| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Take advantage of the multigrain timestamp APIs to ensure that nobody
can sneak in and write things to a file between starting a file update
operation and committing the results. This should have been part of the
multigrain timestamp merge, but I forgot to fling it at jlayton when he
resubmitted the patchset due to developer bandwidth problems.
Cc: <stable@vger.kernel.org> # v6.13-rc1
Fixes: 4e40eff0b5737c ("fs: add infrastructure for multigrain timestamps")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
|
|
|
|
|
|
|
|
|
|
| |
V4 symlink blocks didn't have headers, so return early if this is a V4
filesystem.
Cc: <stable@vger.kernel.org> # v5.1
Fixes: 39708c20ab5133 ("xfs: miscellaneous verifier magic value fixups")
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The logic to check that the region past the end of the superblock is all
zeroes is wrong -- we don't want to check only the bytes past the end of
the maximally sized ondisk superblock structure as currently defined in
xfs_format.h; we want to check the bytes beyond the end of the ondisk as
defined by the feature bits.
Port the superblock size logic from xfs_repair and then put it to use in
xfs_scrub.
Cc: <stable@vger.kernel.org> # v4.15
Fixes: 21fb4cb1981ef7 ("xfs: scrub the secondary superblocks")
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The checks that were added to the superblock scrubber for metadata
directories aren't quite right -- the old inode pointers are now defined
to be zeroes until someone else reuses them. Also consolidate the new
metadir field checks to one place; they were inexplicably scattered
around.
Cc: <stable@vger.kernel.org> # v6.13-rc1
Fixes: 28d756d4d562dc ("xfs: update sb field checks when metadir is turned on")
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
|
|
|
|
|
|
|
|
| |
If the /quotas dirent points to an inode but the inode isn't loadable
(and hence mkdir returns -EEXIST), don't crash, just bail out.
Cc: <stable@vger.kernel.org> # v6.13-rc1
Fixes: e80fbe1ad8eff7 ("xfs: use metadir for quota inodes")
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Only directories or regular files are allowed in the metadata directory
tree. Don't move the repair tempfile to the metadir namespace if this
is not true; this will cause the inode verifiers to trip.
xrep_tempfile_adjust_directory_tree opportunistically moves sc->tempip
from the regular directory tree to the metadata directory tree if sc->ip
is part of the metadata directory tree. However, the scrub setup
functions grab sc->ip and create sc->tempip before we actually get
around to checking if the file mode is the right type for the scrubber.
IOWs, you can invoke the symlink scrubber with the file handle of a
subdirectory in the metadir. xrep_setup_symlink will create a temporary
symlink file, xrep_tempfile_adjust_directory_tree will foolishly try to
set the METADATA flag on the temp symlink, which trips the inode
verifier in the inode item precommit, which shuts down the filesystem
when expensive checks are turned on. If they're /not/ turned on, then
xchk_symlink will return ENOENT when it sees that it's been passed a
symlink, but the invalid inode could still get flushed to disk. We
don't want that.
Cc: <stable@vger.kernel.org> # v6.13-rc1
Fixes: 9dc31acb01a1c7 ("xfs: move repair temporary files to the metadata directory tree")
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For a sparse inodes filesystem, mkfs.xfs computes the values of
sb_spino_align and sb_inoalignmt with the following code:
int cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
if (cfg->sb_feat.crcs_enabled)
cluster_size *= cfg->inodesize / XFS_DINODE_MIN_SIZE;
sbp->sb_spino_align = cluster_size >> cfg->blocklog;
sbp->sb_inoalignmt = XFS_INODES_PER_CHUNK *
cfg->inodesize >> cfg->blocklog;
On a V5 filesystem with 64k fsblocks and 512 byte inodes, this results
in cluster_size = 8192 * (512 / 256) = 16384. As a result,
sb_spino_align and sb_inoalignmt are both set to zero. Unfortunately,
this trips the new sb_spino_align check that was just added to
xfs_validate_sb_common, and the mkfs fails:
# mkfs.xfs -f -b size=64k, /dev/sda
meta-data=/dev/sda isize=512 agcount=4, agsize=81136 blks
= sectsz=512 attr=2, projid32bit=1
= crc=1 finobt=1, sparse=1, rmapbt=1
= reflink=1 bigtime=1 inobtcount=1 nrext64=1
= exchange=0 metadir=0
data = bsize=65536 blocks=324544, imaxpct=25
= sunit=0 swidth=0 blks
naming =version 2 bsize=65536 ascii-ci=0, ftype=1, parent=0
log =internal log bsize=65536 blocks=5006, version=2
= sectsz=512 sunit=0 blks, lazy-count=1
realtime =none extsz=65536 blocks=0, rtextents=0
= rgcount=0 rgsize=0 extents
Discarding blocks...Sparse inode alignment (0) is invalid.
Metadata corruption detected at 0x560ac5a80bbe, xfs_sb block 0x0/0x200
libxfs_bwrite: write verifier failed on xfs_sb bno 0x0/0x1
mkfs.xfs: Releasing dirty buffer to free list!
found dirty buffer (bulk) on free list!
Sparse inode alignment (0) is invalid.
Metadata corruption detected at 0x560ac5a80bbe, xfs_sb block 0x0/0x200
libxfs_bwrite: write verifier failed on xfs_sb bno 0x0/0x1
mkfs.xfs: writing AG headers failed, err=22
Prior to commit 59e43f5479cce1 this all worked fine, even if "sparse"
inodes are somewhat meaningless when everything fits in a single
fsblock. Adjust the checks to handle existing filesystems.
Cc: <stable@vger.kernel.org> # v6.13-rc1
Fixes: 59e43f5479cce1 ("xfs: sb_spino_align is not verified")
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Now that we've converted the dquot logging machinery to attach the dquot
buffer to the li_buf pointer so that the AIL dqflush doesn't have to
allocate or read buffers in a reclaim path, do the same for the
quotacheck code so that the reclaim shrinker dqflush call doesn't have
to do that either.
Cc: <stable@vger.kernel.org> # v6.12
Fixes: 903edea6c53f09 ("mm: warn about illegal __GFP_NOFAIL usage in a more appropriate location and manner")
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Ever since 6.12-rc1, I've observed a pile of warnings from the kernel
when running fstests with quotas enabled:
WARNING: CPU: 1 PID: 458580 at mm/page_alloc.c:4221 __alloc_pages_noprof+0xc9c/0xf18
CPU: 1 UID: 0 PID: 458580 Comm: xfsaild/sda3 Tainted: G W 6.12.0-rc6-djwa #rc6 6ee3e0e531f6457e2d26aa008a3b65ff184b377c
<snip>
Call trace:
__alloc_pages_noprof+0xc9c/0xf18
alloc_pages_mpol_noprof+0x94/0x240
alloc_pages_noprof+0x68/0xf8
new_slab+0x3e0/0x568
___slab_alloc+0x5a0/0xb88
__slab_alloc.constprop.0+0x7c/0xf8
__kmalloc_noprof+0x404/0x4d0
xfs_buf_get_map+0x594/0xde0 [xfs 384cb02810558b4c490343c164e9407332118f88]
xfs_buf_read_map+0x64/0x2e0 [xfs 384cb02810558b4c490343c164e9407332118f88]
xfs_trans_read_buf_map+0x1dc/0x518 [xfs 384cb02810558b4c490343c164e9407332118f88]
xfs_qm_dqflush+0xac/0x468 [xfs 384cb02810558b4c490343c164e9407332118f88]
xfs_qm_dquot_logitem_push+0xe4/0x148 [xfs 384cb02810558b4c490343c164e9407332118f88]
xfsaild+0x3f4/0xde8 [xfs 384cb02810558b4c490343c164e9407332118f88]
kthread+0x110/0x128
ret_from_fork+0x10/0x20
---[ end trace 0000000000000000 ]---
This corresponds to the line:
WARN_ON_ONCE(current->flags & PF_MEMALLOC);
within the NOFAIL checks. What's happening here is that the XFS AIL is
trying to write a disk quota update back into the filesystem, but for
that it needs to read the ondisk buffer for the dquot. The buffer is
not in memory anymore, probably because it was evicted. Regardless, the
buffer cache tries to allocate a new buffer, but those allocations are
NOFAIL. The AIL thread has marked itself PF_MEMALLOC (aka noreclaim)
since commit 43ff2122e6492b ("xfs: on-stack delayed write buffer lists")
presumably because reclaim can push on XFS to push on the AIL.
An easy way to fix this probably would have been to drop the NOFAIL flag
from the xfs_buf allocation and open code a retry loop, but then there's
still the problem that for bs>ps filesystems, the buffer itself could
require up to 64k worth of pages.
Inode items had similar behavior (multi-page cluster buffers that we
don't want to allocate in the AIL) which we solved by making transaction
precommit attach the inode cluster buffers to the dirty log item. Let's
solve the dquot problem in the same way.
So: Make a real precommit handler to read the dquot buffer and attach it
to the log item; pass it to dqflush in the push method; and have the
iodone function detach the buffer once we've flushed everything. Add a
state flag to the log item to track when a thread has entered the
precommit -> push mechanism to skip the detaching if it turns out that
the dquot is very busy, as we don't hold the dquot lock between log item
commit and AIL push).
Reading and attaching the dquot buffer in the precommit hook is inspired
by the work done for inode cluster buffers some time ago.
Cc: <stable@vger.kernel.org> # v6.12
Fixes: 903edea6c53f09 ("mm: warn about illegal __GFP_NOFAIL usage in a more appropriate location and manner")
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
|
|
|
|
|
|
|
| |
Clean up these functions a little bit before we move on to the real
modifications, and make the variable naming consistent for dquot log
items.
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
|
|
|
|
|
|
|
| |
The first step towards holding the dquot buffer in the li_buf instead of
reading it in the AIL is to separate the part that reads the buffer from
the actual flush code. There should be no functional changes.
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Quota counter updates are tracked via incore objects which hang off the
xfs_trans object. These changes are then turned into dirty log items in
xfs_trans_apply_dquot_deltas just prior to commiting the log items to
the CIL.
However, updating the incore deltas do not cause XFS_TRANS_DIRTY to be
set on the transaction. In other words, a pure quota counter update
will be silently discarded if there are no other dirty log items
attached to the transaction.
This is currently not the case anywhere in the filesystem because quota
updates always dirty at least one other metadata item, but a subsequent
bug fix will add dquot log item precommits, so we actually need a dirty
dquot log item prior to xfs_trans_run_precommits. Also let's not leave
a logic bomb.
Cc: <stable@vger.kernel.org> # v2.6.35
Fixes: 0924378a689ccb ("xfs: split out iclog writing from xfs_trans_commit()")
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Superblock counter updates are tracked via per-transaction counters in
the xfs_trans object. These changes are then turned into dirty log
items in xfs_trans_apply_sb_deltas just prior to commiting the log items
to the CIL.
However, updating the per-transaction counter deltas do not cause
XFS_TRANS_DIRTY to be set on the transaction. In other words, a pure sb
counter update will be silently discarded if there are no other dirty
log items attached to the transaction.
This is currently not the case anywhere in the filesystem because sb
counter updates always dirty at least one other metadata item, but let's
not leave a logic bomb.
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently, __xfs_trans_commit calls xfs_defer_finish_noroll, which calls
__xfs_trans_commit again on the same transaction. In other words,
there's a nested function call (albeit with slightly different
arguments) that has caused minor amounts of confusion in the past.
There's no reason to keep this around, since there's only one place
where we actually want the xfs_defer_finish_noroll, and that is in the
top level xfs_trans_commit call.
This also reduces stack usage a little bit.
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Committing a transaction tx0 with a defer ops chain of (A, B, C)
creates a chain of transactions that looks like this:
tx0 -> txA -> txB -> txC
Prior to commit cb042117488dbf, __xfs_trans_commit would run precommits
on tx0, then call xfs_defer_finish_noroll to convert A-C to tx[A-C].
Unfortunately, after the finish_noroll loop we forgot to run precommits
on txC. That was fixed by adding the second precommit call.
Unfortunately, none of us remembered that xfs_defer_finish_noroll
calls __xfs_trans_commit a second time to commit tx0 before finishing
work A in txA and committing that. In other words, we run precommits
twice on tx0:
xfs_trans_commit(tx0)
__xfs_trans_commit(tx0, false)
xfs_trans_run_precommits(tx0)
xfs_defer_finish_noroll(tx0)
xfs_trans_roll(tx0)
txA = xfs_trans_dup(tx0)
__xfs_trans_commit(tx0, true)
xfs_trans_run_precommits(tx0)
This currently isn't an issue because the inode item precommit is
idempotent; the iunlink item precommit deletes itself so it can't be
called again; and the buffer/dquot item precommits only check the incore
objects for corruption. However, it doesn't make sense to run
precommits twice.
Fix this situation by only running precommits after finish_noroll.
Cc: <stable@vger.kernel.org> # v6.4
Fixes: cb042117488dbf ("xfs: defered work could create precommits")
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Debugging a filesystem patch with generic/475 caused the system to hang
after observing the following sequences in dmesg:
XFS (dm-0): metadata I/O error in "xfs_imap_to_bp+0x61/0xe0 [xfs]" at daddr 0x491520 len 32 error 5
XFS (dm-0): metadata I/O error in "xfs_btree_read_buf_block+0xba/0x160 [xfs]" at daddr 0x3445608 len 8 error 5
XFS (dm-0): metadata I/O error in "xfs_imap_to_bp+0x61/0xe0 [xfs]" at daddr 0x138e1c0 len 32 error 5
XFS (dm-0): log I/O error -5
XFS (dm-0): Metadata I/O Error (0x1) detected at xfs_trans_read_buf_map+0x1ea/0x4b0 [xfs] (fs/xfs/xfs_trans_buf.c:311). Shutting down filesystem.
XFS (dm-0): Please unmount the filesystem and rectify the problem(s)
XFS (dm-0): Internal error dqp->q_ino.reserved < dqp->q_ino.count at line 869 of file fs/xfs/xfs_trans_dquot.c. Caller xfs_trans_dqresv+0x236/0x440 [xfs]
XFS (dm-0): Corruption detected. Unmount and run xfs_repair
XFS (dm-0): Unmounting Filesystem be6bcbcc-9921-4deb-8d16-7cc94e335fa7
The system is stuck in unmount trying to lock a couple of inodes so that
they can be purged. The dquot corruption notice above is a clue to what
happened -- a link() call tried to set up a transaction to link a child
into a directory. Quota reservation for the transaction failed after IO
errors shut down the filesystem, but then we forgot to unlock the inodes
on our way out. Fix that.
Cc: <stable@vger.kernel.org> # v6.10
Fixes: bd5562111d5839 ("xfs: Hold inode locks in xfs_trans_alloc_dir")
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
|
|
|
|
|
|
|
|
|
| |
Fix a minor mistakes in the scrub tracepoints that can manifest when
inode-rooted btrees are enabled. The existing code worked fine for bmap
btrees, but we should tighten the code up to be less sloppy.
Cc: <stable@vger.kernel.org> # v5.7
Fixes: 92219c292af8dd ("xfs: convert btree cursor inode-private member names")
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In commit 2c813ad66a72, I partially fixed a bug wherein xfs_btree_insrec
would erroneously try to update the parent's key for a block that had
been split if we decided to insert the new record into the new block.
The solution was to detect this situation and update the in-core key
value that we pass up to the caller so that the caller will (eventually)
add the new block to the parent level of the tree with the correct key.
However, I missed a subtlety about the way inode-rooted btrees work. If
the full block was a maximally sized inode root block, we'll solve that
fullness by moving the root block's records to a new block, resizing the
root block, and updating the root to point to the new block. We don't
pass a pointer to the new block to the caller because that work has
already been done. The new record will /always/ land in the new block,
so in this case we need to use xfs_btree_update_keys to update the keys.
This bug can theoretically manifest itself in the very rare case that we
split a bmbt root block and the new record lands in the very first slot
of the new block, though I've never managed to trigger it in practice.
However, it is very easy to reproduce by running generic/522 with the
realtime rmapbt patchset if rtinherit=1.
Cc: <stable@vger.kernel.org> # v4.8
Fixes: 2c813ad66a7218 ("xfs: support btrees with overlapping intervals for keys")
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
|
|
|
|
|
|
|
|
|
| |
smatch reported that we screwed up the error cleanup in this function.
Fix it.
Cc: <stable@vger.kernel.org> # v6.13-rc1
Fixes: ae897e0bed0f54 ("xfs: support creating per-RTG files in growfs")
Reported-by: Dan Carpenter <dan.carpenter@linaro.org>
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
xfs_bmap_rtalloc initializes the bno_hint variable to NULLRTBLOCK (aka
NULLFSBLOCK). If the allocation request is for a file range that's
adjacent to an existing mapping, it will then change bno_hint to the
blkno hint in the bmalloca structure.
In other words, bno_hint is either a rt block number, or it's all 1s.
Unfortunately, commit ec12f97f1b8a8f didn't take the NULLRTBLOCK state
into account, which means that it tries to translate that into a
realtime extent number. We then end up with an obnoxiously high rtx
number and pointlessly feed that to the near allocator. This often
fails and falls back to the by-size allocator. Seeing as we had no
locality hint anyway, this is a waste of time.
Fix the code to detect a lack of bno_hint correctly. This was detected
by running xfs/009 with metadir enabled and a 28k rt extent size.
Cc: <stable@vger.kernel.org> # v6.12
Fixes: ec12f97f1b8a8f ("xfs: make the rtalloc start hint a xfs_rtblock_t")
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Once in a long while, xfs/566 and xfs/801 report directory corruption in
one of the metadata subdirectories while it's forcibly rebuilding all
filesystem metadata. I observed the following sequence of events:
1. Initiate a repair of the parent pointers for the /quota/user file.
This is the secret file containing user quota data.
2. The pptr repair thread creates a temporary file and begins staging
parent pointers in the ondisk metadata in preparation for an
exchange-range to commit the new pptr data.
3. At the same time, initiate a repair of the /quota directory itself.
4. The dir repair thread finds the temporary file from (2), scans it for
parent pointers, and stages a dirent in its own temporary dir in
preparation to commit the fixed directory.
5. The parent pointer repair completes and frees the temporary file.
6. The dir repair commits the new directory and scans it again. It
finds the dirent that points to the old temporary file in (2) and
marks the directory corrupt.
Oops! Repair code must never scan the temporary files that other repair
functions create to stage new metadata. They're not supposed to do
that, but the predicate function xrep_is_tempfile is incorrect because
it assumes that any XFS_DIFLAG2_METADATA file cannot ever be a temporary
file, but xrep_tempfile_adjust_directory_tree creates exactly that.
Fix this by setting the IRECOVERY flag on temporary metadata directory
inodes and using that to correct the predicate. Repair code is supposed
to erase all the data in temporary files before releasing them, so it's
ok if a thread scans the temporary file after we drop IRECOVERY.
Cc: <stable@vger.kernel.org> # v6.13-rc1
Fixes: bb6cdd5529ff67 ("xfs: hide metadata inodes from everyone because they are special")
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
|
|
|
|
|
|
|
|
|
|
| |
If we need to reset a symlink target to the "durr it's busted" string,
then we clear the zapped flag as well. However, this should be using
the provided helper so that we don't set the zapped state on an
otherwise ok symlink.
Cc: <stable@vger.kernel.org> # v6.10
Fixes: 2651923d8d8db0 ("xfs: online repair of symbolic links")
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In commit d9041681dd2f53 we introduced some XFS_SICK_*ZAPPED flags so
that the inode record repair code could clean up a damaged inode record
enough to iget the inode but still be able to remember that the higher
level repair code needs to be called. As part of that, we introduced a
xchk_mark_healthy_if_clean helper that is supposed to cause the ZAPPED
state to be removed if that higher level metadata actually checks out.
This was done by setting additional bits in sick_mask hoping that
xchk_update_health will clear all those bits after a healthy scrub.
Unfortunately, that's not quite what sick_mask means -- bits in that
mask are indeed cleared if the metadata is healthy, but they're set if
the metadata is NOT healthy. fsck is only intended to set the ZAPPED
bits explicitly.
If something else sets the CORRUPT/XCORRUPT state after the
xchk_mark_healthy_if_clean call, we end up marking the metadata zapped.
This can happen if the following sequence happens:
1. Scrub runs, discovers that the metadata is fine but could be
optimized and calls xchk_mark_healthy_if_clean on a ZAPPED flag.
That causes the ZAPPED flag to be set in sick_mask because the
metadata is not CORRUPT or XCORRUPT.
2. Repair runs to optimize the metadata.
3. Some other metadata used for cross-referencing in (1) becomes
corrupt.
4. Post-repair scrub runs, but this time it sets CORRUPT or XCORRUPT due
to the events in (3).
5. Now the xchk_health_update sets the ZAPPED flag on the metadata we
just repaired. This is not the correct state.
Fix this by moving the "if healthy" mask to a separate field, and only
ever using it to clear the sick state.
Cc: <stable@vger.kernel.org> # v6.8
Fixes: d9041681dd2f53 ("xfs: set inode sick state flags when we zap either ondisk fork")
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Way back when we first implemented FICLONE for XFS, life was simple --
either the the entire remapping completed, or something happened and we
had to return an errno explaining what happened. Neither of those
ioctls support returning partial results, so it's all or nothing.
Then things got complicated when copy_file_range came along, because it
actually can return the number of bytes copied, so commit 3f68c1f562f1e4
tried to make it so that we could return a partial result if the
REMAP_FILE_CAN_SHORTEN flag is set. This is also how FIDEDUPERANGE can
indicate that the kernel performed a partial deduplication.
Unfortunately, the logic is wrong if an error stops the remapping and
CAN_SHORTEN is not set. Because those callers cannot return partial
results, it is an error for ->remap_file_range to return a positive
quantity that is less than the @len passed in. Implementations really
should be returning a negative errno in this case, because that's what
btrfs (which introduced FICLONE{,RANGE}) did.
Therefore, ->remap_range implementations cannot silently drop an errno
that they might have when the number of bytes remapped is less than the
number of bytes requested and CAN_SHORTEN is not set.
Found by running generic/562 on a 64k fsblock filesystem and wondering
why it reported corrupt files.
Cc: <stable@vger.kernel.org> # v4.20
Fixes: 3fc9f5e409319e ("xfs: remove xfs_reflink_remap_range")
Really-Fixes: 3f68c1f562f1e4 ("xfs: support returning partial reflink results")
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
With the nrext64 feature enabled, it's possible for a data fork to have
2^48 extent mappings. Even with a 64k fsblock size, that maps out to
a bmbt containing more than 2^32 blocks. Therefore, this predicate must
return a u64 count to avoid an integer wraparound that will cause scrub
to do the wrong thing.
It's unlikely that any such filesystem currently exists, because the
incore bmbt would consume more than 64GB of kernel memory on its own,
and so far nobody except me has driven a filesystem that far, judging
from the lack of complaints.
Cc: <stable@vger.kernel.org> # v5.19
Fixes: df9ad5cc7a5240 ("xfs: Introduce macros to represent new maximum extent counts for data/attr forks")
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In the same vein as the previous patch, there's no point in the metapath
scrub setup function doing a lookup on the quota metadir just so it can
validate that lookups work correctly. Instead, retain the quota
directory inode in memory for the lifetime of the mount so that we can
check this meaningfully.
Cc: <stable@vger.kernel.org> # v6.13-rc1
Fixes: 128a055291ebbc ("xfs: scrub quota file metapaths")
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Don't waste time in xchk_setup_metapath_dqinode doing a second lookup of
the quota inodes, just grab them from the quotainfo structure. The
whole point of this scrubber is to make sure that the dirents exist, so
it's completely silly to do lookups.
Cc: <stable@vger.kernel.org> # v6.13-rc1
Fixes: 128a055291ebbc ("xfs: scrub quota file metapaths")
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In commit ca6448aed4f10a, we created an "end_daddr" variable to fix
fsmap reporting when the end of the range requested falls in the middle
of an unknown (aka free on the rmapbt) region. Unfortunately, I didn't
notice that the the code sets end_daddr to the last sector of the device
but then uses that quantity to compute the length of the synthesized
mapping.
Zizhi Wo later observed that when end_daddr isn't set, we still don't
report the last fsblock on a device because in that case (aka when
info->last is true), the info->high mapping that we pass to
xfs_getfsmap_group_helper has a startblock that points to the last
fsblock. This is also wrong because the code uses startblock to
compute the length of the synthesized mapping.
Fix the second problem by setting end_daddr unconditionally, and fix the
first problem by setting start_daddr to one past the end of the range to
query.
Cc: <stable@vger.kernel.org> # v6.11
Fixes: ca6448aed4f10a ("xfs: Fix missing interval for missing_owner in xfs fsmap")
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reported-by: Zizhi Wo <wozizhi@huawei.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Pull xfs fixes from Carlos Maiolino:
- Use xchg() in xlog_cil_insert_pcp_aggregate()
- Fix ABBA deadlock on a race between mount and log shutdown
- Fix quota softlimit incoherency on delalloc
- Fix sparse inode limits on runt AG
- remove unknown compat feature checks in SB write valdation
- Eliminate a lockdep false positive
* tag 'xfs-fixes-6.13-rc2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
xfs: don't call xfs_bmap_same_rtgroup in xfs_bmap_add_extent_hole_delay
xfs: Use xchg() in xlog_cil_insert_pcp_aggregate()
xfs: prevent mount and log shutdown race
xfs: delalloc and quota softlimit timers are incoherent
xfs: fix sparse inode limits on runt AG
xfs: remove unknown compat feature check in superblock write validation
xfs: eliminate lockdep false positives in xfs_attr_shortform_list
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
xfs_bmap_add_extent_hole_delay works entirely on delalloc extents, for
which xfs_bmap_same_rtgroup doesn't make sense.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
try_cmpxchg() loop with constant "new" value can be substituted
with just xchg() to atomically get and clear the location.
The code on x86_64 improves from:
1e7f: 48 89 4c 24 10 mov %rcx,0x10(%rsp)
1e84: 48 03 14 c5 00 00 00 add 0x0(,%rax,8),%rdx
1e8b: 00
1e88: R_X86_64_32S __per_cpu_offset
1e8c: 8b 02 mov (%rdx),%eax
1e8e: 41 89 c5 mov %eax,%r13d
1e91: 31 c9 xor %ecx,%ecx
1e93: f0 0f b1 0a lock cmpxchg %ecx,(%rdx)
1e97: 75 f5 jne 1e8e <xlog_cil_commit+0x84e>
1e99: 48 8b 4c 24 10 mov 0x10(%rsp),%rcx
1e9e: 45 01 e9 add %r13d,%r9d
to just:
1e7f: 48 03 14 cd 00 00 00 add 0x0(,%rcx,8),%rdx
1e86: 00
1e83: R_X86_64_32S __per_cpu_offset
1e87: 31 c9 xor %ecx,%ecx
1e89: 87 0a xchg %ecx,(%rdx)
1e8b: 41 01 cb add %ecx,%r11d
No functional change intended.
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Cc: Chandan Babu R <chandan.babu@oracle.com>
Cc: Darrick J. Wong <djwong@kernel.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Alex Elder <elder@riscstar.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
I recently had an fstests hang where there were two internal tasks
stuck like so:
[ 6559.010870] task:kworker/24:45 state:D stack:12152 pid:631308 tgid:631308 ppid:2 flags:0x00004000
[ 6559.016984] Workqueue: xfs-buf/dm-2 xfs_buf_ioend_work
[ 6559.020349] Call Trace:
[ 6559.022002] <TASK>
[ 6559.023426] __schedule+0x650/0xb10
[ 6559.025734] schedule+0x6d/0xf0
[ 6559.027835] schedule_timeout+0x31/0x180
[ 6559.030582] wait_for_common+0x10c/0x1e0
[ 6559.033495] wait_for_completion+0x1d/0x30
[ 6559.036463] __flush_workqueue+0xeb/0x490
[ 6559.039479] ? mempool_alloc_slab+0x15/0x20
[ 6559.042537] xlog_cil_force_seq+0xa1/0x2f0
[ 6559.045498] ? bio_alloc_bioset+0x1d8/0x510
[ 6559.048578] ? submit_bio_noacct+0x2f2/0x380
[ 6559.051665] ? xlog_force_shutdown+0x3b/0x170
[ 6559.054819] xfs_log_force+0x77/0x230
[ 6559.057455] xlog_force_shutdown+0x3b/0x170
[ 6559.060507] xfs_do_force_shutdown+0xd4/0x200
[ 6559.063798] ? xfs_buf_rele+0x1bd/0x580
[ 6559.066541] xfs_buf_ioend_handle_error+0x163/0x2e0
[ 6559.070099] xfs_buf_ioend+0x61/0x200
[ 6559.072728] xfs_buf_ioend_work+0x15/0x20
[ 6559.075706] process_scheduled_works+0x1d4/0x400
[ 6559.078814] worker_thread+0x234/0x2e0
[ 6559.081300] kthread+0x147/0x170
[ 6559.083462] ? __pfx_worker_thread+0x10/0x10
[ 6559.086295] ? __pfx_kthread+0x10/0x10
[ 6559.088771] ret_from_fork+0x3e/0x50
[ 6559.091153] ? __pfx_kthread+0x10/0x10
[ 6559.093624] ret_from_fork_asm+0x1a/0x30
[ 6559.096227] </TASK>
[ 6559.109304] Workqueue: xfs-cil/dm-2 xlog_cil_push_work
[ 6559.112673] Call Trace:
[ 6559.114333] <TASK>
[ 6559.115760] __schedule+0x650/0xb10
[ 6559.118084] schedule+0x6d/0xf0
[ 6559.120175] schedule_timeout+0x31/0x180
[ 6559.122776] ? call_rcu+0xee/0x2f0
[ 6559.125034] __down_common+0xbe/0x1f0
[ 6559.127470] __down+0x1d/0x30
[ 6559.129458] down+0x48/0x50
[ 6559.131343] ? xfs_buf_item_unpin+0x8d/0x380
[ 6559.134213] xfs_buf_lock+0x3d/0xe0
[ 6559.136544] xfs_buf_item_unpin+0x8d/0x380
[ 6559.139253] xlog_cil_committed+0x287/0x520
[ 6559.142019] ? sched_clock+0x10/0x30
[ 6559.144384] ? sched_clock_cpu+0x10/0x190
[ 6559.147039] ? psi_group_change+0x48/0x310
[ 6559.149735] ? _raw_spin_unlock+0xe/0x30
[ 6559.152340] ? finish_task_switch+0xbc/0x310
[ 6559.155163] xlog_cil_process_committed+0x6d/0x90
[ 6559.158265] xlog_state_shutdown_callbacks+0x53/0x110
[ 6559.161564] ? xlog_cil_push_work+0xa70/0xaf0
[ 6559.164441] xlog_state_release_iclog+0xba/0x1b0
[ 6559.167483] xlog_cil_push_work+0xa70/0xaf0
[ 6559.170260] process_scheduled_works+0x1d4/0x400
[ 6559.173286] worker_thread+0x234/0x2e0
[ 6559.175779] kthread+0x147/0x170
[ 6559.177933] ? __pfx_worker_thread+0x10/0x10
[ 6559.180748] ? __pfx_kthread+0x10/0x10
[ 6559.183231] ret_from_fork+0x3e/0x50
[ 6559.185601] ? __pfx_kthread+0x10/0x10
[ 6559.188092] ret_from_fork_asm+0x1a/0x30
[ 6559.190692] </TASK>
This is an ABBA deadlock where buffer IO completion is triggering a
forced shutdown with the buffer lock held. It is waiting for the CIL
to flush as part of the log force. The CIL flush is blocked doing
shutdown processing of all it's objects, trying to unpin a buffer
item. That requires taking the buffer lock....
For the CIL to be doing shutdown processing, the log must be marked
with XLOG_IO_ERROR, but that doesn't happen until after the log
force is issued. Hence for xfs_do_force_shutdown() to be forcing
the log on a shut down log, we must have had a racing
xlog_force_shutdown and xfs_force_shutdown like so:
p0 p1 CIL push
<holds buffer lock>
xlog_force_shutdown
xfs_log_force
test_and_set_bit(XLOG_IO_ERROR)
xlog_state_release_iclog()
sees XLOG_IO_ERROR
xlog_state_shutdown_callbacks
....
xfs_buf_item_unpin
xfs_buf_lock
<blocks on buffer p1 holds>
xfs_force_shutdown
xfs_set_shutdown(mp) wins
xlog_force_shutdown
xfs_log_force
<blocks on CIL push>
xfs_set_shutdown(mp) fails
<shuts down rest of log>
The deadlock can be mitigated by avoiding the log force on the
second pass through xlog_force_shutdown. Do this by adding another
atomic state bit (XLOG_OP_PENDING_SHUTDOWN) that is set on entry to
xlog_force_shutdown() but doesn't mark the log as shutdown.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
I've been seeing this failure on during xfs/050 recently:
XFS: Assertion failed: dst->d_spc_timer != 0, file: fs/xfs/xfs_qm_syscalls.c, line: 435
....
Call Trace:
<TASK>
xfs_qm_scall_getquota_fill_qc+0x2a2/0x2b0
xfs_qm_scall_getquota_next+0x69/0xa0
xfs_fs_get_nextdqblk+0x62/0xf0
quota_getnextxquota+0xbf/0x320
do_quotactl+0x1a1/0x410
__se_sys_quotactl+0x126/0x310
__x64_sys_quotactl+0x21/0x30
x64_sys_call+0x2819/0x2ee0
do_syscall_64+0x68/0x130
entry_SYSCALL_64_after_hwframe+0x76/0x7e
It turns out that the _qmount call has silently been failing to
unmount and mount the filesystem, so when the softlimit is pushed
past with a buffered write, it is not getting synced to disk before
the next quota report is being run.
Hence when the quota report runs, we have 300 blocks of delalloc
data on an inode, with a soft limit of 200 blocks. XFS dquots
account delalloc reservations as used space, hence the dquot is over
the soft limit.
However, we don't update the soft limit timers until we do a
transactional update of the dquot. That is, the dquot sits over the
soft limit without a softlimit timer being started until writeback
occurs and the allocation modifies the dquot and we call
xfs_qm_adjust_dqtimers() from xfs_trans_apply_dquot_deltas() in
xfs_trans_commit() context.
This isn't really a problem, except for this debug code in
xfs_qm_scall_getquota_fill_qc():
if (xfs_dquot_is_enforced(dqp) && dqp->q_id != 0) {
if ((dst->d_space > dst->d_spc_softlimit) &&
(dst->d_spc_softlimit > 0)) {
ASSERT(dst->d_spc_timer != 0);
}
....
It asserts taht if the used block count is over the soft limit,
it *must* have a soft limit timer running. This is clearly not
the case, because we haven't committed the delalloc space to disk
yet. Hence the soft limit is only exceeded temporarily in memory
(which isn't an issue) and we start the timer the moment we exceed
the soft limit in journalled metadata.
This debug was introduced in:
commit 0d5ad8383061fbc0a9804fbb98218750000fe032
Author: Supriya Wickrematillake <sup@sgi.com>
Date: Wed May 15 22:44:44 1996 +0000
initial checkin
quotactl syscall functions.
The very first quota support commit back in 1996. This is zero-day
debug for Irix and, as it turns out, a zero-day bug in the debug
code because the delalloc code on Irix didn't update the softlimit
timers, either.
IOWs, this issue has been in the code for 28 years.
We obviously don't care if soft limit timers are a bit rubbery when
we have delalloc reservations in memory. Production systems running
quota reports have been exposed to this situation for 28 years and
nobody has noticed it, so the debug code is essentially worthless at
this point in time.
We also have the on-disk dquot verifiers checking that the soft
limit timer is running whenever the dquot is over the soft limit
before we write it to disk and after we read it from disk. These
aren't firing, so it is clear the issue is purely a temporary
in-memory incoherency that I never would have noticed had the test
not silently failed to unmount the filesystem.
Hence I'm simply going to trash this runtime debug because it isn't
useful in the slightest for catching quota bugs.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The runt AG at the end of a filesystem is almost always smaller than
the mp->m_sb.sb_agblocks. Unfortunately, when setting the max_agbno
limit for the inode chunk allocation, we do not take this into
account. This means we can allocate a sparse inode chunk that
overlaps beyond the end of an AG. When we go to allocate an inode
from that sparse chunk, the irec fails validation because the
agbno of the start of the irec is beyond valid limits for the runt
AG.
Prevent this from happening by taking into account the size of the
runt AG when allocating inode chunks. Also convert the various
checks for valid inode chunk agbnos to use xfs_ag_block_count()
so that they will also catch such issues in the future.
Fixes: 56d1115c9bc7 ("xfs: allocate sparse inode chunks on full chunk allocation failure")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Compat features are new features that older kernels can safely ignore,
allowing read-write mounts without issues. The current sb write validation
implementation returns -EFSCORRUPTED for unknown compat features,
preventing filesystem write operations and contradicting the feature's
definition.
Additionally, if the mounted image is unclean, the log recovery may need
to write to the superblock. Returning an error for unknown compat features
during sb write validation can cause mount failures.
Although XFS currently does not use compat feature flags, this issue
affects current kernels' ability to mount images that may use compat
feature flags in the future.
Since superblock read validation already warns about unknown compat
features, it's unnecessary to repeat this warning during write validation.
Therefore, the relevant code in write validation is being removed.
Fixes: 9e037cb7972f ("xfs: check for unknown v5 feature bits in superblock write verifier")
Cc: stable@vger.kernel.org # v4.19+
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
xfs_attr_shortform_list() only called from a non-transactional context, it
hold ilock before alloc memory and maybe trapped in memory reclaim. Since
commit 204fae32d5f7("xfs: clean up remaining GFP_NOFS users") removed
GFP_NOFS flag, lockdep warning will be report as [1]. Eliminate lockdep
false positives by use __GFP_NOLOCKDEP to alloc memory
in xfs_attr_shortform_list().
[1] https://lore.kernel.org/linux-xfs/000000000000e33add0616358204@google.com/
Reported-by: syzbot+4248e91deb3db78358a2@syzkaller.appspotmail.com
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
|
|\ \
| |/
|/|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- The series "zram: optimal post-processing target selection" from
Sergey Senozhatsky improves zram's post-processing selection
algorithm. This leads to improved memory savings.
- Wei Yang has gone to town on the mapletree code, contributing several
series which clean up the implementation:
- "refine mas_mab_cp()"
- "Reduce the space to be cleared for maple_big_node"
- "maple_tree: simplify mas_push_node()"
- "Following cleanup after introduce mas_wr_store_type()"
- "refine storing null"
- The series "selftests/mm: hugetlb_fault_after_madv improvements" from
David Hildenbrand fixes this selftest for s390.
- The series "introduce pte_offset_map_{ro|rw}_nolock()" from Qi Zheng
implements some rationaizations and cleanups in the page mapping
code.
- The series "mm: optimize shadow entries removal" from Shakeel Butt
optimizes the file truncation code by speeding up the handling of
shadow entries.
- The series "Remove PageKsm()" from Matthew Wilcox completes the
migration of this flag over to being a folio-based flag.
- The series "Unify hugetlb into arch_get_unmapped_area functions" from
Oscar Salvador implements a bunch of consolidations and cleanups in
the hugetlb code.
- The series "Do not shatter hugezeropage on wp-fault" from Dev Jain
takes away the wp-fault time practice of turning a huge zero page
into small pages. Instead we replace the whole thing with a THP. More
consistent cleaner and potentiall saves a large number of pagefaults.
- The series "percpu: Add a test case and fix for clang" from Andy
Shevchenko enhances and fixes the kernel's built in percpu test code.
- The series "mm/mremap: Remove extra vma tree walk" from Liam Howlett
optimizes mremap() by avoiding doing things which we didn't need to
do.
- The series "Improve the tmpfs large folio read performance" from
Baolin Wang teaches tmpfs to copy data into userspace at the folio
size rather than as individual pages. A 20% speedup was observed.
- The series "mm/damon/vaddr: Fix issue in
damon_va_evenly_split_region()" fro Zheng Yejian fixes DAMON
splitting.
- The series "memcg-v1: fully deprecate charge moving" from Shakeel
Butt removes the long-deprecated memcgv2 charge moving feature.
- The series "fix error handling in mmap_region() and refactor" from
Lorenzo Stoakes cleanup up some of the mmap() error handling and
addresses some potential performance issues.
- The series "x86/module: use large ROX pages for text allocations"
from Mike Rapoport teaches x86 to use large pages for
read-only-execute module text.
- The series "page allocation tag compression" from Suren Baghdasaryan
is followon maintenance work for the new page allocation profiling
feature.
- The series "page->index removals in mm" from Matthew Wilcox remove
most references to page->index in mm/. A slow march towards shrinking
struct page.
- The series "damon/{self,kunit}tests: minor fixups for DAMON debugfs
interface tests" from Andrew Paniakin performs maintenance work for
DAMON's self testing code.
- The series "mm: zswap swap-out of large folios" from Kanchana Sridhar
improves zswap's batching of compression and decompression. It is a
step along the way towards using Intel IAA hardware acceleration for
this zswap operation.
- The series "kasan: migrate the last module test to kunit" from
Sabyrzhan Tasbolatov completes the migration of the KASAN built-in
tests over to the KUnit framework.
- The series "implement lightweight guard pages" from Lorenzo Stoakes
permits userapace to place fault-generating guard pages within a
single VMA, rather than requiring that multiple VMAs be created for
this. Improved efficiencies for userspace memory allocators are
expected.
- The series "memcg: tracepoint for flushing stats" from JP Kobryn uses
tracepoints to provide increased visibility into memcg stats flushing
activity.
- The series "zram: IDLE flag handling fixes" from Sergey Senozhatsky
fixes a zram buglet which potentially affected performance.
- The series "mm: add more kernel parameters to control mTHP" from
Maíra Canal enhances our ability to control/configuremultisize THP
from the kernel boot command line.
- The series "kasan: few improvements on kunit tests" from Sabyrzhan
Tasbolatov has a couple of fixups for the KASAN KUnit tests.
- The series "mm/list_lru: Split list_lru lock into per-cgroup scope"
from Kairui Song optimizes list_lru memory utilization when lockdep
is enabled.
* tag 'mm-stable-2024-11-18-19-27' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (215 commits)
cma: enforce non-zero pageblock_order during cma_init_reserved_mem()
mm/kfence: add a new kunit test test_use_after_free_read_nofault()
zram: fix NULL pointer in comp_algorithm_show()
memcg/hugetlb: add hugeTLB counters to memcg
vmstat: call fold_vm_zone_numa_events() before show per zone NUMA event
mm: mmap_lock: check trace_mmap_lock_$type_enabled() instead of regcount
zram: ZRAM_DEF_COMP should depend on ZRAM
MAINTAINERS/MEMORY MANAGEMENT: add document files for mm
Docs/mm/damon: recommend academic papers to read and/or cite
mm: define general function pXd_init()
kmemleak: iommu/iova: fix transient kmemleak false positive
mm/list_lru: simplify the list_lru walk callback function
mm/list_lru: split the lock to per-cgroup scope
mm/list_lru: simplify reparenting and initial allocation
mm/list_lru: code clean up for reparenting
mm/list_lru: don't export list_lru_add
mm/list_lru: don't pass unnecessary key parameters
kasan: add kunit tests for kmalloc_track_caller, kmalloc_node_track_caller
kasan: change kasan_atomics kunit test as KUNIT_CASE_SLOW
kasan: use EXPORT_SYMBOL_IF_KUNIT to export symbols
...
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Now isolation no longer takes the list_lru global node lock, only use the
per-cgroup lock instead. And this lock is inside the list_lru_one being
walked, no longer needed to pass the lock explicitly.
Link: https://lkml.kernel.org/r/20241104175257.60853-7-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Cc: Chengming Zhou <zhouchengming@bytedance.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Currently, every list_lru has a per-node lock that protects adding,
deletion, isolation, and reparenting of all list_lru_one instances
belonging to this list_lru on this node. This lock contention is heavy
when multiple cgroups modify the same list_lru.
This lock can be split into per-cgroup scope to reduce contention.
To achieve this, we need a stable list_lru_one for every cgroup. This
commit adds a lock to each list_lru_one and introduced a helper function
lock_list_lru_of_memcg, making it possible to pin the list_lru of a memcg.
Then reworked the reparenting process.
Reparenting will switch the list_lru_one instances one by one. By locking
each instance and marking it dead using the nr_items counter, reparenting
ensures that all items in the corresponding cgroup (on-list or not,
because items have a stable cgroup, see below) will see the list_lru_one
switch synchronously.
Objcg reparent is also moved after list_lru reparent so items will have a
stable mem cgroup until all list_lru_one instances are drained.
The only caller that doesn't work the *_obj interfaces are direct calls to
list_lru_{add,del}. But it's only used by zswap and that's also based on
objcg, so it's fine.
This also changes the bahaviour of the isolation function when LRU_RETRY
or LRU_REMOVED_RETRY is returned, because now releasing the lock could
unblock reparenting and free the list_lru_one, isolation function will
have to return withoug re-lock the lru.
prepare() {
mkdir /tmp/test-fs
modprobe brd rd_nr=1 rd_size=33554432
mkfs.xfs -f /dev/ram0
mount -t xfs /dev/ram0 /tmp/test-fs
for i in $(seq 1 512); do
mkdir "/tmp/test-fs/$i"
for j in $(seq 1 10240); do
echo TEST-CONTENT > "/tmp/test-fs/$i/$j"
done &
done; wait
}
do_test() {
read_worker() {
sleep 1
tar -cv "$1" &>/dev/null
}
read_in_all() {
cd "/tmp/test-fs" && ls
for i in $(seq 1 512); do
(exec sh -c 'echo "$PPID"') > "/sys/fs/cgroup/benchmark/$i/cgroup.procs"
read_worker "$i" &
done; wait
}
for i in $(seq 1 512); do
mkdir -p "/sys/fs/cgroup/benchmark/$i"
done
echo +memory > /sys/fs/cgroup/benchmark/cgroup.subtree_control
echo 512M > /sys/fs/cgroup/benchmark/memory.max
echo 3 > /proc/sys/vm/drop_caches
time read_in_all
}
Above script simulates compression of small files in multiple cgroups
with memory pressure. Run prepare() then do_test for 6 times:
Before:
real 0m7.762s user 0m11.340s sys 3m11.224s
real 0m8.123s user 0m11.548s sys 3m2.549s
real 0m7.736s user 0m11.515s sys 3m11.171s
real 0m8.539s user 0m11.508s sys 3m7.618s
real 0m7.928s user 0m11.349s sys 3m13.063s
real 0m8.105s user 0m11.128s sys 3m14.313s
After this commit (about ~15% faster):
real 0m6.953s user 0m11.327s sys 2m42.912s
real 0m7.453s user 0m11.343s sys 2m51.942s
real 0m6.916s user 0m11.269s sys 2m43.957s
real 0m6.894s user 0m11.528s sys 2m45.346s
real 0m6.911s user 0m11.095s sys 2m43.168s
real 0m6.773s user 0m11.518s sys 2m40.774s
Link: https://lkml.kernel.org/r/20241104175257.60853-6-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Cc: Chengming Zhou <zhouchengming@bytedance.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Pull xfs updates from Carlos Maiolino:
"The bulk of this pull request is a major rework that Darrick and
Christoph have been doing on XFS's real-time volume, coupled with a
few features to support this rework. It does also includes some bug
fixes.
- convert perag to use xarrays
- create a new generic allocation group structure
- add metadata inode dir trees
- create in-core rt allocation groups
- shard the RT section into allocation groups
- persist quota options with the enw metadata dir tree
- enable quota for RT volumes
- enable metadata directory trees
- some bugfixes"
* tag 'xfs-6.13-merge-1' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (146 commits)
xfs: port ondisk structure checks from xfs/122 to the kernel
xfs: separate space btree structures in xfs_ondisk.h
xfs: convert struct typedefs in xfs_ondisk.h
xfs: enable metadata directory feature
xfs: enable realtime quota again
xfs: update sb field checks when metadir is turned on
xfs: reserve quota for realtime files correctly
xfs: create quota preallocation watermarks for realtime quota
xfs: report realtime block quota limits on realtime directories
xfs: persist quota flags with metadir
xfs: advertise realtime quota support in the xqm stat files
xfs: scrub quota file metapaths
xfs: fix chown with rt quota
xfs: use metadir for quota inodes
xfs: refactor xfs_qm_destroy_quotainos
xfs: use rtgroup busy extent list for FITRIM
xfs: implement busy extent tracking for rtgroups
xfs: port the perag discard code to handle generic groups
xfs: move the min and max group block numbers to xfs_group
xfs: adjust min_block usage in xfs_verify_agbno
...
|
| |\ \
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into staging-merge
xfs: improve ondisk structure checks [v5.5 10/10]
Reorganize xfs_ondisk.h to group the build checks by type, then add a
bunch of missing checks that were in xfs/122 but not the build system.
With this, we can get rid of xfs/122.
With a bit of luck, this should all go splendidly.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Check this with every kernel and userspace build, so we can drop the
nonsense in xfs/122. Roughly drafted with:
sed -e 's/^offsetof/\tXFS_CHECK_OFFSET/g' \
-e 's/^sizeof/\tXFS_CHECK_STRUCT_SIZE/g' \
-e 's/ = \([0-9]*\)/,\t\t\t\1);/g' \
-e 's/xfs_sb_t/struct xfs_dsb/g' \
-e 's/),/,/g' \
-e 's/xfs_\([a-z0-9_]*\)_t,/struct xfs_\1,/g' \
< tests/xfs/122.out | sort
and then manual fixups.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Create a separate section for space management btrees so that they're
not mixed in with file structures. Ignore the dsb stuff sprinkled
around for now, because we'll deal with that in a subsequent patch.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Replace xfs_foo_t with struct xfs_foo where appropriate. The next patch
will import more checks from xfs/122, and it's easier to automate
deduplication if we don't have to reason about typedefs.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
| |\| |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into staging-merge
xfs: enable metadir [v5.5 09/10]
Actually enable this very large feature, which adds metadata directory
trees, allocation groups on the realtime volume, persistent quota
options, and quota for realtime files.
With a bit of luck, this should all go splendidly.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Enable the metadata directory feature. With this feature, all metadata
inodes are placed in the metadata directory, and the only inumbers in
the superblock are the roots of the two directory trees.
The RT device is now sharded into a number of rtgroups, where 0 rtgroups
mean that no RT extents are supported, and the traditional XFS stub RT
bitmap and summary inodes don't exist. A single rtgroup gives roughly
identical behavior to the traditional RT setup, but now with checksummed
and self identifying free space metadata.
For quota, the quota options are read from the superblock unless
explicitly overridden via mount options.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
When metadir is enabled, we want to check the two new rtgroups fields,
and we don't want to check the old inumbers that are now in the metadir.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
| |\| |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into staging-merge
xfs: enable quota for realtime volumes [v5.5 08/10]
At some point, I realized that I've refactored enough of the quota code
in XFS that I should evaluate whether or not quota actually works on
realtime volumes. It turns out that it nearly works: the only broken
pieces are chown and delayed allocation, and reporting of project
quotas in the statvfs output for projinherit+rtinherit directories.
Fix these things and we can have realtime quotas again after 20 years.
With a bit of luck, this should all go splendidly.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Enable quotas for the realtime device.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Fix xfs_quota_reserve_blkres to reserve rt block quota whenever we're
dealing with a realtime file.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|