| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In the quest to remove VLAs from the kernel[1], this adjusts the
allocation of coefs and blocks to use the existing maximum values
(with one new define, MAX_DISKS for coefs, and a reuse of the
existing NDISKS for blocks).
[1] https://lkml.org/lkml/2018/3/7/621
Signed-off-by: Kyle Spiers <ksspiers@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The DMA_PREP_FENCE is to be used when preparing Tx descriptor if output
of Tx descriptor is to be used by next/dependent Tx descriptor.
The DMA_PREP_FENSE will not be set correctly in do_async_gen_syndrome()
when calling dma->device_prep_dma_pq() under following conditions:
1. ASYNC_TX_FENCE not set in submit->flags
2. DMA_PREP_FENCE not set in dma_flags
3. src_cnt (= (disks - 2)) is greater than dma_maxpq(dma, dma_flags)
This patch fixes DMA_PREP_FENCE usage in do_async_gen_syndrome() taking
inspiration from do_async_xor() implementation.
Signed-off-by: Anup Patel <anup.patel@broadcom.com>
Reviewed-by: Ray Jui <ray.jui@broadcom.com>
Reviewed-by: Scott Branden <scott.branden@broadcom.com>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
|
|
|
|
|
|
|
|
|
|
| |
Add missing dmaengine_unmap_put(), so we don't OOM during RAID6 sync.
Fixes: 1786b943dad0 ("async_pq_val: convert to dmaengine_unmap_data")
Signed-off-by: Justin Maggard <jmaggard@netgear.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
CMA allocation should be guaranteed to succeed by definition, but,
unfortunately, it would be failed sometimes. It is hard to track down
the problem, because it is related to page reference manipulation and we
don't have any facility to analyze it.
This patch adds tracepoints to track down page reference manipulation.
With it, we can find exact reason of failure and can fix the problem.
Following is an example of tracepoint output. (note: this example is
stale version that printing flags as the number. Recent version will
print it as human readable string.)
<...>-9018 [004] 92.678375: page_ref_set: pfn=0x17ac9 flags=0x0 count=1 mapcount=0 mapping=(nil) mt=4 val=1
<...>-9018 [004] 92.678378: kernel_stack:
=> get_page_from_freelist (ffffffff81176659)
=> __alloc_pages_nodemask (ffffffff81176d22)
=> alloc_pages_vma (ffffffff811bf675)
=> handle_mm_fault (ffffffff8119e693)
=> __do_page_fault (ffffffff810631ea)
=> trace_do_page_fault (ffffffff81063543)
=> do_async_page_fault (ffffffff8105c40a)
=> async_page_fault (ffffffff817581d8)
[snip]
<...>-9018 [004] 92.678379: page_ref_mod: pfn=0x17ac9 flags=0x40048 count=2 mapcount=1 mapping=0xffff880015a78dc1 mt=4 val=1
[snip]
...
...
<...>-9131 [001] 93.174468: test_pages_isolated: start_pfn=0x17800 end_pfn=0x17c00 fin_pfn=0x17ac9 ret=fail
[snip]
<...>-9018 [004] 93.174843: page_ref_mod_and_test: pfn=0x17ac9 flags=0x40068 count=0 mapcount=0 mapping=0xffff880015a78dc1 mt=4 val=-1 ret=1
=> release_pages (ffffffff8117c9e4)
=> free_pages_and_swap_cache (ffffffff811b0697)
=> tlb_flush_mmu_free (ffffffff81199616)
=> tlb_finish_mmu (ffffffff8119a62c)
=> exit_mmap (ffffffff811a53f7)
=> mmput (ffffffff81073f47)
=> do_exit (ffffffff810794e9)
=> do_group_exit (ffffffff81079def)
=> SyS_exit_group (ffffffff81079e74)
=> entry_SYSCALL_64_fastpath (ffffffff817560b6)
This output shows that problem comes from exit path. In exit path, to
improve performance, pages are not freed immediately. They are gathered
and processed by batch. During this process, migration cannot be
possible and CMA allocation is failed. This problem is hard to find
without this page reference tracepoint facility.
Enabling this feature bloat kernel text 30 KB in my configuration.
text data bss dec hex filename
12127327 2243616 1507328 15878271 f2487f vmlinux_disabled
12157208 2258880 1507328 15923416 f2f8d8 vmlinux_enabled
Note that, due to header file dependency problem between mm.h and
tracepoint.h, this feature has to open code the static key functions for
tracepoints. Proposed by Steven Rostedt in following link.
https://lkml.org/lkml/2015/12/9/699
[arnd@arndb.de: crypto/async_pq: use __free_page() instead of put_page()]
[iamjoonsoo.kim@lge.com: fix build failure for xtensa]
[akpm@linux-foundation.org: tweak Kconfig text, per Vlastimil]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
These async_XX functions are called from md/raid5 in an atomic
section, between get_cpu() and put_cpu(), so they must not sleep.
So use GFP_NOWAIT rather than GFP_IO.
Dan Williams writes: Longer term async_tx needs to be merged into md
directly as we can allocate this unmap data statically per-stripe
rather than per request.
Fixed: 7476bd79fc01 ("async_pq: convert to dmaengine_unmap_data")
Cc: stable@vger.kernel.org (v3.13+)
Reported-and-tested-by: Stanislav Samsonov <slava@annapurnalabs.com>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: NeilBrown <neilb@suse.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Glue it altogehter. The raid6 rmw path should work the same as the
already existing raid5 logic. So emulate the prexor handling/flags
and split functions as needed.
1) Enable xor_syndrome() in the async layer.
2) Split ops_run_prexor() into RAID4/5 and RAID6 logic. Xor the syndrome
at the start of a rmw run as we did it before for the single parity.
3) Take care of rmw run in ops_run_reconstruct6(). Again process only
the changed pages to get syndrome back into sync.
4) Enhance set_syndrome_sources() to fill NULL pages if we are in a rmw
run. The lower layers will calculate start & end pages from that and
call the xor_syndrome() correspondingly.
5) Adapt the several places where we ignored Q handling up to now.
Performance numbers for a single E5630 system with a mix of 10 7200k
desktop/server disks. 300 seconds random write with 8 threads onto a
3,2TB (10*400GB) RAID6 64K chunk without spare (group_thread_cnt=4)
bsize rmw_level=1 rmw_level=0 rmw_level=1 rmw_level=0
skip_copy=1 skip_copy=1 skip_copy=0 skip_copy=0
4K 115 KB/s 141 KB/s 165 KB/s 140 KB/s
8K 225 KB/s 275 KB/s 324 KB/s 274 KB/s
16K 434 KB/s 536 KB/s 640 KB/s 534 KB/s
32K 751 KB/s 1,051 KB/s 1,234 KB/s 1,045 KB/s
64K 1,339 KB/s 1,958 KB/s 2,282 KB/s 1,962 KB/s
128K 2,673 KB/s 3,862 KB/s 4,113 KB/s 3,898 KB/s
256K 7,685 KB/s 7,539 KB/s 7,557 KB/s 7,638 KB/s
512K 19,556 KB/s 19,558 KB/s 19,652 KB/s 19,688 Kb/s
Signed-off-by: Markus Stockhausen <stockhausen@collogia.de>
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Remove no longer needed DMA unmap flags:
- DMA_COMPL_SKIP_SRC_UNMAP
- DMA_COMPL_SKIP_DEST_UNMAP
- DMA_COMPL_SRC_UNMAP_SINGLE
- DMA_COMPL_DEST_UNMAP_SINGLE
Cc: Vinod Koul <vinod.koul@intel.com>
Cc: Tomasz Figa <t.figa@samsung.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
Acked-by: Jon Mason <jon.mason@intel.com>
Acked-by: Mark Brown <broonie@linaro.org>
[djbw: clean up straggling skip unmap flags in ntb]
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Use the generic unmap object to unmap dma buffers.
Cc: Vinod Koul <vinod.koul@intel.com>
Cc: Tomasz Figa <t.figa@samsung.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Reported-by: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Signed-off-by: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Use the generic unmap object to unmap dma buffers.
Cc: Vinod Koul <vinod.koul@intel.com>
Cc: Tomasz Figa <t.figa@samsung.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Reported-by: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
[bzolnier: keep temporary dma_dest array in do_async_gen_syndrome()]
Signed-off-by: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
|
|
|
|
|
|
| |
Part of the include cleanups means that the implicit
inclusion of module.h via device.h is going away. So
fix things up in advance.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
ioat3.2 does not support asynchronous error notifications which makes
the driver experience latencies when non-zero pq validate results are
expected. Provide a mechanism for turning off async_xor_val and
async_syndrome_val via Kconfig. This approach is generally useful for
any driver that specifies ASYNC_TX_DISABLE_CHANNEL_SWITCH and would like
to force the async_tx api to fall back to the synchronous path for
certain operations.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
The global scribble page is used as a temporary destination buffer when
disabling the P or Q result is requested. The local scribble buffer
contains memory for performing address conversions. Rename the global
variable to avoid confusion.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
|
|
|
|
|
|
| |
- update the kernel doc for async_syndrome to indicate what NULL in the
source list means
- whitespace fixups
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
async_syndrome_val check the P and Q blocks used for RAID6
calculations.
With DDF raid6, some of the data blocks might be NULL, so
this needs to be handled in the same way that async_gen_syndrome
handles it.
As async_syndrome_val calls async_xor, also enhance async_xor
to detect and skip NULL blocks in the list.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
md/raid6 passes a list of 'struct page *' to the async_tx routines,
which then either DMA map them for offload, or take the page_address
for CPU based calculations.
For RAID6 we sometime leave 'blanks' in the list of pages.
For CPU based calcs, we want to treat theses as a page of zeros.
For offloaded calculations, we simply don't pass a page to the
hardware.
Currently the 'blanks' are encoded as a pointer to
raid6_empty_zero_page. This is a 4096 byte memory region, not a
'struct page'. This is mostly handled correctly but is rather ugly.
So change the code to pass and expect a NULL pointer for the blanks.
When taking page_address of a page, we need to check for a NULL and
in that case use raid6_empty_zero_page.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
| |
Some engines have transfer size and address alignment restrictions. Add
a per-operation alignment property to struct dma_device that the async
routines and dmatest can use to check alignment capabilities.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Some engines optimize operation by reading ahead in the descriptor chain
such that descriptor2 may start execution before descriptor1 completes.
If descriptor2 depends on the result from descriptor1 then a fence is
required (on descriptor2) to disable this optimization. The async_tx
api could implicitly identify dependencies via the 'depend_tx'
parameter, but that would constrain cases where the dependency chain
only specifies a completion order rather than a data dependency. So,
provide an ASYNC_TX_FENCE to explicitly identify data dependencies.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|