSP: 0018:ffffc900004bbcc8 EFLAGS: 00010046 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffffffffffffff RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 RBP: ffff888273fd8000 R08: 00000000000003e8 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000784 R12: ffffc90000371fb0 R13: 0000000000000000 R14: 000000026d763cf4 R15: ffff888273fd8000 FS: 00007f3d69691700(0000) GS:ffff888277800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000055f89bc56fe0 CR3: 0000000271a5a001 CR4: 0000000000362ee0 Call Trace: free_kvm_area+0x1044/0x43ea [kvm_intel] ? vmx_vcpu_run+0x156/0x630 [kvm_intel] ? kvm_arch_vcpu_ioctl_run+0x447/0x1a40 [kvm] ? kvm_vcpu_ioctl+0x368/0x5c0 [kvm] ? kvm_vcpu_ioctl+0x368/0x5c0 [kvm] ? __set_task_blocked+0x38/0x90 ? __set_current_blocked+0x50/0x60 ? __fpu__restore_sig+0x97/0x490 ? do_vfs_ioctl+0xa1/0x620 ? __x64_sys_futex+0x89/0x180 ? ksys_ioctl+0x66/0x70 ? __x64_sys_ioctl+0x16/0x20 ? do_syscall_64+0x4f/0x100 ? entry_SYSCALL_64_after_hwframe+0x44/0xa9 Modules linked in: vhost_net vhost tap kvm_intel kvm irqbypass bridge stp llc ---[ end trace 9775b14b123b1713 ]--- Using JMP: ------------[ cut here ]------------ kernel BUG at /home/sean/go/src/kernel.org/linux/arch/x86/kvm/x86.c:356! invalid opcode: 0000 [#1] SMP CPU: 6 PID: 1067 Comm: qemu-system-x86 Not tainted 4.20.0-rc6+ #75 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 RIP: 0010:kvm_spurious_fault+0x5/0x10 [kvm] Code: <0f> 0b 66 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 41 55 49 89 fd 41 RSP: 0018:ffffc90000497cd0 EFLAGS: 00010046 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffffffffffffff RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 RBP: ffff88827058bd40 R08: 00000000000003e8 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000784 R12: ffffc90000369fb0 R13: 0000000000000000 R14: 00000003c8fc6642 R15: ffff88827058bd40 FS: 00007f3d7219e700(0000) GS:ffff888277900000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f3d64001000 CR3: 0000000271c6b004 CR4: 0000000000362ee0 Call Trace: vmx_vcpu_run+0x156/0x630 [kvm_intel] ? kvm_arch_vcpu_ioctl_run+0x447/0x1a40 [kvm] ? kvm_vcpu_ioctl+0x368/0x5c0 [kvm] ? kvm_vcpu_ioctl+0x368/0x5c0 [kvm] ? __set_task_blocked+0x38/0x90 ? __set_current_blocked+0x50/0x60 ? __fpu__restore_sig+0x97/0x490 ? do_vfs_ioctl+0xa1/0x620 ? __x64_sys_futex+0x89/0x180 ? ksys_ioctl+0x66/0x70 ? __x64_sys_ioctl+0x16/0x20 ? do_syscall_64+0x4f/0x100 ? entry_SYSCALL_64_after_hwframe+0x44/0xa9 Modules linked in: vhost_net vhost tap kvm_intel kvm irqbypass bridge stp llc ---[ end trace f9daedb85ab3ddba ]--- Fixes: b7c4145ba2eb ("KVM: Don't spin on virt instruction faults during reboot") Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* KVM: Make kvm_set_spte_hva() return intLan Tianyu2018-12-211-1/+1
| | | | | | | | | The patch is to make kvm_set_spte_hva() return int and caller can check return value to determine flush tlb or not. Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com> Acked-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* KVM: Add tlb_remote_flush_with_range callback in kvm_x86_opsLan Tianyu2018-12-211-0/+7
| | | | | | | | | Add flush range call back in the kvm_x86_ops and platform can use it to register its associated function. The parameter "kvm_tlb_range" accepts a single range and flush list which contains a list of ranges. Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* KVM: x86: Add Intel Processor Trace cpuid emulationChao Peng2018-12-211-0/+1
| | | | | | | | | Expose Intel Processor Trace to guest only when the PT works in Host-Guest mode. Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com> Signed-off-by: Luwei Kang <luwei.kang@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* kvm: x86: Dynamically allocate guest_fpuMarc Orr2018-12-141-1/+2
| | | | | | | | | | | | | | | | Previously, the guest_fpu field was embedded in the kvm_vcpu_arch struct. Unfortunately, the field is quite large, (e.g., 4352 bytes on my current setup). This bloats the kvm_vcpu_arch struct for x86 into an order 3 memory allocation, which can become a problem on overcommitted machines. Thus, this patch moves the fpu state outside of the kvm_vcpu_arch struct. With this patch applied, the kvm_vcpu_arch struct is reduced to 15168 bytes for vmx on my setup when building the kernel with kvmconfig. Suggested-by: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Marc Orr <marcorr@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* kvm: x86: Use task structs fpu field for userMarc Orr2018-12-141-4/+3
| | | | | | | | | | | | | | | | | | | | Previously, x86's instantiation of 'struct kvm_vcpu_arch' added an fpu field to save/restore fpu-related architectural state, which will differ from kvm's fpu state. However, this is redundant to the 'struct fpu' field, called fpu, embedded in the task struct, via the thread field. Thus, this patch removes the user_fpu field from the kvm_vcpu_arch struct and replaces it with the task struct's fpu field. This change is significant because the fpu struct is actually quite large. For example, on the system used to develop this patch, this change reduces the size of the vcpu_vmx struct from 23680 bytes down to 19520 bytes, when building the kernel with kvmconfig. This reduction in the size of the vcpu_vmx struct moves us closer to being able to allocate the struct at order 2, rather than order 3. Suggested-by: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Marc Orr <marcorr@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* x86/kvm/hyper-v: use stimer config definition from hyperv-tlfs.hVitaly Kuznetsov2018-12-141-1/+1
| | | | | | | | As a preparation to implementing Direct Mode for Hyper-V synthetic timers switch to using stimer config definition from hyperv-tlfs.h. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* x86/kvm/hyper-v: Introduce nested_get_evmcs_version() helperVitaly Kuznetsov2018-12-141-0/+1
| | | | | | | | | The upcoming KVM_GET_SUPPORTED_HV_CPUID ioctl will need to return Enlightened VMCS version in HYPERV_CPUID_NESTED_FEATURES.EAX when it was enabled. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* KVM: nVMX/nSVM: Fix bug which sets vcpu->arch.tsc_offset to L1 tsc_offsetLeonid Shatz2018-11-271-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Since commit e79f245ddec1 ("X86/KVM: Properly update 'tsc_offset' to represent the running guest"), vcpu->arch.tsc_offset meaning was changed to always reflect the tsc_offset value set on active VMCS. Regardless if vCPU is currently running L1 or L2. However, above mentioned commit failed to also change kvm_vcpu_write_tsc_offset() to set vcpu->arch.tsc_offset correctly. This is because vmx_write_tsc_offset() could set the tsc_offset value in active VMCS to given offset parameter *plus vmcs12->tsc_offset*. However, kvm_vcpu_write_tsc_offset() just sets vcpu->arch.tsc_offset to given offset parameter. Without taking into account the possible addition of vmcs12->tsc_offset. (Same is true for SVM case). Fix this issue by changing kvm_x86_ops->write_tsc_offset() to return actually set tsc_offset in active VMCS and modify kvm_vcpu_write_tsc_offset() to set returned value in vcpu->arch.tsc_offset. In addition, rename write_tsc_offset() callback to write_l1_tsc_offset() to make it clear that it is meant to set L1 TSC offset. Fixes: e79f245ddec1 ("X86/KVM: Properly update 'tsc_offset' to represent the running guest") Reviewed-by: Liran Alon <liran.alon@oracle.com> Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com> Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com> Signed-off-by: Leonid Shatz <leonid.shatz@oracle.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* kvm: x86: Add exception payload fields to kvm_vcpu_eventsJim Mattson2018-10-171-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | The per-VM capability KVM_CAP_EXCEPTION_PAYLOAD (to be introduced in a later commit) adds the following fields to struct kvm_vcpu_events: exception_has_payload, exception_payload, and exception.pending. With this capability set, all of the details of vcpu->arch.exception, including the payload for a pending exception, are reported to userspace in response to KVM_GET_VCPU_EVENTS. With this capability clear, the original ABI is preserved, and the exception.injected field is set for either pending or injected exceptions. When userspace calls KVM_SET_VCPU_EVENTS with KVM_CAP_EXCEPTION_PAYLOAD clear, exception.injected is no longer translated to exception.pending. KVM_SET_VCPU_EVENTS can now only establish a pending exception when KVM_CAP_EXCEPTION_PAYLOAD is set. Reported-by: Jim Mattson <jmattson@google.com> Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Jim Mattson <jmattson@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* kvm: x86: Add has_payload and payload to kvm_queued_exceptionJim Mattson2018-10-171-0/+2
| | | | | | | | | | | | | | | | The payload associated with a #PF exception is the linear address of the fault to be loaded into CR2 when the fault is delivered. The payload associated with a #DB exception is a mask of the DR6 bits to be set (or in the case of DR6.RTM, cleared) when the fault is delivered. Add fields has_payload and payload to kvm_queued_exception to track payloads for pending exceptions. The new fields are introduced here, but for now, they are just cleared. Reported-by: Jim Mattson <jmattson@google.com> Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Jim Mattson <jmattson@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* KVM: nVMX: add KVM_CAP_HYPERV_ENLIGHTENED_VMCS capabilityVitaly Kuznetsov2018-10-171-0/+3
| | | | | | | | | | | | | | | | Enlightened VMCS is opt-in. The current version does not contain all fields supported by nested VMX so we must not advertise the corresponding VMX features if enlightened VMCS is enabled. Userspace is given the enlightened VMCS version supported by KVM as part of enabling KVM_CAP_HYPERV_ENLIGHTENED_VMCS. The version is to be advertised to the nested hypervisor, currently done via a cpuid leaf for Hyper-V. Suggested-by: Ladi Prosek <lprosek@redhat.com> Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Reviewed-by: Liran Alon <liran.alon@oracle.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* x86/kvm/mmu: check if tdp/shadow MMU reconfiguration is neededVitaly Kuznetsov2018-10-171-0/+2
| | | | | | | | | | | MMU reconfiguration in init_kvm_tdp_mmu()/kvm_init_shadow_mmu() can be avoided if the source data used to configure it didn't change; enhance MMU extended role with the required fields and consolidate common code in kvm_calc_mmu_role_common(). Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* x86/kvm/nVMX: introduce source data cache for kvm_init_shadow_ept_mmu()Vitaly Kuznetsov2018-10-171-0/+14
| | | | | | | | | | | | MMU re-initialization is expensive, in particular, update_permission_bitmask() and update_pkru_bitmask() are. Cache the data used to setup shadow EPT MMU and avoid full re-init when it is unchanged. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* x86/kvm/mmu: make space for source data caching in struct kvm_mmuVitaly Kuznetsov2018-10-171-2/+14
| | | | | | | | | | | In preparation to MMU reconfiguration avoidance we need a space to cache source data. As this partially intersects with kvm_mmu_page_role, create 64bit sized union kvm_mmu_role holding both base and extended data. No functional change. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* x86/kvm/mmu: get rid of redundant kvm_mmu_setup()Paolo Bonzini2018-10-171-1/+0
| | | | | | | | | Just inline the contents into the sole caller, kvm_init_mmu is now public. Suggested-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
* x86/kvm/mmu: introduce guest_mmuVitaly Kuznetsov2018-10-171-0/+3
| | | | | | | | | | | | | | | | | When EPT is used for nested guest we need to re-init MMU as shadow EPT MMU (nested_ept_init_mmu_context() does that). When we return back from L2 to L1 kvm_mmu_reset_context() in nested_vmx_load_cr3() resets MMU back to normal TDP mode. Add a special 'guest_mmu' so we can use separate root caches; the improved hit rate is not very important for single vCPU performance, but it avoids contention on the mmu_lock for many vCPUs. On the nested CPUID benchmark, with 16 vCPUs, an L2->L1->L2 vmexit goes from 42k to 26k cycles. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* x86/kvm/mmu.c: add kvm_mmu parameter to kvm_mmu_free_roots()Vitaly Kuznetsov2018-10-171-1/+2
| | | | | | | | | Add an option to specify which MMU root we want to free. This will be used when nested and non-nested MMUs for L1 are split. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
* x86/kvm/mmu: make vcpu->mmu a pointer to the current MMUVitaly Kuznetsov2018-10-171-1/+4
| | | | | | | | | | As a preparation to full MMU split between L1 and L2 make vcpu->arch.mmu a pointer to the currently used mmu. For now, this is always vcpu->arch.root_mmu. No functional change. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
* KVM: x86: hyperv: fix 'tlb_lush' typoVitaly Kuznetsov2018-10-171-1/+1
| | | | | | | | | Regardless of whether your TLB is lush or not it still needs flushing. Reported-by: Roman Kagan <rkagan@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* KVM: x86: hyperv: keep track of mismatched VP indexesVitaly Kuznetsov2018-10-171-0/+3
| | | | | | | | | | | | | In most common cases VP index of a vcpu matches its vcpu index. Userspace is, however, free to set any mapping it wishes and we need to account for that when we need to find a vCPU with a particular VP index. To keep search algorithms optimal in both cases introduce 'num_mismatched_vp_indexes' counter showing how many vCPUs with mismatching VP index we have. In case the counter is zero we can assume vp_index == vcpu_idx. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* KVM: x86: move definition PT_MAX_HUGEPAGE_LEVEL and KVM_NR_PAGE_SIZES togetherWei Yang2018-10-171-1/+9
| | | | | | | | | | | | | | | | | | | | | | | Currently, there are two definitions related to huge page, but a little bit far from each other and seems loosely connected: * KVM_NR_PAGE_SIZES defines the number of different size a page could map * PT_MAX_HUGEPAGE_LEVEL means the maximum level of huge page The number of different size a page could map equals the maximum level of huge page, which is implied by current definition. While current implementation may not be kind to readers and further developers: * KVM_NR_PAGE_SIZES looks like a stand alone definition at first sight * in case we need to support more level, two places need to change This patch tries to make these two definition more close, so that reader and developer would feel more comfortable to manipulate. Signed-off-by: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* KVM: x86: adjust kvm_mmu_page member to save 8 bytesWei Yang2018-10-171-2/+2
| | | | | | | | | | | | | | | | | | | | | On a 64bits machine, struct is naturally aligned with 8 bytes. Since kvm_mmu_page member *unsync* and *role* are less then 4 bytes, we can rearrange the sequence to compace the struct. As the comment shows, *role* and *gfn* are used to key the shadow page. In order to keep the comment valid, this patch moves the *unsync* up and exchange the position of *role* and *gfn*. From /proc/slabinfo, it shows the size of kvm_mmu_page is 8 bytes less and with one more object per slap after applying this patch. # name <active_objs> <num_objs> <objsize> <objperslab> kvm_mmu_page_header 0 0 168 24 kvm_mmu_page_header 0 0 160 25 Signed-off-by: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* KVM: nVMX: Clear reserved bits of #DB exit qualificationJim Mattson2018-10-171-0/+1
| | | | | | | | | | | | | | | | | | | | | | | According to volume 3 of the SDM, bits 63:15 and 12:4 of the exit qualification field for debug exceptions are reserved (cleared to 0). However, the SDM is incorrect about bit 16 (corresponding to DR6.RTM). This bit should be set if a debug exception (#DB) or a breakpoint exception (#BP) occurred inside an RTM region while advanced debugging of RTM transactional regions was enabled. Note that this is the opposite of DR6.RTM, which "indicates (when clear) that a debug exception (#DB) or breakpoint exception (#BP) occurred inside an RTM region while advanced debugging of RTM transactional regions was enabled." There is still an issue with stale DR6 bits potentially being misreported for the current debug exception. DR6 should not have been modified before vectoring the #DB exception, and the "new DR6 bits" should be available somewhere, but it was and they aren't. Fixes: b96fb439774e1 ("KVM: nVMX: fixes to nested virt interrupt injection") Signed-off-by: Jim Mattson <jmattson@google.com> Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* KVM: x86: Control guest reads of MSR_PLATFORM_INFODrew Schmitt2018-09-201-0/+2
| | | | | | | | | | | | | | | | Add KVM_CAP_MSR_PLATFORM_INFO so that userspace can disable guest access to reads of MSR_PLATFORM_INFO. Disabling access to reads of this MSR gives userspace the control to "expose" this platform-dependent information to guests in a clear way. As it exists today, guests that read this MSR would get unpopulated information if userspace hadn't already set it (and prior to this patch series, only the CPUID faulting information could have been populated). This existing interface could be confusing if guests don't handle the potential for incorrect/incomplete information gracefully (e.g. zero reported for base frequency). Signed-off-by: Drew Schmitt <dasch@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* KVM: nVMX: Wake blocked vCPU in guest-mode if pending interrupt in virtual APICvLiran Alon2018-09-201-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In case L1 do not intercept L2 HLT or enter L2 in HLT activity-state, it is possible for a vCPU to be blocked while it is in guest-mode. According to Intel SDM 26.6.5 Interrupt-Window Exiting and Virtual-Interrupt Delivery: "These events wake the logical processor if it just entered the HLT state because of a VM entry". Therefore, if L1 enters L2 in HLT activity-state and L2 has a pending deliverable interrupt in vmcs12->guest_intr_status.RVI, then the vCPU should be waken from the HLT state and injected with the interrupt. In addition, if while the vCPU is blocked (while it is in guest-mode), it receives a nested posted-interrupt, then the vCPU should also be waken and injected with the posted interrupt. To handle these cases, this patch enhances kvm_vcpu_has_events() to also check if there is a pending interrupt in L2 virtual APICv provided by L1. That is, it evaluates if there is a pending virtual interrupt for L2 by checking RVI[7:4] > VPPR[7:4] as specified in Intel SDM 29.2.1 Evaluation of Pending Interrupts. Note that this also handles the case of nested posted-interrupt by the fact RVI is updated in vmx_complete_nested_posted_interrupt() which is called from kvm_vcpu_check_block() -> kvm_arch_vcpu_runnable() -> kvm_vcpu_running() -> vmx_check_nested_events() -> vmx_complete_nested_posted_interrupt(). Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com> Reviewed-by: Darren Kenny <darren.kenny@oracle.com> Signed-off-by: Liran Alon <liran.alon@oracle.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* KVM: VMX: use preemption timer to force immediate VMExitSean Christopherson2018-09-201-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | A VMX preemption timer value of '0' is guaranteed to cause a VMExit prior to the CPU executing any instructions in the guest. Use the preemption timer (if it's supported) to trigger immediate VMExit in place of the current method of sending a self-IPI. This ensures that pending VMExit injection to L1 occurs prior to executing any instructions in the guest (regardless of nesting level). When deferring VMExit injection, KVM generates an immediate VMExit from the (possibly nested) guest by sending itself an IPI. Because hardware interrupts are blocked prior to VMEnter and are unblocked (in hardware) after VMEnter, this results in taking a VMExit(INTR) before any guest instruction is executed. But, as this approach relies on the IPI being received before VMEnter executes, it only works as intended when KVM is running as L0. Because there are no architectural guarantees regarding when IPIs are delivered, when running nested the INTR may "arrive" long after L2 is running e.g. L0 KVM doesn't force an immediate switch to L1 to deliver an INTR. For the most part, this unintended delay is not an issue since the events being injected to L1 also do not have architectural guarantees regarding their timing. The notable exception is the VMX preemption timer[1], which is architecturally guaranteed to cause a VMExit prior to executing any instructions in the guest if the timer value is '0' at VMEnter. Specifically, the delay in injecting the VMExit causes the preemption timer KVM unit test to fail when run in a nested guest. Note: this approach is viable even on CPUs with a broken preemption timer, as broken in this context only means the timer counts at the wrong rate. There are no known errata affecting timer value of '0'. [1] I/O SMIs also have guarantees on when they arrive, but I have no idea if/how those are emulated in KVM. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> [Use a hook for SVM instead of leaving the default in x86.c - Paolo] Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* KVM: LAPIC: Fix pv ipis out-of-bounds accessWanpeng Li2018-09-071-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Dan Carpenter reported that the untrusted data returns from kvm_register_read() results in the following static checker warning: arch/x86/kvm/lapic.c:576 kvm_pv_send_ipi() error: buffer underflow 'map->phys_map' 's32min-s32max' KVM guest can easily trigger this by executing the following assembly sequence in Ring0: mov $10, %rax mov $0xFFFFFFFF, %rbx mov $0xFFFFFFFF, %rdx mov $0, %rsi vmcall As this will cause KVM to execute the following code-path: vmx_handle_exit() -> handle_vmcall() -> kvm_emulate_hypercall() -> kvm_pv_send_ipi() which will reach out-of-bounds access. This patch fixes it by adding a check to kvm_pv_send_ipi() against map->max_apic_id, ignoring destinations that are not present and delivering the rest. We also check whether or not map->phys_map[min + i] is NULL since the max_apic_id is set to the max apic id, some phys_map maybe NULL when apic id is sparse, especially kvm unconditionally set max_apic_id to 255 to reserve enough space for any xAPIC ID. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Reviewed-by: Liran Alon <liran.alon@oracle.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Liran Alon <liran.alon@oracle.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Wanpeng Li <wanpengli@tencent.com> [Add second "if (min > map->max_apic_id)" to complete the fix. -Radim] Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
* Merge tag 'kvm-arm-fixes-for-v4.19-v2' of ↵Radim Krčmář2018-09-071-1/+0
|\ | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm Fixes for KVM/ARM for Linux v4.19 v2: - Fix a VFP corruption in 32-bit guest - Add missing cache invalidation for CoW pages - Two small cleanups
| * KVM: Remove obsolete kvm_unmap_hva notifier backendMarc Zyngier2018-09-071-1/+0
| | | | | | | | | | | | | | | | | | | | | | kvm_unmap_hva is long gone, and we only have kvm_unmap_hva_range to deal with. Drop the now obsolete code. Fixes: fb1522e099f0 ("KVM: update to new mmu_notifier semantic v2") Cc: James Hogan <jhogan@kernel.org> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
* | KVM: x86: Unexport x86_emulate_instruction()Sean Christopherson2018-08-301-14/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Allowing x86_emulate_instruction() to be called directly has led to subtle bugs being introduced, e.g. not setting EMULTYPE_NO_REEXECUTE in the emulation type. While most of the blame lies on re-execute being opt-out, exporting x86_emulate_instruction() also exposes its cr2 parameter, which may have contributed to commit d391f1207067 ("x86/kvm/vmx: do not use vm-exit instruction length for fast MMIO when running nested") using x86_emulate_instruction() instead of emulate_instruction() because "hey, I have a cr2!", which in turn introduced its EMULTYPE_NO_REEXECUTE bug. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
* | KVM: x86: Rename emulate_instruction() to kvm_emulate_instruction()Sean Christopherson2018-08-301-1/+1
| | | | | | | | | | | | | | | | | | Lack of the kvm_ prefix gives the impression that it's a VMX or SVM specific function, and there's no conflict that prevents adding the kvm_ prefix. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
* | KVM: x86: Merge EMULTYPE_RETRY and EMULTYPE_ALLOW_REEXECUTESean Christopherson2018-08-301-4/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | retry_instruction() and reexecute_instruction() are a package deal, i.e. there is no scenario where one is allowed and the other is not. Merge their controlling emulation type flags to enforce this in code. Name the combined flag EMULTYPE_ALLOW_RETRY to make it abundantly clear that we are allowing re{try,execute} to occur, as opposed to explicitly requesting retry of a previously failed instruction. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Cc: stable@vger.kernel.org Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
* | KVM: x86: Invert emulation re-execute behavior to make it opt-inSean Christopherson2018-08-301-5/+3
| | | | | | | | | | | | | | | | | | | | | | Re-execution of an instruction after emulation decode failure is intended to be used only when emulating shadow page accesses. Invert the flag to make allowing re-execution opt-in since that behavior is by far in the minority. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Cc: stable@vger.kernel.org Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
* | KVM: x86: SVM: Set EMULTYPE_NO_REEXECUTE for RSM emulationSean Christopherson2018-08-301-0/+7
|/ | | | | | | | | | | | | | | | | | Re-execution after an emulation decode failure is only intended to handle a case where two or vCPUs race to write a shadowed page, i.e. we should never re-execute an instruction as part of RSM emulation. Add a new helper, kvm_emulate_instruction_from_buffer(), to support emulating from a pre-defined buffer. This eliminates the last direct call to x86_emulate_instruction() outside of kvm_mmu_page_fault(), which means x86_emulate_instruction() can be unexported in a future patch. Fixes: 7607b7174405 ("KVM: SVM: install RSM intercept") Cc: Brijesh Singh <brijesh.singh@amd.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Cc: stable@vger.kernel.org Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
* Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds2018-08-191-4/+52
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Pull first set of KVM updates from Paolo Bonzini: "PPC: - minor code cleanups x86: - PCID emulation and CR3 caching for shadow page tables - nested VMX live migration - nested VMCS shadowing - optimized IPI hypercall - some optimizations ARM will come next week" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (85 commits) kvm: x86: Set highest physical address bits in non-present/reserved SPTEs KVM/x86: Use CC_SET()/CC_OUT in arch/x86/kvm/vmx.c KVM: X86: Implement PV IPIs in linux guest KVM: X86: Add kvm hypervisor init time platform setup callback KVM: X86: Implement "send IPI" hypercall KVM/x86: Move X86_CR4_OSXSAVE check into kvm_valid_sregs() KVM: x86: Skip pae_root shadow allocation if tdp enabled KVM/MMU: Combine flushing remote tlb in mmu_set_spte() KVM: vmx: skip VMWRITE of HOST_{FS,GS}_BASE when possible KVM: vmx: skip VMWRITE of HOST_{FS,GS}_SEL when possible KVM: vmx: always initialize HOST_{FS,GS}_BASE to zero during setup KVM: vmx: move struct host_state usage to struct loaded_vmcs KVM: vmx: compute need to reload FS/GS/LDT on demand KVM: nVMX: remove a misleading comment regarding vmcs02 fields KVM: vmx: rename __vmx_load_host_state() and vmx_save_host_state() KVM: vmx: add dedicated utility to access guest's kernel_gs_base KVM: vmx: track host_state.loaded using a loaded_vmcs pointer KVM: vmx: refactor segmentation code in vmx_save_host_state() kvm: nVMX: Fix fault priority for VMX operations kvm: nVMX: Fix fault vector for VMX operation at CPL > 0 ...
| * KVM: X86: Implement "send IPI" hypercallWanpeng Li2018-08-061-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Using hypercall to send IPIs by one vmexit instead of one by one for xAPIC/x2APIC physical mode and one vmexit per-cluster for x2APIC cluster mode. Intel guest can enter x2apic cluster mode when interrupt remmaping is enabled in qemu, however, latest AMD EPYC still just supports xapic mode which can get great improvement by Exit-less IPIs. This patchset lets a guest send multicast IPIs, with at most 128 destinations per hypercall in 64-bit mode and 64 vCPUs per hypercall in 32-bit mode. Hardware: Xeon Skylake 2.5GHz, 2 sockets, 40 cores, 80 threads, the VM is 80 vCPUs, IPI microbenchmark(https://lkml.org/lkml/2017/12/19/141): x2apic cluster mode, vanilla Dry-run: 0, 2392199 ns Self-IPI: 6907514, 15027589 ns Normal IPI: 223910476, 251301666 ns Broadcast IPI: 0, 9282161150 ns Broadcast lock: 0, 8812934104 ns x2apic cluster mode, pv-ipi Dry-run: 0, 2449341 ns Self-IPI: 6720360, 15028732 ns Normal IPI: 228643307, 255708477 ns Broadcast IPI: 0, 7572293590 ns => 22% performance boost Broadcast lock: 0, 8316124651 ns x2apic physical mode, vanilla Dry-run: 0, 3135933 ns Self-IPI: 8572670, 17901757 ns Normal IPI: 226444334, 255421709 ns Broadcast IPI: 0, 19845070887 ns Broadcast lock: 0, 19827383656 ns x2apic physical mode, pv-ipi Dry-run: 0, 2446381 ns Self-IPI: 6788217, 15021056 ns Normal IPI: 219454441, 249583458 ns Broadcast IPI: 0, 7806540019 ns => 154% performance boost Broadcast lock: 0, 9143618799 ns Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Wanpeng Li <wanpengli@tencent.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
| * KVM: x86: Add tlb remote flush callback in kvm_x86_ops.Tianyu Lan2018-08-061-0/+11
| | | | | | | | | | | | | | | | | | This patch is to provide a way for platforms to register hv tlb remote flush callback and this helps to optimize operation of tlb flush among vcpus for nested virtualization case. Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
| * kvm: x86: Remove CR3_PCID_INVD flagJunaid Shahid2018-08-061-1/+0
| | | | | | | | | | | | | | It is a duplicate of X86_CR3_PCID_NOFLUSH. So just use that instead. Signed-off-by: Junaid Shahid <junaids@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
| * kvm: x86: Add multi-entry LRU cache for previous CR3sJunaid Shahid2018-08-061-4/+6
| | | | | | | | | | | | | | | | | | Adds support for storing multiple previous CR3/root_hpa pairs maintained as an LRU cache, so that the lockless CR3 switch path can be used when switching back to any of them. Signed-off-by: Junaid Shahid <junaids@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
| * kvm: x86: Flush only affected TLB entries in kvm_mmu_invlpg*Junaid Shahid2018-08-061-0/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This needs a minor bug fix. The updated patch is as follows. Thanks, Junaid ------------------------------------------------------------------------------ kvm_mmu_invlpg() and kvm_mmu_invpcid_gva() only need to flush the TLB entries for the specific guest virtual address, instead of flushing all TLB entries associated with the VM. Signed-off-by: Junaid Shahid <junaids@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
| * kvm: x86: Support selectively freeing either current or previous MMU rootJunaid Shahid2018-08-061-1/+5
| | | | | | | | | | | | | | | | | | kvm_mmu_free_roots() now takes a mask specifying which roots to free, so that either one of the roots (active/previous) can be individually freed when needed. Signed-off-by: Junaid Shahid <junaids@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
| * kvm: x86: Add a root_hpa parameter to kvm_mmu->invlpg()Junaid Shahid2018-08-061-1/+1
| | | | | | | | | | | | | | | | This allows invlpg() to be called using either the active root_hpa or the prev_root_hpa. Signed-off-by: Junaid Shahid <junaids@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
| * kvm: x86: Skip TLB flush on fast CR3 switch when indicated by guestJunaid Shahid2018-08-061-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | When PCIDs are enabled, the MSb of the source operand for a MOV-to-CR3 instruction indicates that the TLB doesn't need to be flushed. This change enables this optimization for MOV-to-CR3s in the guest that have been intercepted by KVM for shadow paging and are handled within the fast CR3 switch path. Signed-off-by: Junaid Shahid <junaids@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
| * kvm: vmx: Support INVPCID in shadow paging modeJunaid Shahid2018-08-061-0/+1
| | | | | | | | | | | | | | Implement support for INVPCID in shadow paging mode as well. Signed-off-by: Junaid Shahid <junaids@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
| * kvm: x86: Introduce KVM_REQ_LOAD_CR3Junaid Shahid2018-08-061-0/+1
| | | | | | | | | | | | | | | | The KVM_REQ_LOAD_CR3 request loads the hardware CR3 using the current root_hpa. Signed-off-by: Junaid Shahid <junaids@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
| * kvm: x86: Add fast CR3 switch code pathJunaid Shahid2018-08-061-2/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When using shadow paging, a CR3 switch in the guest results in a VM Exit. In the common case, that VM exit doesn't require much processing by KVM. However, it does acquire the MMU lock, which can start showing signs of contention under some workloads even on a 2 VCPU VM when the guest is using KPTI. Therefore, we add a fast path that avoids acquiring the MMU lock in the most common cases e.g. when switching back and forth between the kernel and user mode CR3s used by KPTI with no guest page table changes in between. For now, this fast path is implemented only for 64-bit guests and hosts to avoid the handling of PDPTEs, but it can be extended later to 32-bit guests and/or hosts as well. Signed-off-by: Junaid Shahid <junaids@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
| * kvm: nVMX: Introduce KVM_CAP_NESTED_STATEJim Mattson2018-08-061-0/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | For nested virtualization L0 KVM is managing a bit of state for L2 guests, this state can not be captured through the currently available IOCTLs. In fact the state captured through all of these IOCTLs is usually a mix of L1 and L2 state. It is also dependent on whether the L2 guest was running at the moment when the process was interrupted to save its state. With this capability, there are two new vcpu ioctls: KVM_GET_NESTED_STATE and KVM_SET_NESTED_STATE. These can be used for saving and restoring a VM that is in VMX operation. Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: x86@kernel.org Cc: kvm@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Jim Mattson <jmattson@google.com> [karahmed@ - rename structs and functions and make them ready for AMD and address previous comments. - handle nested.smm state. - rebase & a bit of refactoring. - Merge 7/8 and 8/8 into one patch. ] Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>