summaryrefslogtreecommitdiffstats
path: root/drivers/gpio/gpio-ixp4xx.c (unfollow)
Commit message (Collapse)AuthorFilesLines
2021-08-12Documentation: Update irq_domain.rst with new lookup APIsMarc Zyngier1-3/+25
Catch up with the recent irqdomain updates, and document {generic_,}handle_domain_irq(), irq_resolve_mapping() as well as the deprecation of some of the older APIs. Signed-off-by: Marc Zyngier <maz@kernel.org>
2021-07-26Linux 5.14-rc3v5.14-rc3Linus Torvalds1-1/+1
2021-07-25smpboot: fix duplicate and misplaced inlining directiveLinus Torvalds1-1/+1
gcc doesn't care, but clang quite reasonably pointed out that the recent commit e9ba16e68cce ("smpboot: Mark idle_init() as __always_inlined to work around aggressive compiler un-inlining") did some really odd things: kernel/smpboot.c:50:20: warning: duplicate 'inline' declaration specifier [-Wduplicate-decl-specifier] static inline void __always_inline idle_init(unsigned int cpu) ^ which not only has that duplicate inlining specifier, but the new __always_inline was put in the wrong place of the function definition. We put the storage class specifiers (ie things like "static" and "extern") first, and the type information after that. And while the compiler may not care, we put the inline specifier before the types. So it should be just static __always_inline void idle_init(unsigned int cpu) instead. Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-25ACPI: fix NULL pointer dereferenceLinus Torvalds1-1/+2
Commit 71f642833284 ("ACPI: utils: Fix reference counting in for_each_acpi_dev_match()") started doing "acpi_dev_put()" on a pointer that was possibly NULL. That fails miserably, because that helper inline function is not set up to handle that case. Just make acpi_dev_put() silently accept a NULL pointer, rather than calling down to put_device() with an invalid offset off that NULL pointer. Link: https://lore.kernel.org/lkml/a607c149-6bf6-0fd0-0e31-100378504da2@kernel.dk/ Reported-and-tested-by: Jens Axboe <axboe@kernel.dk> Tested-by: Daniel Scally <djrscally@gmail.com> Cc: Andy Shevchenko <andy.shevchenko@gmail.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-24riscv: __asm_copy_to-from_user: Fix: Typos in commentsAkira Tsukamoto1-9/+9
Fixing typos and grammar mistakes and using more intuitive label name. Signed-off-by: Akira Tsukamoto <akira.tsukamoto@gmail.com> Fixes: ca6eaaa210de ("riscv: __asm_copy_to-from_user: Optimize unaligned memory access and pipeline stall") Signed-off-by: Palmer Dabbelt <palmerdabbelt@google.com>
2021-07-24riscv: __asm_copy_to-from_user: Remove unnecessary size checkAkira Tsukamoto1-1/+0
Clean up: The size of 0 will be evaluated in the next step. Not required here. Signed-off-by: Akira Tsukamoto <akira.tsukamoto@gmail.com> Fixes: ca6eaaa210de ("riscv: __asm_copy_to-from_user: Optimize unaligned memory access and pipeline stall") Signed-off-by: Palmer Dabbelt <palmerdabbelt@google.com>
2021-07-24riscv: __asm_copy_to-from_user: Fix: fail on RV32Akira Tsukamoto1-1/+1
Had a bug when converting bytes to bits when the cpu was rv32. The a3 contains the number of bytes and multiple of 8 would be the bits. The LGREG is holding 2 for RV32 and 3 for RV32, so to achieve multiple of 8 it must always be constant 3. The 2 was mistakenly used for rv32. Signed-off-by: Akira Tsukamoto <akira.tsukamoto@gmail.com> Fixes: ca6eaaa210de ("riscv: __asm_copy_to-from_user: Optimize unaligned memory access and pipeline stall") Signed-off-by: Palmer Dabbelt <palmerdabbelt@google.com>
2021-07-24riscv: __asm_copy_to-from_user: Fix: overrun copyAkira Tsukamoto1-3/+3
There were two causes for the overrun memory access. The threshold size was too small. The aligning dst require one SZREG and unrolling word copy requires 8*SZREG, total have to be at least 9*SZREG. Inside the unrolling copy, the subtracting -(8*SZREG-1) would make iteration happening one extra loop. Proper value is -(8*SZREG). Signed-off-by: Akira Tsukamoto <akira.tsukamoto@gmail.com> Fixes: ca6eaaa210de ("riscv: __asm_copy_to-from_user: Optimize unaligned memory access and pipeline stall") Signed-off-by: Palmer Dabbelt <palmerdabbelt@google.com>
2021-07-24hugetlbfs: fix mount mode command line processingMike Kravetz1-1/+1
In commit 32021982a324 ("hugetlbfs: Convert to fs_context") processing of the mount mode string was changed from match_octal() to fsparam_u32. This changed existing behavior as match_octal does not require octal values to have a '0' prefix, but fsparam_u32 does. Use fsparam_u32oct which provides the same behavior as match_octal. Link: https://lkml.kernel.org/r/20210721183326.102716-1-mike.kravetz@oracle.com Fixes: 32021982a324 ("hugetlbfs: Convert to fs_context") Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reported-by: Dennis Camera <bugs+kernel.org@dtnr.ch> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-24mm: fix the deadlock in finish_fault()Qi Zheng1-1/+10
Commit 63f3655f9501 ("mm, memcg: fix reclaim deadlock with writeback") fix the following ABBA deadlock by pre-allocating the pte page table without holding the page lock. lock_page(A) SetPageWriteback(A) unlock_page(A) lock_page(B) lock_page(B) pte_alloc_one shrink_page_list wait_on_page_writeback(A) SetPageWriteback(B) unlock_page(B) # flush A, B to clear the writeback Commit f9ce0be71d1f ("mm: Cleanup faultaround and finish_fault() codepaths") reworked the relevant code but ignored this race. This will cause the deadlock above to appear again, so fix it. Link: https://lkml.kernel.org/r/20210721074849.57004-1-zhengqi.arch@bytedance.com Fixes: f9ce0be71d1f ("mm: Cleanup faultaround and finish_fault() codepaths") Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-24mm: mmap_lock: fix disabling preemption directlyMuchun Song1-2/+2
Commit 832b50725373 ("mm: mmap_lock: use local locks instead of disabling preemption") fixed a bug by using local locks. But commit d01079f3d0c0 ("mm/mmap_lock: remove dead code for !CONFIG_TRACING configurations") changed those lines back to the original version. I guess it was introduced by fixing conflicts. Link: https://lkml.kernel.org/r/20210720074228.76342-1-songmuchun@bytedance.com Fixes: d01079f3d0c0 ("mm/mmap_lock: remove dead code for !CONFIG_TRACING configurations") Signed-off-by: Muchun Song <songmuchun@bytedance.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Reviewed-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Pankaj Gupta <pankaj.gupta@ionos.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-24mm/secretmem: wire up ->set_page_dirtyMike Rapoport1-0/+1
Make secretmem up to date with the changes done in commit 0af573780b0b ("mm: require ->set_page_dirty to be explicitly wired up") so that unconditional call to this method won't cause crashes. Link: https://lkml.kernel.org/r/20210716063933.31633-1-rppt@kernel.org Fixes: 0af573780b0b ("mm: require ->set_page_dirty to be explicitly wired up") Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Reviewed-by: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-24writeback, cgroup: do not reparent dax inodesRoman Gushchin1-0/+3
The inode switching code is not suited for dax inodes. An attempt to switch a dax inode to a parent writeback structure (as a part of a writeback cleanup procedure) results in a panic like this: run fstests generic/270 at 2021-07-15 05:54:02 XFS (pmem0p2): EXPERIMENTAL big timestamp feature in use. Use at your own risk! XFS (pmem0p2): DAX enabled. Warning: EXPERIMENTAL, use at your own risk XFS (pmem0p2): EXPERIMENTAL inode btree counters feature in use. Use at your own risk! XFS (pmem0p2): Mounting V5 Filesystem XFS (pmem0p2): Ending clean mount XFS (pmem0p2): Quotacheck needed: Please wait. XFS (pmem0p2): Quotacheck: Done. XFS (pmem0p2): xlog_verify_grant_tail: space > BBTOB(tail_blocks) XFS (pmem0p2): xlog_verify_grant_tail: space > BBTOB(tail_blocks) XFS (pmem0p2): xlog_verify_grant_tail: space > BBTOB(tail_blocks) BUG: unable to handle page fault for address: 0000000005b0f669 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: 0000 [#1] SMP PTI CPU: 13 PID: 10479 Comm: kworker/13:16 Not tainted 5.14.0-rc1-master-8096acd7442e+ #8 Hardware name: HP ProLiant DL360 Gen9/ProLiant DL360 Gen9, BIOS P89 09/13/2016 Workqueue: inode_switch_wbs inode_switch_wbs_work_fn RIP: 0010:inode_do_switch_wbs+0xaf/0x470 Code: 00 30 0f 85 c1 03 00 00 0f 1f 44 00 00 31 d2 48 c7 c6 ff ff ff ff 48 8d 7c 24 08 e8 eb 49 1a 00 48 85 c0 74 4a bb ff ff ff ff <48> 8b 50 08 48 8d 4a ff 83 e2 01 48 0f 45 c1 48 8b 00 a8 08 0f 85 RSP: 0018:ffff9c66691abdc8 EFLAGS: 00010002 RAX: 0000000005b0f661 RBX: 00000000ffffffff RCX: ffff89e6a21382b0 RDX: 0000000000000001 RSI: ffff89e350230248 RDI: ffffffffffffffff RBP: ffff89e681d19400 R08: 0000000000000000 R09: 0000000000000228 R10: ffffffffffffffff R11: ffffffffffffffc0 R12: ffff89e6a2138130 R13: ffff89e316af7400 R14: ffff89e316af6e78 R15: ffff89e6a21382b0 FS: 0000000000000000(0000) GS:ffff89ee5fb40000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000005b0f669 CR3: 0000000cb2410004 CR4: 00000000001706e0 Call Trace: inode_switch_wbs_work_fn+0xb6/0x2a0 process_one_work+0x1e6/0x380 worker_thread+0x53/0x3d0 kthread+0x10f/0x130 ret_from_fork+0x22/0x30 Modules linked in: xt_CHECKSUM xt_MASQUERADE xt_conntrack ipt_REJECT nf_reject_ipv4 nft_compat nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 nft_counter nf_tables nfnetlink bridge stp llc rfkill sunrpc intel_rapl_msr intel_rapl_common sb_edac x86_pkg_temp_thermal intel_powerclamp coretemp kvm_intel ipmi_ssif kvm mgag200 i2c_algo_bit iTCO_wdt irqbypass drm_kms_helper iTCO_vendor_support acpi_ipmi rapl syscopyarea sysfillrect intel_cstate ipmi_si sysimgblt ioatdma dax_pmem_compat fb_sys_fops ipmi_devintf device_dax i2c_i801 pcspkr intel_uncore hpilo nd_pmem cec dax_pmem_core dca i2c_smbus acpi_tad lpc_ich ipmi_msghandler acpi_power_meter drm fuse xfs libcrc32c sd_mod t10_pi crct10dif_pclmul crc32_pclmul crc32c_intel tg3 ghash_clmulni_intel serio_raw hpsa hpwdt scsi_transport_sas wmi dm_mirror dm_region_hash dm_log dm_mod CR2: 0000000005b0f669 ---[ end trace ed2105faff8384f3 ]--- RIP: 0010:inode_do_switch_wbs+0xaf/0x470 Code: 00 30 0f 85 c1 03 00 00 0f 1f 44 00 00 31 d2 48 c7 c6 ff ff ff ff 48 8d 7c 24 08 e8 eb 49 1a 00 48 85 c0 74 4a bb ff ff ff ff <48> 8b 50 08 48 8d 4a ff 83 e2 01 48 0f 45 c1 48 8b 00 a8 08 0f 85 RSP: 0018:ffff9c66691abdc8 EFLAGS: 00010002 RAX: 0000000005b0f661 RBX: 00000000ffffffff RCX: ffff89e6a21382b0 RDX: 0000000000000001 RSI: ffff89e350230248 RDI: ffffffffffffffff RBP: ffff89e681d19400 R08: 0000000000000000 R09: 0000000000000228 R10: ffffffffffffffff R11: ffffffffffffffc0 R12: ffff89e6a2138130 R13: ffff89e316af7400 R14: ffff89e316af6e78 R15: ffff89e6a21382b0 FS: 0000000000000000(0000) GS:ffff89ee5fb40000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000005b0f669 CR3: 0000000cb2410004 CR4: 00000000001706e0 Kernel panic - not syncing: Fatal exception Kernel Offset: 0x15200000 from 0xffffffff81000000 (relocation range: 0xffffffff80000000-0xffffffffbfffffff) ---[ end Kernel panic - not syncing: Fatal exception ]--- The crash happens on an attempt to iterate over attached pagecache pages and check the dirty flag: a dax inode's xarray contains pfn's instead of generic struct page pointers. This happens for DAX and not for other kinds of non-page entries in the inodes because it's a tagged iteration, and shadow/swap entries are never tagged; only DAX entries get tagged. Fix the problem by bailing out (with the false return value) of inode_prepare_sbs_switch() if a dax inode is passed. [willy@infradead.org: changelog addition] Link: https://lkml.kernel.org/r/20210719171350.3876830-1-guro@fb.com Fixes: c22d70a162d3 ("writeback, cgroup: release dying cgwbs by switching attached inodes") Signed-off-by: Roman Gushchin <guro@fb.com> Reported-by: Murphy Zhou <jencce.kernel@gmail.com> Reported-by: Darrick J. Wong <djwong@kernel.org> Tested-by: Darrick J. Wong <djwong@kernel.org> Tested-by: Murphy Zhou <jencce.kernel@gmail.com> Acked-by: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Jan Kara <jack@suse.cz> Cc: Dave Chinner <dchinner@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-24writeback, cgroup: remove wb from offline list before releasing refcntRoman Gushchin1-1/+1
Boyang reported that the commit c22d70a162d3 ("writeback, cgroup: release dying cgwbs by switching attached inodes") causes the kernel to crash while running xfstests generic/256 on ext4 on aarch64 and ppc64le. run fstests generic/256 at 2021-07-12 05:41:40 EXT4-fs (vda3): mounted filesystem with ordered data mode. Opts: . Quota mode: none. Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 Mem abort info: ESR = 0x96000005 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x05: level 1 translation fault Data abort info: ISV = 0, ISS = 0x00000005 CM = 0, WnR = 0 user pgtable: 64k pages, 48-bit VAs, pgdp=00000000b0502000 [0000000000000000] pgd=0000000000000000, p4d=0000000000000000, pud=0000000000000000 Internal error: Oops: 96000005 [#1] SMP Modules linked in: dm_flakey dm_snapshot dm_bufio dm_zero dm_mod loop tls rpcsec_gss_krb5 auth_rpcgss nfsv4 dns_resolver nfs lockd grace fscache netfs rfkill sunrpc ext4 vfat fat mbcache jbd2 drm fuse xfs libcrc32c crct10dif_ce ghash_ce sha2_ce sha256_arm64 sha1_ce virtio_blk virtio_net net_failover virtio_console failover virtio_mmio aes_neon_bs [last unloaded: scsi_debug] CPU: 0 PID: 408468 Comm: kworker/u8:5 Tainted: G X --------- --- 5.14.0-0.rc1.15.bx.el9.aarch64 #1 Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015 Workqueue: events_unbound cleanup_offline_cgwbs_workfn pstate: 004000c5 (nzcv daIF +PAN -UAO -TCO BTYPE=--) pc : cleanup_offline_cgwbs_workfn+0x320/0x394 lr : cleanup_offline_cgwbs_workfn+0xe0/0x394 sp : ffff80001554fd10 x29: ffff80001554fd10 x28: 0000000000000000 x27: 0000000000000001 x26: 0000000000000000 x25: 00000000000000e0 x24: ffffd2a2fbe671a8 x23: ffff80001554fd88 x22: ffffd2a2fbe67198 x21: ffffd2a2fc25a730 x20: ffff210412bc3000 x19: ffff210412bc3280 x18: 0000000000000000 x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000 x14: 0000000000000000 x13: 0000000000000030 x12: 0000000000000040 x11: ffff210481572238 x10: ffff21048157223a x9 : ffffd2a2fa276c60 x8 : ffff210484106b60 x7 : 0000000000000000 x6 : 000000000007d18a x5 : ffff210416a86400 x4 : ffff210412bc0280 x3 : 0000000000000000 x2 : ffff80001554fd88 x1 : ffff210412bc0280 x0 : 0000000000000003 Call trace: cleanup_offline_cgwbs_workfn+0x320/0x394 process_one_work+0x1f4/0x4b0 worker_thread+0x184/0x540 kthread+0x114/0x120 ret_from_fork+0x10/0x18 Code: d63f0020 97f99963 17ffffa6 f8588263 (f9400061) ---[ end trace e250fe289272792a ]--- Kernel panic - not syncing: Oops: Fatal exception SMP: stopping secondary CPUs SMP: failed to stop secondary CPUs 0-2 Kernel Offset: 0x52a2e9fa0000 from 0xffff800010000000 PHYS_OFFSET: 0xfff0defca0000000 CPU features: 0x00200251,23200840 Memory Limit: none ---[ end Kernel panic - not syncing: Oops: Fatal exception ]--- The problem happens when cgwb_release_workfn() races with cleanup_offline_cgwbs_workfn(): wb_tryget() in cleanup_offline_cgwbs_workfn() can be called after percpu_ref_exit() is cgwb_release_workfn(), which is basically a use-after-free error. Fix the problem by making removing the writeback structure from the offline list before releasing the percpu reference counter. It will guarantee that cleanup_offline_cgwbs_workfn() will not see and not access writeback structures which are about to be released. Link: https://lkml.kernel.org/r/20210716201039.3762203-1-guro@fb.com Fixes: c22d70a162d3 ("writeback, cgroup: release dying cgwbs by switching attached inodes") Signed-off-by: Roman Gushchin <guro@fb.com> Reported-by: Boyang Xue <bxue@redhat.com> Suggested-by: Jan Kara <jack@suse.cz> Tested-by: Darrick J. Wong <djwong@kernel.org> Cc: Will Deacon <will@kernel.org> Cc: Dave Chinner <dchinner@redhat.com> Cc: Murphy Zhou <jencce.kernel@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-24memblock: make for_each_mem_range() traverse MEMBLOCK_HOTPLUG regionsMike Rapoport2-3/+4
Commit b10d6bca8720 ("arch, drivers: replace for_each_membock() with for_each_mem_range()") didn't take into account that when there is movable_node parameter in the kernel command line, for_each_mem_range() would skip ranges marked with MEMBLOCK_HOTPLUG. The page table setup code in POWER uses for_each_mem_range() to create the linear mapping of the physical memory and since the regions marked as MEMORY_HOTPLUG are skipped, they never make it to the linear map. A later access to the memory in those ranges will fail: BUG: Unable to handle kernel data access on write at 0xc000000400000000 Faulting instruction address: 0xc00000000008a3c0 Oops: Kernel access of bad area, sig: 11 [#1] LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=2048 NUMA pSeries Modules linked in: CPU: 0 PID: 53 Comm: kworker/u2:0 Not tainted 5.13.0 #7 NIP: c00000000008a3c0 LR: c0000000003c1ed8 CTR: 0000000000000040 REGS: c000000008a57770 TRAP: 0300 Not tainted (5.13.0) MSR: 8000000002009033 <SF,VEC,EE,ME,IR,DR,RI,LE> CR: 84222202 XER: 20040000 CFAR: c0000000003c1ed4 DAR: c000000400000000 DSISR: 42000000 IRQMASK: 0 GPR00: c0000000003c1ed8 c000000008a57a10 c0000000019da700 c000000400000000 GPR04: 0000000000000280 0000000000000180 0000000000000400 0000000000000200 GPR08: 0000000000000100 0000000000000080 0000000000000040 0000000000000300 GPR12: 0000000000000380 c000000001bc0000 c0000000001660c8 c000000006337e00 GPR16: 0000000000000000 0000000000000000 0000000000000000 0000000000000000 GPR20: 0000000040000000 0000000020000000 c000000001a81990 c000000008c30000 GPR24: c000000008c20000 c000000001a81998 000fffffffff0000 c000000001a819a0 GPR28: c000000001a81908 c00c000001000000 c000000008c40000 c000000008a64680 NIP clear_user_page+0x50/0x80 LR __handle_mm_fault+0xc88/0x1910 Call Trace: __handle_mm_fault+0xc44/0x1910 (unreliable) handle_mm_fault+0x130/0x2a0 __get_user_pages+0x248/0x610 __get_user_pages_remote+0x12c/0x3e0 get_arg_page+0x54/0xf0 copy_string_kernel+0x11c/0x210 kernel_execve+0x16c/0x220 call_usermodehelper_exec_async+0x1b0/0x2f0 ret_from_kernel_thread+0x5c/0x70 Instruction dump: 79280fa4 79271764 79261f24 794ae8e2 7ca94214 7d683a14 7c893a14 7d893050 7d4903a6 60000000 60000000 60000000 <7c001fec> 7c091fec 7c081fec 7c051fec ---[ end trace 490b8c67e6075e09 ]--- Making for_each_mem_range() include MEMBLOCK_HOTPLUG regions in the traversal fixes this issue. Link: https://bugzilla.redhat.com/show_bug.cgi?id=1976100 Link: https://lkml.kernel.org/r/20210712071132.20902-1-rppt@kernel.org Fixes: b10d6bca8720 ("arch, drivers: replace for_each_membock() with for_each_mem_range()") Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Tested-by: Greg Kurz <groug@kaod.org> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: <stable@vger.kernel.org> [5.10+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-24mm: page_alloc: fix page_poison=1 / INIT_ON_ALLOC_DEFAULT_ON interactionSergei Trofimovich1-13/+16
To reproduce the failure we need the following system: - kernel command: page_poison=1 init_on_free=0 init_on_alloc=0 - kernel config: * CONFIG_INIT_ON_ALLOC_DEFAULT_ON=y * CONFIG_INIT_ON_FREE_DEFAULT_ON=y * CONFIG_PAGE_POISONING=y Resulting in: 0000000085629bdd: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 0000000022861832: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000000c597f5b0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ CPU: 11 PID: 15195 Comm: bash Kdump: loaded Tainted: G U O 5.13.1-gentoo-x86_64 #1 Hardware name: System manufacturer System Product Name/PRIME Z370-A, BIOS 2801 01/13/2021 Call Trace: dump_stack+0x64/0x7c __kernel_unpoison_pages.cold+0x48/0x84 post_alloc_hook+0x60/0xa0 get_page_from_freelist+0xdb8/0x1000 __alloc_pages+0x163/0x2b0 __get_free_pages+0xc/0x30 pgd_alloc+0x2e/0x1a0 mm_init+0x185/0x270 dup_mm+0x6b/0x4f0 copy_process+0x190d/0x1b10 kernel_clone+0xba/0x3b0 __do_sys_clone+0x8f/0xb0 do_syscall_64+0x68/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xae Before commit 51cba1ebc60d ("init_on_alloc: Optimize static branches") init_on_alloc never enabled static branch by default. It could only be enabed explicitly by init_mem_debugging_and_hardening(). But after commit 51cba1ebc60d, a static branch could already be enabled by default. There was no code to ever disable it. That caused page_poison=1 / init_on_free=1 conflict. This change extends init_mem_debugging_and_hardening() to also disable static branch disabling. Link: https://lkml.kernel.org/r/20210714031935.4094114-1-keescook@chromium.org Link: https://lore.kernel.org/r/20210712215816.1512739-1-slyfox@gentoo.org Fixes: 51cba1ebc60d ("init_on_alloc: Optimize static branches") Signed-off-by: Sergei Trofimovich <slyfox@gentoo.org> Signed-off-by: Kees Cook <keescook@chromium.org> Co-developed-by: Kees Cook <keescook@chromium.org> Reported-by: Mikhail Morfikov <mmorfikov@gmail.com> Reported-by: <bowsingbetee@pm.me> Tested-by: <bowsingbetee@protonmail.com> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: Alexander Potapenko <glider@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-24mm: use kmap_local_page in memzero_pageChristoph Hellwig1-2/+2
The commit message introducing the global memzero_page explicitly mentions switching to kmap_local_page in the commit log but doesn't actually do that. Link: https://lkml.kernel.org/r/20210713055231.137602-3-hch@lst.de Fixes: 28961998f858 ("iov_iter: lift memzero_page() to highmem.h") Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-24mm: call flush_dcache_page() in memcpy_to_page() and memzero_page()Christoph Hellwig1-0/+2
memcpy_to_page and memzero_page can write to arbitrary pages, which could be in the page cache or in high memory, so call flush_kernel_dcache_pages to flush the dcache. This is a problem when using these helpers on dcache challeneged architectures. Right now there are just a few users, chances are no one used the PC floppy driver, the aha1542 driver for an ISA SCSI HBA, and a few advanced and optional btrfs and ext4 features on those platforms yet since the conversion. Link: https://lkml.kernel.org/r/20210713055231.137602-2-hch@lst.de Fixes: bb90d4bc7b6a ("mm/highmem: Lift memcpy_[to|from]_page to core") Fixes: 28961998f858 ("iov_iter: lift memzero_page() to highmem.h") Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Cc: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-24kfence: skip all GFP_ZONEMASK allocationsAlexander Potapenko1-0/+9
Allocation requests outside ZONE_NORMAL (MOVABLE, HIGHMEM or DMA) cannot be fulfilled by KFENCE, because KFENCE memory pool is located in a zone different from the requested one. Because callers of kmem_cache_alloc() may actually rely on the allocation to reside in the requested zone (e.g. memory allocations done with __GFP_DMA must be DMAable), skip all allocations done with GFP_ZONEMASK and/or respective SLAB flags (SLAB_CACHE_DMA and SLAB_CACHE_DMA32). Link: https://lkml.kernel.org/r/20210714092222.1890268-2-glider@google.com Fixes: 0ce20dd84089 ("mm: add Kernel Electric-Fence infrastructure") Signed-off-by: Alexander Potapenko <glider@google.com> Reviewed-by: Marco Elver <elver@google.com> Acked-by: Souptick Joarder <jrdr.linux@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Souptick Joarder <jrdr.linux@gmail.com> Cc: <stable@vger.kernel.org> [5.12+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-24kfence: move the size check to the beginning of __kfence_alloc()Alexander Potapenko1-3/+7
Check the allocation size before toggling kfence_allocation_gate. This way allocations that can't be served by KFENCE will not result in waiting for another CONFIG_KFENCE_SAMPLE_INTERVAL without allocating anything. Link: https://lkml.kernel.org/r/20210714092222.1890268-1-glider@google.com Signed-off-by: Alexander Potapenko <glider@google.com> Suggested-by: Marco Elver <elver@google.com> Reviewed-by: Marco Elver <elver@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Marco Elver <elver@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: <stable@vger.kernel.org> [5.12+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-24kfence: defer kfence_test_init to ensure that kunit debugfs is createdWeizhao Ouyang1-1/+1
kfence_test_init and kunit_init both use the same level late_initcall, which means if kfence_test_init linked ahead of kunit_init, kfence_test_init will get a NULL debugfs_rootdir as parent dentry, then kfence_test_init and kfence_debugfs_init both create a debugfs node named "kfence" under debugfs_mount->mnt_root, and it will throw out "debugfs: Directory 'kfence' with parent '/' already present!" with EEXIST. So kfence_test_init should be deferred. Link: https://lkml.kernel.org/r/20210714113140.2949995-1-o451686892@gmail.com Signed-off-by: Weizhao Ouyang <o451686892@gmail.com> Tested-by: Marco Elver <elver@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-24selftest: use mmap instead of posix_memalign to allocate memoryPeter Collingbourne1-2/+4
This test passes pointers obtained from anon_allocate_area to the userfaultfd and mremap APIs. This causes a problem if the system allocator returns tagged pointers because with the tagged address ABI the kernel rejects tagged addresses passed to these APIs, which would end up causing the test to fail. To make this test compatible with such system allocators, stop using the system allocator to allocate memory in anon_allocate_area, and instead just use mmap. Link: https://lkml.kernel.org/r/20210714195437.118982-3-pcc@google.com Link: https://linux-review.googlesource.com/id/Icac91064fcd923f77a83e8e133f8631c5b8fc241 Fixes: c47174fc362a ("userfaultfd: selftest") Co-developed-by: Lokesh Gidra <lokeshgidra@google.com> Signed-off-by: Lokesh Gidra <lokeshgidra@google.com> Signed-off-by: Peter Collingbourne <pcc@google.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Dave Martin <Dave.Martin@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Alistair Delva <adelva@google.com> Cc: William McVicker <willmcvicker@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Mitch Phillips <mitchp@google.com> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: <stable@vger.kernel.org> [5.4] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-24userfaultfd: do not untag user pointersPeter Collingbourne2-22/+30
Patch series "userfaultfd: do not untag user pointers", v5. If a user program uses userfaultfd on ranges of heap memory, it may end up passing a tagged pointer to the kernel in the range.start field of the UFFDIO_REGISTER ioctl. This can happen when using an MTE-capable allocator, or on Android if using the Tagged Pointers feature for MTE readiness [1]. When a fault subsequently occurs, the tag is stripped from the fault address returned to the application in the fault.address field of struct uffd_msg. However, from the application's perspective, the tagged address *is* the memory address, so if the application is unaware of memory tags, it may get confused by receiving an address that is, from its point of view, outside of the bounds of the allocation. We observed this behavior in the kselftest for userfaultfd [2] but other applications could have the same problem. Address this by not untagging pointers passed to the userfaultfd ioctls. Instead, let the system call fail. Also change the kselftest to use mmap so that it doesn't encounter this problem. [1] https://source.android.com/devices/tech/debug/tagged-pointers [2] tools/testing/selftests/vm/userfaultfd.c This patch (of 2): Do not untag pointers passed to the userfaultfd ioctls. Instead, let the system call fail. This will provide an early indication of problems with tag-unaware userspace code instead of letting the code get confused later, and is consistent with how we decided to handle brk/mmap/mremap in commit dcde237319e6 ("mm: Avoid creating virtual address aliases in brk()/mmap()/mremap()"), as well as being consistent with the existing tagged address ABI documentation relating to how ioctl arguments are handled. The code change is a revert of commit 7d0325749a6c ("userfaultfd: untag user pointers") plus some fixups to some additional calls to validate_range that have appeared since then. [1] https://source.android.com/devices/tech/debug/tagged-pointers [2] tools/testing/selftests/vm/userfaultfd.c Link: https://lkml.kernel.org/r/20210714195437.118982-1-pcc@google.com Link: https://lkml.kernel.org/r/20210714195437.118982-2-pcc@google.com Link: https://linux-review.googlesource.com/id/I761aa9f0344454c482b83fcfcce547db0a25501b Fixes: 63f0c6037965 ("arm64: Introduce prctl() options to control the tagged user addresses ABI") Signed-off-by: Peter Collingbourne <pcc@google.com> Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alistair Delva <adelva@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dave Martin <Dave.Martin@arm.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mitch Phillips <mitchp@google.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Will Deacon <will@kernel.org> Cc: William McVicker <willmcvicker@google.com> Cc: <stable@vger.kernel.org> [5.4] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-24riscv: stacktrace: pin the task's stack in get_wchanJisheng Zhang1-1/+5
Pin the task's stack before calling walk_stackframe() in get_wchan(). This can fix the panic as reported by Andreas when CONFIG_VMAP_STACK=y: [ 65.609696] Unable to handle kernel paging request at virtual address ffffffd0003bbde8 [ 65.610460] Oops [#1] [ 65.610626] Modules linked in: virtio_blk virtio_mmio rtc_goldfish btrfs blake2b_generic libcrc32c xor raid6_pq sg dm_multipath dm_mod scsi_dh_rdac scsi_dh_emc scsi_dh_alua efivarfs [ 65.611670] CPU: 2 PID: 1 Comm: systemd Not tainted 5.14.0-rc1-1.g34fe32a-default #1 openSUSE Tumbleweed (unreleased) c62f7109153e5a0897ee58ba52393ad99b070fd2 [ 65.612334] Hardware name: riscv-virtio,qemu (DT) [ 65.613008] epc : get_wchan+0x5c/0x88 [ 65.613334] ra : get_wchan+0x42/0x88 [ 65.613625] epc : ffffffff800048a4 ra : ffffffff8000488a sp : ffffffd00021bb90 [ 65.614008] gp : ffffffff817709f8 tp : ffffffe07fe91b80 t0 : 00000000000001f8 [ 65.614411] t1 : 0000000000020000 t2 : 0000000000000000 s0 : ffffffd00021bbd0 [ 65.614818] s1 : ffffffd0003bbdf0 a0 : 0000000000000001 a1 : 0000000000000002 [ 65.615237] a2 : ffffffff81618008 a3 : 0000000000000000 a4 : 0000000000000000 [ 65.615637] a5 : ffffffd0003bc000 a6 : 0000000000000002 a7 : ffffffe27d370000 [ 65.616022] s2 : ffffffd0003bbd90 s3 : ffffffff8071a81e s4 : 0000000000003fff [ 65.616407] s5 : ffffffffffffc000 s6 : 0000000000000000 s7 : ffffffff81618008 [ 65.616845] s8 : 0000000000000001 s9 : 0000000180000040 s10: 0000000000000000 [ 65.617248] s11: 000000000000016b t3 : 000000ff00000000 t4 : 0c6aec92de5e3fd7 [ 65.617672] t5 : fff78f60608fcfff t6 : 0000000000000078 [ 65.618088] status: 0000000000000120 badaddr: ffffffd0003bbde8 cause: 000000000000000d [ 65.618621] [<ffffffff800048a4>] get_wchan+0x5c/0x88 [ 65.619008] [<ffffffff8022da88>] do_task_stat+0x7a2/0xa46 [ 65.619325] [<ffffffff8022e87e>] proc_tgid_stat+0xe/0x16 [ 65.619637] [<ffffffff80227dd6>] proc_single_show+0x46/0x96 [ 65.619979] [<ffffffff801ccb1e>] seq_read_iter+0x190/0x31e [ 65.620341] [<ffffffff801ccd70>] seq_read+0xc4/0x104 [ 65.620633] [<ffffffff801a6bfe>] vfs_read+0x6a/0x112 [ 65.620922] [<ffffffff801a701c>] ksys_read+0x54/0xbe [ 65.621206] [<ffffffff801a7094>] sys_read+0xe/0x16 [ 65.621474] [<ffffffff8000303e>] ret_from_syscall+0x0/0x2 [ 65.622169] ---[ end trace f24856ed2b8789c5 ]--- [ 65.622832] Kernel panic - not syncing: Attempted to kill init! exitcode=0x0000000b Signed-off-by: Jisheng Zhang <jszhang@kernel.org> Signed-off-by: Palmer Dabbelt <palmerdabbelt@google.com>
2021-07-24io_uring: explicitly catch any illegal async queue attemptJens Axboe2-1/+17
Catch an illegal case to queue async from an unrelated task that got the ring fd passed to it. This should not be possible to hit, but better be proactive and catch it explicitly. io-wq is extended to check for early IO_WQ_WORK_CANCEL being set on a work item as well, so it can run the request through the normal cancelation path. Signed-off-by: Jens Axboe <axboe@kernel.dk>
2021-07-24io_uring: never attempt iopoll reissue from release pathJens Axboe1-7/+7
There are two reasons why this shouldn't be done: 1) Ring is exiting, and we're canceling requests anyway. Any request should be canceled anyway. In theory, this could iterate for a number of times if someone else is also driving the target block queue into request starvation, however the likelihood of this happening is miniscule. 2) If the original task decided to pass the ring to another task, then we don't want to be reissuing from this context as it may be an unrelated task or context. No assumptions should be made about the context in which ->release() is run. This can only happen for pure read/write, and we'll get -EFAULT on them anyway. Link: https://lore.kernel.org/io-uring/YPr4OaHv0iv0KTOc@zeniv-ca.linux.org.uk/ Reported-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2021-07-23tracepoints: Update static_call before tp_funcs when adding a tracepointSteven Rostedt (VMware)1-1/+1
Because of the significant overhead that retpolines pose on indirect calls, the tracepoint code was updated to use the new "static_calls" that can modify the running code to directly call a function instead of using an indirect caller, and this function can be changed at runtime. In the tracepoint code that calls all the registered callbacks that are attached to a tracepoint, the following is done: it_func_ptr = rcu_dereference_raw((&__tracepoint_##name)->funcs); if (it_func_ptr) { __data = (it_func_ptr)->data; static_call(tp_func_##name)(__data, args); } If there's just a single callback, the static_call is updated to just call that callback directly. Once another handler is added, then the static caller is updated to call the iterator, that simply loops over all the funcs in the array and calls each of the callbacks like the old method using indirect calling. The issue was discovered with a race between updating the funcs array and updating the static_call. The funcs array was updated first and then the static_call was updated. This is not an issue as long as the first element in the old array is the same as the first element in the new array. But that assumption is incorrect, because callbacks also have a priority field, and if there's a callback added that has a higher priority than the callback on the old array, then it will become the first callback in the new array. This means that it is possible to call the old callback with the new callback data element, which can cause a kernel panic. static_call = callback1() funcs[] = {callback1,data1}; callback2 has higher priority than callback1 CPU 1 CPU 2 ----- ----- new_funcs = {callback2,data2}, {callback1,data1} rcu_assign_pointer(tp->funcs, new_funcs); /* * Now tp->funcs has the new array * but the static_call still calls callback1 */ it_func_ptr = tp->funcs [ new_funcs ] data = it_func_ptr->data [ data2 ] static_call(callback1, data); /* Now callback1 is called with * callback2's data */ [ KERNEL PANIC ] update_static_call(iterator); To prevent this from happening, always switch the static_call to the iterator before assigning the tp->funcs to the new array. The iterator will always properly match the callback with its data. To trigger this bug: In one terminal: while :; do hackbench 50; done In another terminal echo 1 > /sys/kernel/tracing/events/sched/sched_waking/enable while :; do echo 1 > /sys/kernel/tracing/set_event_pid; sleep 0.5 echo 0 > /sys/kernel/tracing/set_event_pid; sleep 0.5 done And it doesn't take long to crash. This is because the set_event_pid adds a callback to the sched_waking tracepoint with a high priority, which will be called before the sched_waking trace event callback is called. Note, the removal to a single callback updates the array first, before changing the static_call to single callback, which is the proper order as the first element in the array is the same as what the static_call is being changed to. Link: https://lore.kernel.org/io-uring/4ebea8f0-58c9-e571-fd30-0ce4f6f09c70@samba.org/ Cc: stable@vger.kernel.org Fixes: d25e37d89dd2f ("tracepoint: Optimize using static_call()") Reported-by: Stefan Metzmacher <metze@samba.org> tested-by: Stefan Metzmacher <metze@samba.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-07-23ftrace: Remove redundant initialization of variable retColin Ian King1-1/+1
The variable ret is being initialized with a value that is never read, it is being updated later on. The assignment is redundant and can be removed. Link: https://lkml.kernel.org/r/20210721120915.122278-1-colin.king@canonical.com Addresses-Coverity: ("Unused value") Signed-off-by: Colin Ian King <colin.king@canonical.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-07-23ftrace: Avoid synchronize_rcu_tasks_rude() call when not necessaryNicolas Saenz Julienne1-1/+2
synchronize_rcu_tasks_rude() triggers IPIs and forces rescheduling on all CPUs. It is a costly operation and, when targeting nohz_full CPUs, very disrupting (hence the name). So avoid calling it when 'old_hash' doesn't need to be freed. Link: https://lkml.kernel.org/r/20210721114726.1545103-1-nsaenzju@redhat.com Signed-off-by: Nicolas Saenz Julienne <nsaenzju@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-07-23tracing: Clean up alloc_synth_event()Steven Rostedt (VMware)1-5/+3
alloc_synth_event() currently has the following code to initialize the event fields and dynamic_fields: for (i = 0, j = 0; i < n_fields; i++) { event->fields[i] = fields[i]; if (fields[i]->is_dynamic) { event->dynamic_fields[j] = fields[i]; event->dynamic_fields[j]->field_pos = i; event->dynamic_fields[j++] = fields[i]; event->n_dynamic_fields++; } } 1) It would make more sense to have all fields keep track of their field_pos. 2) event->dynmaic_fields[j] is assigned twice for no reason. 3) We can move updating event->n_dynamic_fields outside the loop, and just assign it to j. This combination makes the code much cleaner. Link: https://lkml.kernel.org/r/20210721195341.29bb0f77@oasis.local.home Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-07-23tracing/histogram: Rename "cpu" to "common_cpu"Steven Rostedt (VMware)3-7/+21
Currently the histogram logic allows the user to write "cpu" in as an event field, and it will record the CPU that the event happened on. The problem with this is that there's a lot of events that have "cpu" as a real field, and using "cpu" as the CPU it ran on, makes it impossible to run histograms on the "cpu" field of events. For example, if I want to have a histogram on the count of the workqueue_queue_work event on its cpu field, running: ># echo 'hist:keys=cpu' > events/workqueue/workqueue_queue_work/trigger Gives a misleading and wrong result. Change the command to "common_cpu" as no event should have "common_*" fields as that's a reserved name for fields used by all events. And this makes sense here as common_cpu would be a field used by all events. Now we can even do: ># echo 'hist:keys=common_cpu,cpu if cpu < 100' > events/workqueue/workqueue_queue_work/trigger ># cat events/workqueue/workqueue_queue_work/hist # event histogram # # trigger info: hist:keys=common_cpu,cpu:vals=hitcount:sort=hitcount:size=2048 if cpu < 100 [active] # { common_cpu: 0, cpu: 2 } hitcount: 1 { common_cpu: 0, cpu: 4 } hitcount: 1 { common_cpu: 7, cpu: 7 } hitcount: 1 { common_cpu: 0, cpu: 7 } hitcount: 1 { common_cpu: 0, cpu: 1 } hitcount: 1 { common_cpu: 0, cpu: 6 } hitcount: 2 { common_cpu: 0, cpu: 5 } hitcount: 2 { common_cpu: 1, cpu: 1 } hitcount: 4 { common_cpu: 6, cpu: 6 } hitcount: 4 { common_cpu: 5, cpu: 5 } hitcount: 14 { common_cpu: 4, cpu: 4 } hitcount: 26 { common_cpu: 0, cpu: 0 } hitcount: 39 { common_cpu: 2, cpu: 2 } hitcount: 184 Now for backward compatibility, I added a trick. If "cpu" is used, and the field is not found, it will fall back to "common_cpu" and work as it did before. This way, it will still work for old programs that use "cpu" to get the actual CPU, but if the event has a "cpu" as a field, it will get that event's "cpu" field, which is probably what it wants anyway. I updated the tracefs/README to include documentation about both the common_timestamp and the common_cpu. This way, if that text is present in the README, then an application can know that common_cpu is supported over just plain "cpu". Link: https://lkml.kernel.org/r/20210721110053.26b4f641@oasis.local.home Cc: Namhyung Kim <namhyung@kernel.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: stable@vger.kernel.org Fixes: 8b7622bf94a44 ("tracing: Add cpu field for hist triggers") Reviewed-by: Tom Zanussi <zanussi@kernel.org> Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-07-23tracing: Synthetic event field_pos is an index not a booleanSteven Rostedt (VMware)1-1/+1
Performing the following: ># echo 'wakeup_lat s32 pid; u64 delta; char wake_comm[]' > synthetic_events ># echo 'hist:keys=pid:__arg__1=common_timestamp.usecs' > events/sched/sched_waking/trigger ># echo 'hist:keys=next_pid:pid=next_pid,delta=common_timestamp.usecs-$__arg__1:onmatch(sched.sched_waking).trace(wakeup_lat,$pid,$delta,prev_comm)'\ > events/sched/sched_switch/trigger ># echo 1 > events/synthetic/enable Crashed the kernel: BUG: kernel NULL pointer dereference, address: 000000000000001b #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP CPU: 7 PID: 0 Comm: swapper/7 Not tainted 5.13.0-rc5-test+ #104 Hardware name: Hewlett-Packard HP Compaq Pro 6300 SFF/339A, BIOS K01 v03.03 07/14/2016 RIP: 0010:strlen+0x0/0x20 Code: f6 82 80 2b 0b bc 20 74 11 0f b6 50 01 48 83 c0 01 f6 82 80 2b 0b bc 20 75 ef c3 66 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 <80> 3f 00 74 10 48 89 f8 48 83 c0 01 80 38 9 f8 c3 31 RSP: 0018:ffffaa75000d79d0 EFLAGS: 00010046 RAX: 0000000000000002 RBX: ffff9cdb55575270 RCX: 0000000000000000 RDX: ffff9cdb58c7a320 RSI: ffffaa75000d7b40 RDI: 000000000000001b RBP: ffffaa75000d7b40 R08: ffff9cdb40a4f010 R09: ffffaa75000d7ab8 R10: ffff9cdb4398c700 R11: 0000000000000008 R12: ffff9cdb58c7a320 R13: ffff9cdb55575270 R14: ffff9cdb58c7a000 R15: 0000000000000018 FS: 0000000000000000(0000) GS:ffff9cdb5aa00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000000000000001b CR3: 00000000c0612006 CR4: 00000000001706e0 Call Trace: trace_event_raw_event_synth+0x90/0x1d0 action_trace+0x5b/0x70 event_hist_trigger+0x4bd/0x4e0 ? cpumask_next_and+0x20/0x30 ? update_sd_lb_stats.constprop.0+0xf6/0x840 ? __lock_acquire.constprop.0+0x125/0x550 ? find_held_lock+0x32/0x90 ? sched_clock_cpu+0xe/0xd0 ? lock_release+0x155/0x440 ? update_load_avg+0x8c/0x6f0 ? enqueue_entity+0x18a/0x920 ? __rb_reserve_next+0xe5/0x460 ? ring_buffer_lock_reserve+0x12a/0x3f0 event_triggers_call+0x52/0xe0 trace_event_buffer_commit+0x1ae/0x240 trace_event_raw_event_sched_switch+0x114/0x170 __traceiter_sched_switch+0x39/0x50 __schedule+0x431/0xb00 schedule_idle+0x28/0x40 do_idle+0x198/0x2e0 cpu_startup_entry+0x19/0x20 secondary_startup_64_no_verify+0xc2/0xcb The reason is that the dynamic events array keeps track of the field position of the fields array, via the field_pos variable in the synth_field structure. Unfortunately, that field is a boolean for some reason, which means any field_pos greater than 1 will be a bug (in this case it was 2). Link: https://lkml.kernel.org/r/20210721191008.638bce34@oasis.local.home Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: stable@vger.kernel.org Fixes: bd82631d7ccdc ("tracing: Add support for dynamic strings to synthetic events") Reviewed-by: Tom Zanussi <zanussi@kernel.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-07-23KVM: PPC: Book3S HV Nested: Sanitise H_ENTER_NESTED TM stateNicholas Piggin1-0/+20
The H_ENTER_NESTED hypercall is handled by the L0, and it is a request by the L1 to switch the context of the vCPU over to that of its L2 guest, and return with an interrupt indication. The L1 is responsible for switching some registers to guest context, and the L0 switches others (including all the hypervisor privileged state). If the L2 MSR has TM active, then the L1 is responsible for recheckpointing the L2 TM state. Then the L1 exits to L0 via the H_ENTER_NESTED hcall, and the L0 saves the TM state as part of the exit, and then it recheckpoints the TM state as part of the nested entry and finally HRFIDs into the L2 with TM active MSR. Not efficient, but about the simplest approach for something that's horrendously complicated. Problems arise if the L1 exits to the L0 with a TM state which does not match the L2 TM state being requested. For example if the L1 is transactional but the L2 MSR is non-transactional, or vice versa. The L0's HRFID can take a TM Bad Thing interrupt and crash. Fix this by disallowing H_ENTER_NESTED in TM[T] state entirely, and then ensuring that if the L1 is suspended then the L2 must have TM active, and if the L1 is not suspended then the L2 must not have TM active. Fixes: 360cae313702 ("KVM: PPC: Book3S HV: Nested guest entry via hypercall") Cc: stable@vger.kernel.org # v4.20+ Reported-by: Alexey Kardashevskiy <aik@ozlabs.ru> Acked-by: Michael Neuling <mikey@neuling.org> Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2021-07-23KVM: PPC: Book3S: Fix H_RTAS rets buffer overflowNicholas Piggin1-3/+22
The kvmppc_rtas_hcall() sets the host rtas_args.rets pointer based on the rtas_args.nargs that was provided by the guest. That guest nargs value is not range checked, so the guest can cause the host rets pointer to be pointed outside the args array. The individual rtas function handlers check the nargs and nrets values to ensure they are correct, but if they are not, the handlers store a -3 (0xfffffffd) failure indication in rets[0] which corrupts host memory. Fix this by testing up front whether the guest supplied nargs and nret would exceed the array size, and fail the hcall directly without storing a failure indication to rets[0]. Also expand on a comment about why we kill the guest and try not to return errors directly if we have a valid rets[0] pointer. Fixes: 8e591cb72047 ("KVM: PPC: Book3S: Add infrastructure to implement kernel-side RTAS calls") Cc: stable@vger.kernel.org # v3.10+ Reported-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2021-07-23riscv: Make sure the kernel mapping does not overlap with IS_ERR_VALUEAlexandre Ghiti1-2/+16
The check that is done in setup_bootmem currently only works for 32-bit kernel since the kernel mapping has been moved outside of the linear mapping for 64-bit kernel. So make sure that for 64-bit kernel, the kernel mapping does not overlap with the last 4K of the addressable memory. Signed-off-by: Alexandre Ghiti <alex@ghiti.fr> Fixes: 2bfc6cd81bd1 ("riscv: Move kernel mapping outside of linear mapping") Signed-off-by: Palmer Dabbelt <palmerdabbelt@google.com>
2021-07-23riscv: Make sure the linear mapping does not use the kernel mappingAlexandre Ghiti1-0/+2
For 64-bit kernel, the end of the address space is occupied by the kernel mapping and currently, the functions to populate the kernel page tables (i.e. create_p*d_mapping) do not override existing mapping so we must make sure the linear mapping does not map memory in the kernel mapping by clipping the memory above the memory limit. Signed-off-by: Alexandre Ghiti <alex@ghiti.fr> Fixes: c9811e379b21 ("riscv: Add mem kernel parameter support") Signed-off-by: Palmer Dabbelt <palmerdabbelt@google.com>
2021-07-23riscv: Fix memory_limit for 64-bit kernelAlexandre Ghiti1-2/+9
As described in Documentation/riscv/vm-layout.rst, the end of the virtual address space for 64-bit kernel is occupied by the modules/BPF/ kernel mappings so this actually reduces the amount of memory we are able to map and then use in the linear mapping. So make sure this limit is correctly set. Signed-off-by: Alexandre Ghiti <alex@ghiti.fr> Fixes: 2bfc6cd81bd1 ("riscv: Move kernel mapping outside of linear mapping") Signed-off-by: Palmer Dabbelt <palmerdabbelt@google.com>
2021-07-23cifs: fix fallocate when trying to allocate a hole.Ronnie Sahlberg1-5/+18
Remove the conditional checking for out_data_len and skipping the fallocate if it is 0. This is wrong will actually change any legitimate the fallocate where the entire region is unallocated into a no-op. Additionally, before allocating the range, if FALLOC_FL_KEEP_SIZE is set then we need to clamp the length of the fallocate region as to not extend the size of the file. Fixes: 966a3cb7c7db ("cifs: improve fallocate emulation") Signed-off-by: Ronnie Sahlberg <lsahlber@redhat.com> Signed-off-by: Steve French <stfrench@microsoft.com>
2021-07-23io_uring: fix early fdput() of fileJens Axboe1-2/+4
A previous commit shuffled some code around, and inadvertently used struct file after fdput() had been called on it. As we can't touch the file post fdput() dropping our reference, move the fdput() to after that has been done. Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/io-uring/YPnqM0fY3nM5RdRI@zeniv-ca.linux.org.uk/ Fixes: f2a48dd09b8e ("io_uring: refactor io_sq_offload_create()") Reported-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2021-07-22CIFS: Clarify SMB1 code for POSIX delete fileSteve French1-2/+5
Coverity also complains about the way we calculate the offset (starting from the address of a 4 byte array within the header structure rather than from the beginning of the struct plus 4 bytes) for SMB1 CIFSPOSIXDelFile. This changeset doesn't change the address but makes it slightly clearer. Addresses-Coverity: 711519 ("Out of bounds write") Signed-off-by: Steve French <stfrench@microsoft.com>
2021-07-22CIFS: Clarify SMB1 code for POSIX CreateSteve French1-1/+2
Coverity also complains about the way we calculate the offset (starting from the address of a 4 byte array within the header structure rather than from the beginning of the struct plus 4 bytes) for SMB1 CIFSPOSIXCreate. This changeset doesn't change the address but makes it slightly clearer. Addresses-Coverity: 711518 ("Out of bounds write") Signed-off-by: Steve French <stfrench@microsoft.com>
2021-07-22cifs: support share failover when remountingPaulo Alcantara4-40/+203
When remouting a DFS share, force a new DFS referral of the path and if the currently cached targets do not match any of the new targets or there was no cached targets, then mark it for reconnect. For example: $ mount //dom/dfs/link /mnt -o username=foo,password=bar $ ls /mnt oldfile.txt change target share of 'link' in server settings $ mount /mnt -o remount,username=foo,password=bar $ ls /mnt newfile.txt Signed-off-by: Paulo Alcantara (SUSE) <pc@cjr.nz> Signed-off-by: Steve French <stfrench@microsoft.com>
2021-07-22cifs: only write 64kb at a time when fallocating a small region of a fileRonnie Sahlberg1-7/+19
We only allow sending single credit writes through the SMB2_write() synchronous api so split this into smaller chunks. Fixes: 966a3cb7c7db ("cifs: improve fallocate emulation") Signed-off-by: Ronnie Sahlberg <lsahlber@redhat.com> Reported-by: Namjae Jeon <namjae.jeon@samsung.com> Signed-off-by: Steve French <stfrench@microsoft.com>
2021-07-22tracing: Fix bug in rb_per_cpu_empty() that might cause deadloop.Haoran Luo1-4/+24
The "rb_per_cpu_empty()" misinterpret the condition (as not-empty) when "head_page" and "commit_page" of "struct ring_buffer_per_cpu" points to the same buffer page, whose "buffer_data_page" is empty and "read" field is non-zero. An error scenario could be constructed as followed (kernel perspective): 1. All pages in the buffer has been accessed by reader(s) so that all of them will have non-zero "read" field. 2. Read and clear all buffer pages so that "rb_num_of_entries()" will return 0 rendering there's no more data to read. It is also required that the "read_page", "commit_page" and "tail_page" points to the same page, while "head_page" is the next page of them. 3. Invoke "ring_buffer_lock_reserve()" with large enough "length" so that it shot pass the end of current tail buffer page. Now the "head_page", "commit_page" and "tail_page" points to the same page. 4. Discard current event with "ring_buffer_discard_commit()", so that "head_page", "commit_page" and "tail_page" points to a page whose buffer data page is now empty. When the error scenario has been constructed, "tracing_read_pipe" will be trapped inside a deadloop: "trace_empty()" returns 0 since "rb_per_cpu_empty()" returns 0 when it hits the CPU containing such constructed ring buffer. Then "trace_find_next_entry_inc()" always return NULL since "rb_num_of_entries()" reports there's no more entry to read. Finally "trace_seq_to_user()" returns "-EBUSY" spanking "tracing_read_pipe" back to the start of the "waitagain" loop. I've also written a proof-of-concept script to construct the scenario and trigger the bug automatically, you can use it to trace and validate my reasoning above: https://github.com/aegistudio/RingBufferDetonator.git Tests has been carried out on linux kernel 5.14-rc2 (2734d6c1b1a089fb593ef6a23d4b70903526fe0c), my fixed version of kernel (for testing whether my update fixes the bug) and some older kernels (for range of affected kernels). Test result is also attached to the proof-of-concept repository. Link: https://lore.kernel.org/linux-trace-devel/YPaNxsIlb2yjSi5Y@aegistudio/ Link: https://lore.kernel.org/linux-trace-devel/YPgrN85WL9VyrZ55@aegistudio Cc: stable@vger.kernel.org Fixes: bf41a158cacba ("ring-buffer: make reentrant") Suggested-by: Linus Torvalds <torvalds@linuxfoundation.org> Signed-off-by: Haoran Luo <www@aegistudio.net> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-07-22btrfs: store a block_device in struct btrfs_ordered_extentChristoph Hellwig4-13/+6
Store the block device instead of the gendisk in the btrfs_ordered_extent structure instead of acquiring a reference to it later. Note: this is from series removing bdgrab/bdput, btrfs is one of the last users. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-22btrfs: fix lock inversion problem when doing qgroup extent tracingFilipe Manana6-25/+48
At btrfs_qgroup_trace_extent_post() we call btrfs_find_all_roots() with a NULL value as the transaction handle argument, which makes that function take the commit_root_sem semaphore, which is necessary when we don't hold a transaction handle or any other mechanism to prevent a transaction commit from wiping out commit roots. However btrfs_qgroup_trace_extent_post() can be called in a context where we are holding a write lock on an extent buffer from a subvolume tree, namely from btrfs_truncate_inode_items(), called either during truncate or unlink operations. In this case we end up with a lock inversion problem because the commit_root_sem is a higher level lock, always supposed to be acquired before locking any extent buffer. Lockdep detects this lock inversion problem since we switched the extent buffer locks from custom locks to semaphores, and when running btrfs/158 from fstests, it reported the following trace: [ 9057.626435] ====================================================== [ 9057.627541] WARNING: possible circular locking dependency detected [ 9057.628334] 5.14.0-rc2-btrfs-next-93 #1 Not tainted [ 9057.628961] ------------------------------------------------------ [ 9057.629867] kworker/u16:4/30781 is trying to acquire lock: [ 9057.630824] ffff8e2590f58760 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x24/0x110 [btrfs] [ 9057.632542] but task is already holding lock: [ 9057.633551] ffff8e25582d4b70 (&fs_info->commit_root_sem){++++}-{3:3}, at: iterate_extent_inodes+0x10b/0x280 [btrfs] [ 9057.635255] which lock already depends on the new lock. [ 9057.636292] the existing dependency chain (in reverse order) is: [ 9057.637240] -> #1 (&fs_info->commit_root_sem){++++}-{3:3}: [ 9057.638138] down_read+0x46/0x140 [ 9057.638648] btrfs_find_all_roots+0x41/0x80 [btrfs] [ 9057.639398] btrfs_qgroup_trace_extent_post+0x37/0x70 [btrfs] [ 9057.640283] btrfs_add_delayed_data_ref+0x418/0x490 [btrfs] [ 9057.641114] btrfs_free_extent+0x35/0xb0 [btrfs] [ 9057.641819] btrfs_truncate_inode_items+0x424/0xf70 [btrfs] [ 9057.642643] btrfs_evict_inode+0x454/0x4f0 [btrfs] [ 9057.643418] evict+0xcf/0x1d0 [ 9057.643895] do_unlinkat+0x1e9/0x300 [ 9057.644525] do_syscall_64+0x3b/0xc0 [ 9057.645110] entry_SYSCALL_64_after_hwframe+0x44/0xae [ 9057.645835] -> #0 (btrfs-tree-00){++++}-{3:3}: [ 9057.646600] __lock_acquire+0x130e/0x2210 [ 9057.647248] lock_acquire+0xd7/0x310 [ 9057.647773] down_read_nested+0x4b/0x140 [ 9057.648350] __btrfs_tree_read_lock+0x24/0x110 [btrfs] [ 9057.649175] btrfs_read_lock_root_node+0x31/0x40 [btrfs] [ 9057.650010] btrfs_search_slot+0x537/0xc00 [btrfs] [ 9057.650849] scrub_print_warning_inode+0x89/0x370 [btrfs] [ 9057.651733] iterate_extent_inodes+0x1e3/0x280 [btrfs] [ 9057.652501] scrub_print_warning+0x15d/0x2f0 [btrfs] [ 9057.653264] scrub_handle_errored_block.isra.0+0x135f/0x1640 [btrfs] [ 9057.654295] scrub_bio_end_io_worker+0x101/0x2e0 [btrfs] [ 9057.655111] btrfs_work_helper+0xf8/0x400 [btrfs] [ 9057.655831] process_one_work+0x247/0x5a0 [ 9057.656425] worker_thread+0x55/0x3c0 [ 9057.656993] kthread+0x155/0x180 [ 9057.657494] ret_from_fork+0x22/0x30 [ 9057.658030] other info that might help us debug this: [ 9057.659064] Possible unsafe locking scenario: [ 9057.659824] CPU0 CPU1 [ 9057.660402] ---- ---- [ 9057.660988] lock(&fs_info->commit_root_sem); [ 9057.661581] lock(btrfs-tree-00); [ 9057.662348] lock(&fs_info->commit_root_sem); [ 9057.663254] lock(btrfs-tree-00); [ 9057.663690] *** DEADLOCK *** [ 9057.664437] 4 locks held by kworker/u16:4/30781: [ 9057.665023] #0: ffff8e25922a1148 ((wq_completion)btrfs-scrub){+.+.}-{0:0}, at: process_one_work+0x1c7/0x5a0 [ 9057.666260] #1: ffffabb3451ffe70 ((work_completion)(&work->normal_work)){+.+.}-{0:0}, at: process_one_work+0x1c7/0x5a0 [ 9057.667639] #2: ffff8e25922da198 (&ret->mutex){+.+.}-{3:3}, at: scrub_handle_errored_block.isra.0+0x5d2/0x1640 [btrfs] [ 9057.669017] #3: ffff8e25582d4b70 (&fs_info->commit_root_sem){++++}-{3:3}, at: iterate_extent_inodes+0x10b/0x280 [btrfs] [ 9057.670408] stack backtrace: [ 9057.670976] CPU: 7 PID: 30781 Comm: kworker/u16:4 Not tainted 5.14.0-rc2-btrfs-next-93 #1 [ 9057.672030] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 [ 9057.673492] Workqueue: btrfs-scrub btrfs_work_helper [btrfs] [ 9057.674258] Call Trace: [ 9057.674588] dump_stack_lvl+0x57/0x72 [ 9057.675083] check_noncircular+0xf3/0x110 [ 9057.675611] __lock_acquire+0x130e/0x2210 [ 9057.676132] lock_acquire+0xd7/0x310 [ 9057.676605] ? __btrfs_tree_read_lock+0x24/0x110 [btrfs] [ 9057.677313] ? lock_is_held_type+0xe8/0x140 [ 9057.677849] down_read_nested+0x4b/0x140 [ 9057.678349] ? __btrfs_tree_read_lock+0x24/0x110 [btrfs] [ 9057.679068] __btrfs_tree_read_lock+0x24/0x110 [btrfs] [ 9057.679760] btrfs_read_lock_root_node+0x31/0x40 [btrfs] [ 9057.680458] btrfs_search_slot+0x537/0xc00 [btrfs] [ 9057.681083] ? _raw_spin_unlock+0x29/0x40 [ 9057.681594] ? btrfs_find_all_roots_safe+0x11f/0x140 [btrfs] [ 9057.682336] scrub_print_warning_inode+0x89/0x370 [btrfs] [ 9057.683058] ? btrfs_find_all_roots_safe+0x11f/0x140 [btrfs] [ 9057.683834] ? scrub_write_block_to_dev_replace+0xb0/0xb0 [btrfs] [ 9057.684632] iterate_extent_inodes+0x1e3/0x280 [btrfs] [ 9057.685316] scrub_print_warning+0x15d/0x2f0 [btrfs] [ 9057.685977] ? ___ratelimit+0xa4/0x110 [ 9057.686460] scrub_handle_errored_block.isra.0+0x135f/0x1640 [btrfs] [ 9057.687316] scrub_bio_end_io_worker+0x101/0x2e0 [btrfs] [ 9057.688021] btrfs_work_helper+0xf8/0x400 [btrfs] [ 9057.688649] ? lock_is_held_type+0xe8/0x140 [ 9057.689180] process_one_work+0x247/0x5a0 [ 9057.689696] worker_thread+0x55/0x3c0 [ 9057.690175] ? process_one_work+0x5a0/0x5a0 [ 9057.690731] kthread+0x155/0x180 [ 9057.691158] ? set_kthread_struct+0x40/0x40 [ 9057.691697] ret_from_fork+0x22/0x30 Fix this by making btrfs_find_all_roots() never attempt to lock the commit_root_sem when it is called from btrfs_qgroup_trace_extent_post(). We can't just pass a non-NULL transaction handle to btrfs_find_all_roots() from btrfs_qgroup_trace_extent_post(), because that would make backref lookup not use commit roots and acquire read locks on extent buffers, and therefore could deadlock when btrfs_qgroup_trace_extent_post() is called from the btrfs_truncate_inode_items() code path which has acquired a write lock on an extent buffer of the subvolume btree. CC: stable@vger.kernel.org # 4.19+ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-22btrfs: check for missing device in btrfs_trim_fsAnand Jain1-0/+3
A fstrim on a degraded raid1 can trigger the following null pointer dereference: BTRFS info (device loop0): allowing degraded mounts BTRFS info (device loop0): disk space caching is enabled BTRFS info (device loop0): has skinny extents BTRFS warning (device loop0): devid 2 uuid 97ac16f7-e14d-4db1-95bc-3d489b424adb is missing BTRFS warning (device loop0): devid 2 uuid 97ac16f7-e14d-4db1-95bc-3d489b424adb is missing BTRFS info (device loop0): enabling ssd optimizations BUG: kernel NULL pointer dereference, address: 0000000000000620 PGD 0 P4D 0 Oops: 0000 [#1] SMP NOPTI CPU: 0 PID: 4574 Comm: fstrim Not tainted 5.13.0-rc7+ #31 Hardware name: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox 12/01/2006 RIP: 0010:btrfs_trim_fs+0x199/0x4a0 [btrfs] RSP: 0018:ffff959541797d28 EFLAGS: 00010293 RAX: 0000000000000000 RBX: ffff946f84eca508 RCX: a7a67937adff8608 RDX: ffff946e8122d000 RSI: 0000000000000000 RDI: ffffffffc02fdbf0 RBP: ffff946ea4615000 R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000000 R11: ffff946e8122d960 R12: 0000000000000000 R13: ffff959541797db8 R14: ffff946e8122d000 R15: ffff959541797db8 FS: 00007f55917a5080(0000) GS:ffff946f9bc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000620 CR3: 000000002d2c8001 CR4: 00000000000706f0 Call Trace: btrfs_ioctl_fitrim+0x167/0x260 [btrfs] btrfs_ioctl+0x1c00/0x2fe0 [btrfs] ? selinux_file_ioctl+0x140/0x240 ? syscall_trace_enter.constprop.0+0x188/0x240 ? __x64_sys_ioctl+0x83/0xb0 __x64_sys_ioctl+0x83/0xb0 Reproducer: $ mkfs.btrfs -fq -d raid1 -m raid1 /dev/loop0 /dev/loop1 $ mount /dev/loop0 /btrfs $ umount /btrfs $ btrfs dev scan --forget $ mount -o degraded /dev/loop0 /btrfs $ fstrim /btrfs The reason is we call btrfs_trim_free_extents() for the missing device, which uses device->bdev (NULL for missing device) to find if the device supports discard. Fix is to check if the device is missing before calling btrfs_trim_free_extents(). CC: stable@vger.kernel.org # 5.4+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-22btrfs: fix unpersisted i_size on fsync after expanding truncateFilipe Manana1-9/+22
If we have an inode that does not have the full sync flag set, was changed in the current transaction, then it is logged while logging some other inode (like its parent directory for example), its i_size is increased by a truncate operation, the log is synced through an fsync of some other inode and then finally we explicitly call fsync on our inode, the new i_size is not persisted. The following example shows how to trigger it, with comments explaining how and why the issue happens: $ mkfs.btrfs -f /dev/sdc $ mount /dev/sdc /mnt $ touch /mnt/foo $ xfs_io -f -c "pwrite -S 0xab 0 1M" /mnt/bar $ sync # Fsync bar, this will be a noop since the file has not yet been # modified in the current transaction. The goal here is to clear # BTRFS_INODE_NEEDS_FULL_SYNC from the inode's runtime flags. $ xfs_io -c "fsync" /mnt/bar # Now rename both files, without changing their parent directory. $ mv /mnt/bar /mnt/bar2 $ mv /mnt/foo /mnt/foo2 # Increase the size of bar2 with a truncate operation. $ xfs_io -c "truncate 2M" /mnt/bar2 # Now fsync foo2, this results in logging its parent inode (the root # directory), and logging the parent results in logging the inode of # file bar2 (its inode item and the new name). The inode of file bar2 # is logged with an i_size of 0 bytes since it's logged in # LOG_INODE_EXISTS mode, meaning we are only logging its names (and # xattrs if it had any) and the i_size of the inode will not be changed # when the log is replayed. $ xfs_io -c "fsync" /mnt/foo2 # Now explicitly fsync bar2. This resulted in doing nothing, not # logging the inode with the new i_size of 2M and the hole from file # offset 1M to 2M. Because the inode did not have the flag # BTRFS_INODE_NEEDS_FULL_SYNC set, when it was logged through the # fsync of file foo2, its last_log_commit field was updated, # resulting in this explicit of file bar2 not doing anything. $ xfs_io -c "fsync" /mnt/bar2 # File bar2 content and size before a power failure. $ od -A d -t x1 /mnt/bar2 0000000 ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab * 1048576 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 * 2097152 <power failure> # Mount the filesystem to replay the log. $ mount /dev/sdc /mnt # Read the file again, should have the same content and size as before # the power failure happened, but it doesn't, i_size is still at 1M. $ od -A d -t x1 /mnt/bar2 0000000 ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab * 1048576 This started to happen after commit 209ecbb8585bf6 ("btrfs: remove stale comment and logic from btrfs_inode_in_log()"), since btrfs_inode_in_log() no longer checks if the inode's list of modified extents is not empty. However, checking that list is not the right way to address this case and the check was added long time ago in commit 125c4cf9f37c98 ("Btrfs: set inode's logged_trans/last_log_commit after ranged fsync") for a different purpose, to address consecutive ranged fsyncs. The reason that checking for the list emptiness makes this test pass is because during an expanding truncate we create an extent map to represent a hole from the old i_size to the new i_size, and add that extent map to the list of modified extents in the inode. However if we are low on available memory and we can not allocate a new extent map, then we don't treat it as an error and just set the full sync flag on the inode, so that the next fsync does not rely on the list of modified extents - so checking for the emptiness of the list to decide if the inode needs to be logged is not reliable, and results in not logging the inode if it was not possible to allocate the extent map for the hole. Fix this by ensuring that if we are only logging that an inode exists (inode item, names/references and xattrs), we don't update the inode's last_log_commit even if it does not have the full sync runtime flag set. A test case for fstests follows soon. CC: stable@vger.kernel.org # 5.13+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-22dpaa2-switch: seed the buffer pool after allocating the swpIoana Ciornei1-8/+8
Any interraction with the buffer pool (seeding a buffer, acquire one) is made through a software portal (SWP, a DPIO object). There are circumstances where the dpaa2-switch driver probes on a DPSW before any DPIO devices have been probed. In this case, seeding of the buffer pool will lead to a panic since no SWPs are initialized. To fix this, seed the buffer pool after making sure that the software portals have been probed and are ready to be used. Fixes: 0b1b71370458 ("staging: dpaa2-switch: handle Rx path on control interface") Signed-off-by: Ioana Ciornei <ioana.ciornei@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-22drm/panel: raspberrypi-touchscreen: Prevent double-freeMaxime Ripard1-1/+0
The mipi_dsi_device allocated by mipi_dsi_device_register_full() is already free'd on release. Fixes: 2f733d6194bd ("drm/panel: Add support for the Raspberry Pi 7" Touchscreen.") Signed-off-by: Maxime Ripard <maxime@cerno.tech> Reviewed-by: Sam Ravnborg <sam@ravnborg.org> Link: https://patchwork.freedesktop.org/patch/msgid/20210720134525.563936-9-maxime@cerno.tech