summaryrefslogtreecommitdiffstats
path: root/virt/kvm/arm/vgic/vgic-mmio.h (follow)
Commit message (Collapse)AuthorAgeFilesLines
* KVM: arm64: Move virt/kvm/arm to arch/arm64Marc Zyngier2020-05-161-227/+0
| | | | | | | | | | | Now that the 32bit KVM/arm host is a distant memory, let's move the whole of the KVM/arm64 code into the arm64 tree. As they said in the song: Welcome Home (Sanitarium). Signed-off-by: Marc Zyngier <maz@kernel.org> Acked-by: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20200513104034.74741-1-maz@kernel.org
* KVM: arm: vgic-v2: Only use the virtual state when userspace accesses ↵Marc Zyngier2020-04-231-0/+8
| | | | | | | | | | | | | | | | | pending bits There is no point in accessing the HW when writing to any of the ISPENDR/ICPENDR registers from userspace, as only the guest should be allowed to change the HW state. Introduce new userspace-specific accessors that deal solely with the virtual state. Note that the API differs from that of GICv3, where userspace exclusively uses ISPENDR to set the state. Too bad we can't reuse it. Fixes: 82e40f558de56 ("KVM: arm/arm64: vgic-v2: Handle SGI bits in GICD_I{S,C}PENDR0 as WI") Reviewed-by: James Morse <james.morse@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org>
* KVM: arm: vgic: Only use the virtual state when userspace accesses enable bitsMarc Zyngier2020-04-221-0/+8
| | | | | | | | | | | | | | There is no point in accessing the HW when writing to any of the ISENABLER/ICENABLER registers from userspace, as only the guest should be allowed to change the HW state. Introduce new userspace-specific accessors that deal solely with the virtual state. Reported-by: James Morse <james.morse@arm.com> Tested-by: James Morse <james.morse@arm.com> Reviewed-by: James Morse <james.morse@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org>
* KVM: arm: vgic: Synchronize the whole guest on GIC{D,R}_I{S,C}ACTIVER readMarc Zyngier2020-04-221-0/+3
| | | | | | | | | | | | | | | | | | When a guest tries to read the active state of its interrupts, we currently just return whatever state we have in memory. This means that if such an interrupt lives in a List Register on another CPU, we fail to obsertve the latest active state for this interrupt. In order to remedy this, stop all the other vcpus so that they exit and we can observe the most recent value for the state. This is similar to what we are doing for the write side of the same registers, and results in new MMIO handlers for userspace (which do not need to stop the guest, as it is supposed to be stopped already). Reported-by: Julien Grall <julien@xen.org> Reviewed-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org>
* KVM: arm/arm64: vgic: Drop the kvm_vgic_register_mmio_region()Zenghui Yu2020-01-191-5/+0
| | | | | | | | | | | kvm_vgic_register_mmio_region() was introduced in commit 4493b1c4866a ("KVM: arm/arm64: vgic-new: Add MMIO handling framework") but never used, and even never implemented. Remove it to avoid confusing readers. Reported-by: Haibin Wang <wanghaibin.wang@huawei.com> Signed-off-by: Zenghui Yu <yuzenghui@huawei.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20200119090604.398-1-yuzenghui@huawei.com
* treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 234Thomas Gleixner2019-06-191-12/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Based on 1 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license version 2 as published by the free software foundation this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details you should have received a copy of the gnu general public license along with this program if not see http www gnu org licenses extracted by the scancode license scanner the SPDX license identifier GPL-2.0-only has been chosen to replace the boilerplate/reference in 503 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Alexios Zavras <alexios.zavras@intel.com> Reviewed-by: Allison Randal <allison@lohutok.net> Reviewed-by: Enrico Weigelt <info@metux.net> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190602204653.811534538@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* KVM: arm/arm64: vgic: Allow configuration of interrupt groupsChristoffer Dall2018-07-211-0/+6
| | | | | | | | | | | | | | | | | | Implement the required MMIO accessors for GICv2 and GICv3 for the IGROUPR distributor and redistributor registers. This can allow guests to change behavior compared to running on previous versions of KVM, but only to align with the architecture and hardware implementations. This also allows userspace to configure the interrupts groups for GICv3. We don't allow userspace to write the groups on GICv2 just yet, because that would result in GICv2 guests not receiving interrupts after migrating from an older kernel that exposes GICv2 interrupts as group 1. Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm/arm64: vgic: Permit uaccess writes to return errorsChristoffer Dall2018-07-211-8/+11
| | | | | | | | | | | | Currently we do not allow any vgic mmio write operations to fail, which makes sense from mmio traps from the guest. However, we should be able to report failures to userspace, if userspace writes incompatible values to read-only registers. Rework the internal interface to allow errors to be returned on the write side for userspace writes. Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm/arm64: Separate guest and uaccess writes to dist {sc}activeChristoffer Dall2017-05-231-0/+8
| | | | | | | | | Factor out the core register modifier functionality from the entry points from the register description table, and only call the prepare/finish functions from the guest path, not the uaccess path. Signed-off-by: Christoffer Dall <cdall@linaro.org> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm/arm64: Allow GICv2 to supply a uaccess register functionChristoffer Dall2017-05-231-1/+3
| | | | | | | | | | | | We are about to differentiate between writes from a VCPU and from userspace to the GIC's GICD_ISACTIVER and GICD_ICACTIVER registers due to different synchronization requirements. Expand the macro to define a register description for the GIC to take uaccess functions as well. Signed-off-by: Christoffer Dall <cdall@linaro.org> Acked-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm64: vgic-its: Implement vgic_its_has_attr_regs and attr_regs_accessEric Auger2017-05-081-2/+7
| | | | | | | | | | | | | | This patch implements vgic_its_has_attr_regs and vgic_its_attr_regs_access upon the MMIO framework. VGIC ITS KVM device KVM_DEV_ARM_VGIC_GRP_ITS_REGS group becomes functional. At least GITS_CREADR and GITS_IIDR require to differentiate a guest write action from a user access. As such let's introduce a new uaccess_its_write vgic_register_region callback. Signed-off-by: Eric Auger <eric.auger@redhat.com> Reviewed-by: Christoffer Dall <cdall@linaro.org> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
* arm/arm64: vgic: turn vgic_find_mmio_region into publicEric Auger2017-05-081-0/+5
| | | | | | | | | | | | | We plan to use vgic_find_mmio_region in vgic-its.c so let's turn it into a public function. Also let's take the opportunity to rename the region parameter into regions to emphasize this latter is an array of regions. Signed-off-by: Eric Auger <eric.auger@redhat.com> Reviewed-by: Andre Przywara <andre.przywara@arm.com> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Acked-by: Christoffer Dall <cdall@linaro.org>
* KVM: arm/arm64: vgic: Implement KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO ioctlVijaya Kumar K2017-01-301-0/+5
| | | | | | | | | Userspace requires to store and restore of line_level for level triggered interrupts using ioctl KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO. Reviewed-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Vijaya Kumar K <Vijaya.Kumar@cavium.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm/arm64: vgic: Implement support for userspace accessVijaya Kumar K2017-01-301-0/+19
| | | | | | | | | | | | | | | | | | Read and write of some registers like ISPENDR and ICPENDR from userspace requires special handling when compared to guest access for these registers. Refer to Documentation/virtual/kvm/devices/arm-vgic-v3.txt for handling of ISPENDR, ICPENDR registers handling. Add infrastructure to support guest and userspace read and write for the required registers Also moved vgic_uaccess from vgic-mmio-v2.c to vgic-mmio.c Signed-off-by: Vijaya Kumar K <Vijaya.Kumar@cavium.com> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Reviewed-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm/arm64: vgic: Prevent access to invalid SPIsAndre Przywara2016-11-041-7/+7
| | | | | | | | | | | | | | | | | | In our VGIC implementation we limit the number of SPIs to a number that the userland application told us. Accordingly we limit the allocation of memory for virtual IRQs to that number. However in our MMIO dispatcher we didn't check if we ever access an IRQ beyond that limit, leading to out-of-bound accesses. Add a test against the number of allocated SPIs in check_region(). Adjust the VGIC_ADDR_TO_INT macro to avoid an actual division, which is not implemented on ARM(32). [maz: cleaned-up original patch] Cc: stable@vger.kernel.org Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* ARM: KVM: Support vgic-v3Vladimir Murzin2016-09-221-2/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch allows to build and use vgic-v3 in 32-bit mode. Unfortunately, it can not be split in several steps without extra stubs to keep patches independent and bisectable. For instance, virt/kvm/arm/vgic/vgic-v3.c uses function from vgic-v3-sr.c, handling access to GICv3 cpu interface from the guest requires vgic_v3.vgic_sre to be already defined. It is how support has been done: * handle SGI requests from the guest * report configured SRE on access to GICv3 cpu interface from the guest * required vgic-v3 macros are provided via uapi.h * static keys are used to select GIC backend * to make vgic-v3 build KVM_ARM_VGIC_V3 guard is removed along with the static inlines Acked-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
* KVM: arm: vgic: Support 64-bit data manipulation on 32-bit host systemsVladimir Murzin2016-09-221-1/+1
| | | | | | | | | | | | | | | | | We have couple of 64-bit registers defined in GICv3 architecture, so unsigned long accesses to these registers will only access a single 32-bit part of that regitser. On the other hand these registers can't be accessed as 64-bit with a single instruction like ldrd/strd or ldmia/stmia if we run a 32-bit host because KVM does not support access to MMIO space done by these instructions. It means that a 32-bit guest accesses these registers in 32-bit chunks, so the only thing we need to do is to ensure that extract_bytes() always takes 64-bit data. Acked-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
* KVM: arm64: vgic-its: Implement basic ITS register handlersAndre Przywara2016-07-181-0/+6
| | | | | | | | | | | | | | | | | | | | | Add emulation for some basic MMIO registers used in the ITS emulation. This includes: - GITS_{CTLR,TYPER,IIDR} - ID registers - GITS_{CBASER,CREADR,CWRITER} (which implement the ITS command buffer handling) - GITS_BASER<n> Most of the handlers are pretty straight forward, only the CWRITER handler is a bit more involved by taking the new its_cmd mutex and then iterating over the command buffer. The registers holding base addresses and attributes are sanitised before storing them. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Tested-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm64: vgic-its: Introduce ITS emulation file with MMIO frameworkAndre Przywara2016-07-181-4/+13
| | | | | | | | | | | | | | The ARM GICv3 ITS emulation code goes into a separate file, but needs to be connected to the GICv3 emulation, of which it is an option. The ITS MMIO handlers require the respective ITS pointer to be passed in, so we amend the existing VGIC MMIO framework to let it cope with that. Also we introduce the basic ITS data structure and initialize it, but don't return any success yet, as we are not yet ready for the show. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Tested-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm64: vgic: Handle ITS related GICv3 redistributor registersAndre Przywara2016-07-181-0/+8
| | | | | | | | | | | | | | | In the GICv3 redistributor there are the PENDBASER and PROPBASER registers which we did not emulate so far, as they only make sense when having an ITS. In preparation for that emulate those MMIO accesses by storing the 64-bit data written into it into a variable which we later read in the ITS emulation. We also sanitise the registers, making sure RES0 regions are respected and checking for valid memory attributes. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Tested-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm/arm64: vgic-new: Add GICv3 MMIO handling frameworkAndre Przywara2016-05-201-0/+2
| | | | | | | | | | | | | | Create a new file called vgic-mmio-v3.c and describe the GICv3 distributor and redistributor registers there. This adds a special macro to deal with the split of SGI/PPI in the redistributor and SPIs in the distributor, which allows us to reuse the existing GICv2 handlers for those registers which are compatible. Also we provide a function to deal with the registration of the two separate redistributor frames per VCPU. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Eric Auger <eric.auger@linaro.org> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
* KVM: arm/arm64: vgic-new: Add CONFIG registers handlersAndre Przywara2016-05-201-0/+7
| | | | | | | | The config register handlers are shared between the v2 and v3 emulation, so their implementation goes into vgic-mmio.c, to be easily referenced from the v3 emulation as well later. Signed-off-by: Andre Przywara <andre.przywara@arm.com>
* KVM: arm/arm64: vgic-new: Add PRIORITY registers handlersAndre Przywara2016-05-201-0/+7
| | | | | | | | | | | The priority register handlers are shared between the v2 and v3 emulation, so their implementation goes into vgic-mmio.c, to be easily referenced from the v3 emulation as well later. There is a corner case when we change the priority of a pending interrupt which we don't handle at the moment. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
* KVM: arm/arm64: vgic-new: Add ACTIVE registers handlersAndre Przywara2016-05-201-0/+10
| | | | | | | | | | | | | The active register handlers are shared between the v2 and v3 emulation, so their implementation goes into vgic-mmio.c, to be easily referenced from the v3 emulation as well later. Since activation/deactivation of an interrupt may happen entirely in the guest without it ever exiting, we need some extra logic to properly track the active state. For clearing the active state, we basically have to halt the guest to make sure this is properly propagated into the respective VCPUs. Signed-off-by: Andre Przywara <andre.przywara@arm.com>
* KVM: arm/arm64: vgic-new: Add PENDING registers handlersAndre Przywara2016-05-201-0/+12
| | | | | | | | | | | | | The pending register handlers are shared between the v2 and v3 emulation, so their implementation goes into vgic-mmio.c, to be easily referenced from the v3 emulation as well later. For level triggered interrupts the real line level is unaffected by this write, so we keep this state separate and combine it with the device's level to get the actual pending state. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
* KVM: arm/arm64: vgic-new: Add ENABLE registers handlersAndre Przywara2016-05-201-0/+11
| | | | | | | | | | As the enable register handlers are shared between the v2 and v3 emulation, their implementation goes into vgic-mmio.c, to be easily referenced from the v3 emulation as well later. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
* KVM: arm/arm64: vgic-new: Add GICv2 MMIO handling frameworkAndre Przywara2016-05-201-0/+2
| | | | | | | | | | | | Create vgic-mmio-v2.c to describe GICv2 emulation specific handlers using the initializer macros provided by the VGIC MMIO framework. Provide a function to register the GICv2 distributor registers to the kvm_io_bus framework. The actual handler functions are still stubs in this patch. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
* KVM: arm/arm64: vgic-new: Add MMIO handling frameworkMarc Zyngier2016-05-201-0/+99
Add an MMIO handling framework to the VGIC emulation: Each register is described by its offset, size (or number of bits per IRQ, if applicable) and the read/write handler functions. We provide initialization macros to describe each GIC register later easily. Separate dispatch functions for read and write accesses are connected to the kvm_io_bus framework and binary-search for the responsible register handler based on the offset address within the region. We convert the incoming data (referenced by a pointer) to the host's endianess and use pass-by-value to hand the data over to the actual handler functions. The register handler prototype and the endianess conversion are courtesy of Christoffer Dall. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>