summaryrefslogtreecommitdiffstats
path: root/kernel/module/kmod.c (follow)
Commit message (Collapse)AuthorAgeFilesLines
* remove pointless includes of <linux/fdtable.h>Al Viro2024-10-071-1/+0
| | | | | | | | some of those used to be needed, some had been cargo-culted for no reason... Reviewed-by: Christian Brauner <brauner@kernel.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* module: add debugging auto-load duplicate module supportLuis Chamberlain2023-04-201-4/+19
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The finit_module() system call can in the worst case use up to more than twice of a module's size in virtual memory. Duplicate finit_module() system calls are non fatal, however they unnecessarily strain virtual memory during bootup and in the worst case can cause a system to fail to boot. This is only known to currently be an issue on systems with larger number of CPUs. To help debug this situation we need to consider the different sources for finit_module(). Requests from the kernel that rely on module auto-loading, ie, the kernel's *request_module() API, are one source of calls. Although modprobe checks to see if a module is already loaded prior to calling finit_module() there is a small race possible allowing userspace to trigger multiple modprobe calls racing against modprobe and this not seeing the module yet loaded. This adds debugging support to the kernel module auto-loader (*request_module() calls) to easily detect duplicate module requests. To aid with possible bootup failure issues incurred by this, it will converge duplicates requests to a single request. This avoids any possible strain on virtual memory during bootup which could be incurred by duplicate module autoloading requests. Folks debugging virtual memory abuse on bootup can and should enable this to see what pr_warn()s come on, to see if module auto-loading is to blame for their wores. If they see duplicates they can further debug this by enabling the module.enable_dups_trace kernel parameter or by enabling CONFIG_MODULE_DEBUG_AUTOLOAD_DUPS_TRACE. Current evidence seems to point to only a few duplicates for module auto-loading. And so the source for other duplicates creating heavy virtual memory pressure due to larger number of CPUs should becoming from another place (likely udev). Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
* modules/kmod: replace implementation with a semaphoreLuis Chamberlain2023-04-181-19/+7
| | | | | | | | | | | | | | | | | | | | | | | Simplify the concurrency delimiter we use for kmod with the semaphore. I had used the kmod strategy to try to implement a similar concurrency delimiter for the kernel_read*() calls from the finit_module() path so to reduce vmalloc() memory pressure. That effort didn't provide yet conclusive results, but one thing that became clear is we can use the suggested alternative solution with semaphores which Linus hinted at instead of using the atomic / wait strategy. I've stress tested this with kmod test 0008: time /data/linux-next/tools/testing/selftests/kmod/kmod.sh -t 0008 And I get only a *slight* delay. That delay however is small, a few seconds for a full test loop run that runs 150 times, for about ~30-40 seconds. The small delay is worth the simplfication IMHO. Reviewed-by: Davidlohr Bueso <dave@stgolabs.net> Reviewed-by: Miroslav Benes <mbenes@suse.cz> Reviewed-by: David Hildenbrand <david@redhat.com> Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
* module: fold usermode helper kmod into modules directoryLuis Chamberlain2023-03-241-0/+177
The kernel/kmod.c is already only built if we enabled modules, so just stuff it under kernel/module/kmod.c and unify the MAINTAINERS file for it. Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>