/* * Contains common pci routines for ALL ppc platform * (based on pci_32.c and pci_64.c) * * Port for PPC64 David Engebretsen, IBM Corp. * Contains common pci routines for ppc64 platform, pSeries and iSeries brands. * * Copyright (C) 2003 Anton Blanchard , IBM * Rework, based on alpha PCI code. * * Common pmac/prep/chrp pci routines. -- Cort * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* hose_spinlock protects accesses to the the phb_bitmap. */ static DEFINE_SPINLOCK(hose_spinlock); LIST_HEAD(hose_list); /* For dynamic PHB numbering on get_phb_number(): max number of PHBs. */ #define MAX_PHBS 0x10000 /* * For dynamic PHB numbering: used/free PHBs tracking bitmap. * Accesses to this bitmap should be protected by hose_spinlock. */ static DECLARE_BITMAP(phb_bitmap, MAX_PHBS); /* ISA Memory physical address */ resource_size_t isa_mem_base; EXPORT_SYMBOL(isa_mem_base); static const struct dma_map_ops *pci_dma_ops = &dma_direct_ops; void set_pci_dma_ops(const struct dma_map_ops *dma_ops) { pci_dma_ops = dma_ops; } const struct dma_map_ops *get_pci_dma_ops(void) { return pci_dma_ops; } EXPORT_SYMBOL(get_pci_dma_ops); /* * This function should run under locking protection, specifically * hose_spinlock. */ static int get_phb_number(struct device_node *dn) { int ret, phb_id = -1; u32 prop_32; u64 prop; /* * Try fixed PHB numbering first, by checking archs and reading * the respective device-tree properties. Firstly, try powernv by * reading "ibm,opal-phbid", only present in OPAL environment. */ ret = of_property_read_u64(dn, "ibm,opal-phbid", &prop); if (ret) { ret = of_property_read_u32_index(dn, "reg", 1, &prop_32); prop = prop_32; } if (!ret) phb_id = (int)(prop & (MAX_PHBS - 1)); /* We need to be sure to not use the same PHB number twice. */ if ((phb_id >= 0) && !test_and_set_bit(phb_id, phb_bitmap)) return phb_id; /* * If not pseries nor powernv, or if fixed PHB numbering tried to add * the same PHB number twice, then fallback to dynamic PHB numbering. */ phb_id = find_first_zero_bit(phb_bitmap, MAX_PHBS); BUG_ON(phb_id >= MAX_PHBS); set_bit(phb_id, phb_bitmap); return phb_id; } struct pci_controller *pcibios_alloc_controller(struct device_node *dev) { struct pci_controller *phb; phb = zalloc_maybe_bootmem(sizeof(struct pci_controller), GFP_KERNEL); if (phb == NULL) return NULL; spin_lock(&hose_spinlock); phb->global_number = get_phb_number(dev); list_add_tail(&phb->list_node, &hose_list); spin_unlock(&hose_spinlock); phb->dn = dev; phb->is_dynamic = slab_is_available(); #ifdef CONFIG_PPC64 if (dev) { int nid = of_node_to_nid(dev); if (nid < 0 || !node_online(nid)) nid = -1; PHB_SET_NODE(phb, nid); } #endif return phb; } EXPORT_SYMBOL_GPL(pcibios_alloc_controller); void pcibios_free_controller(struct pci_controller *phb) { spin_lock(&hose_spinlock); /* Clear bit of phb_bitmap to allow reuse of this PHB number. */ if (phb->global_number < MAX_PHBS) clear_bit(phb->global_number, phb_bitmap); list_del(&phb->list_node); spin_unlock(&hose_spinlock); if (phb->is_dynamic) kfree(phb); } EXPORT_SYMBOL_GPL(pcibios_free_controller); /* * This function is used to call pcibios_free_controller() * in a deferred manner: a callback from the PCI subsystem. * * _*DO NOT*_ call pcibios_free_controller() explicitly if * this is used (or it may access an invalid *phb pointer). * * The callback occurs when all references to the root bus * are dropped (e.g., child buses/devices and their users). * * It's called as .release_fn() of 'struct pci_host_bridge' * which is associated with the 'struct pci_controller.bus' * (root bus) - it expects .release_data to hold a pointer * to 'struct pci_controller'. * * In order to use it, register .release_fn()/release_data * like this: * * pci_set_host_bridge_release(bridge, * pcibios_free_controller_deferred * (void *) phb); * * e.g. in the pcibios_root_bridge_prepare() callback from * pci_create_root_bus(). */ void pcibios_free_controller_deferred(struct pci_host_bridge *bridge) { struct pci_controller *phb = (struct pci_controller *) bridge->release_data; pr_debug("domain %d, dynamic %d\n", phb->global_number, phb->is_dynamic); pcibios_free_controller(phb); } EXPORT_SYMBOL_GPL(pcibios_free_controller_deferred); /* * The function is used to return the minimal alignment * for memory or I/O windows of the associated P2P bridge. * By default, 4KiB alignment for I/O windows and 1MiB for * memory windows. */ resource_size_t pcibios_window_alignment(struct pci_bus *bus, unsigned long type) { struct pci_controller *phb = pci_bus_to_host(bus); if (phb->controller_ops.window_alignment) return phb->controller_ops.window_alignment(bus, type); /* * PCI core will figure out the default * alignment: 4KiB for I/O and 1MiB for * memory window. */ return 1; } void pcibios_setup_bridge(struct pci_bus *bus, unsigned long type) { struct pci_controller *hose = pci_bus_to_host(bus); if (hose->controller_ops.setup_bridge) hose->controller_ops.setup_bridge(bus, type); } void pcibios_reset_secondary_bus(struct pci_dev *dev) { struct pci_controller *phb = pci_bus_to_host(dev->bus); if (phb->controller_ops.reset_secondary_bus) { phb->controller_ops.reset_secondary_bus(dev); return; } pci_reset_secondary_bus(dev); } #ifdef CONFIG_PCI_IOV resource_size_t pcibios_iov_resource_alignment(struct pci_dev *pdev, int resno) { if (ppc_md.pcibios_iov_resource_alignment) return ppc_md.pcibios_iov_resource_alignment(pdev, resno); return pci_iov_resource_size(pdev, resno); } #endif /* CONFIG_PCI_IOV */ static resource_size_t pcibios_io_size(const struct pci_controller *hose) { #ifdef CONFIG_PPC64 return hose->pci_io_size; #else return resource_size(&hose->io_resource); #endif } int pcibios_vaddr_is_ioport(void __iomem *address) { int ret = 0; struct pci_controller *hose; resource_size_t size; spin_lock(&hose_spinlock); list_for_each_entry(hose, &hose_list, list_node) { size = pcibios_io_size(hose); if (address >= hose->io_base_virt && address < (hose->io_base_virt + size)) { ret = 1; break; } } spin_unlock(&hose_spinlock); return ret; } unsigned long pci_address_to_pio(phys_addr_t address) { struct pci_controller *hose; resource_size_t size; unsigned long ret = ~0; spin_lock(&hose_spinlock); list_for_each_entry(hose, &hose_list, list_node) { size = pcibios_io_size(hose); if (address >= hose->io_base_phys && address < (hose->io_base_phys + size)) { unsigned long base = (unsigned long)hose->io_base_virt - _IO_BASE; ret = base + (address - hose->io_base_phys); break; } } spin_unlock(&hose_spinlock); return ret; } EXPORT_SYMBOL_GPL(pci_address_to_pio); /* * Return the domain number for this bus. */ int pci_domain_nr(struct pci_bus *bus) { struct pci_controller *hose = pci_bus_to_host(bus); return hose->global_number; } EXPORT_SYMBOL(pci_domain_nr); /* This routine is meant to be used early during boot, when the * PCI bus numbers have not yet been assigned, and you need to * issue PCI config cycles to an OF device. * It could also be used to "fix" RTAS config cycles if you want * to set pci_assign_all_buses to 1 and still use RTAS for PCI * config cycles. */ struct pci_controller* pci_find_hose_for_OF_device(struct device_node* node) { while(node) { struct pci_controller *hose, *tmp; list_for_each_entry_safe(hose, tmp, &hose_list, list_node) if (hose->dn == node) return hose; node = node->parent; } return NULL; } /* * Reads the interrupt pin to determine if interrupt is use by card. * If the interrupt is used, then gets the interrupt line from the * openfirmware and sets it in the pci_dev and pci_config line. */ static int pci_read_irq_line(struct pci_dev *pci_dev) { struct of_phandle_args oirq; unsigned int virq; pr_debug("PCI: Try to map irq for %s...\n", pci_name(pci_dev)); #ifdef DEBUG memset(&oirq, 0xff, sizeof(oirq)); #endif /* Try to get a mapping from the device-tree */ if (of_irq_parse_pci(pci_dev, &oirq)) { u8 line, pin; /* If that fails, lets fallback to what is in the config * space and map that through the default controller. We * also set the type to level low since that's what PCI * interrupts are. If your platform does differently, then * either provide a proper interrupt tree or don't use this * function. */ if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_PIN, &pin)) return -1; if (pin == 0) return -1; if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_LINE, &line) || line == 0xff || line == 0) { return -1; } pr_debug(" No map ! Using line %d (pin %d) from PCI config\n", line, pin); virq = irq_create_mapping(NULL, line); if (virq) irq_set_irq_type(virq, IRQ_TYPE_LEVEL_LOW); } else { pr_debug(" Got one, spec %d cells (0x%08x 0x%08x...) on %s\n", oirq.args_count, oirq.args[0], oirq.args[1], of_node_full_name(oirq.np)); virq = irq_create_of_mapping(&oirq); } if (!virq) { pr_debug(" Failed to map !\n"); return -1; } pr_debug(" Mapped to linux irq %d\n", virq); pci_dev->irq = virq; return 0; } /* * Platform support for /proc/bus/pci/X/Y mmap()s, * modelled on the sparc64 implementation by Dave Miller. * -- paulus. */ /* * Adjust vm_pgoff of VMA such that it is the physical page offset * corresponding to the 32-bit pci bus offset for DEV requested by the user. * * Basically, the user finds the base address for his device which he wishes * to mmap. They read the 32-bit value from the config space base register, * add whatever PAGE_SIZE multiple offset they wish, and feed this into the * offset parameter of mmap on /proc/bus/pci/XXX for that device. * * Returns negative error code on failure, zero on success. */ static struct resource *__pci_mmap_make_offset(struct pci_dev *dev, resource_size_t *offset, enum pci_mmap_state mmap_state) { struct pci_controller *hose = pci_bus_to_host(dev->bus); unsigned long io_offset = 0; int i, res_bit; if (hose == NULL) return NULL; /* should never happen */ /* If memory, add on the PCI bridge address offset */ if (mmap_state == pci_mmap_mem) { #if 0 /* See comment in pci_resource_to_user() for why this is disabled */ *offset += hose->pci_mem_offset; #endif res_bit = IORESOURCE_MEM; } else { io_offset = (unsigned long)hose->io_base_virt - _IO_BASE; *offset += io_offset; res_bit = IORESOURCE_IO; } /* * Check that the offset requested corresponds to one of the * resources of the device. */ for (i = 0; i <= PCI_ROM_RESOURCE; i++) { struct resource *rp = &dev->resource[i]; int flags = rp->flags; /* treat ROM as memory (should be already) */ if (i == PCI_ROM_RESOURCE) flags |= IORESOURCE_MEM; /* Active and same type? */ if ((flags & res_bit) == 0) continue; /* In the range of this resource? */ if (*offset < (rp->start & PAGE_MASK) || *offset > rp->end) continue; /* found it! construct the final physical address */ if (mmap_state == pci_mmap_io) *offset += hose->io_base_phys - io_offset; return rp; } return NULL; } /* * This one is used by /dev/mem and fbdev who have no clue about the * PCI device, it tries to find the PCI device first and calls the * above routine */ pgprot_t pci_phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size, pgprot_t prot) { struct pci_dev *pdev = NULL; struct resource *found = NULL; resource_size_t offset = ((resource_size_t)pfn) << PAGE_SHIFT; int i; if (page_is_ram(pfn)) return prot; prot = pgprot_noncached(prot); for_each_pci_dev(pdev) { for (i = 0; i <= PCI_ROM_RESOURCE; i++) { struct resource *rp = &pdev->resource[i]; int flags = rp->flags; /* Active and same type? */ if ((flags & IORESOURCE_MEM) == 0) continue; /* In the range of this resource? */ if (offset < (rp->start & PAGE_MASK) || offset > rp->end) continue; found = rp; break; } if (found) break; } if (found) { if (found->flags & IORESOURCE_PREFETCH) prot = pgprot_noncached_wc(prot); pci_dev_put(pdev); } pr_debug("PCI: Non-PCI map for %llx, prot: %lx\n", (unsigned long long)offset, pgprot_val(prot)); return prot; } /* * Perform the actual remap of the pages for a PCI device mapping, as * appropriate for this architecture. The region in the process to map * is described by vm_start and vm_end members of VMA, the base physical * address is found in vm_pgoff. * The pci device structure is provided so that architectures may make mapping * decisions on a per-device or per-bus basis. * * Returns a negative error code on failure, zero on success. */ int pci_mmap_page_range(struct pci_dev *dev, struct vm_area_struct *vma, enum pci_mmap_state mmap_state, int write_combine) { resource_size_t offset = ((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT; struct resource *rp; int ret; rp = __pci_mmap_make_offset(dev, &offset, mmap_state); if (rp == NULL) return -EINVAL; vma->vm_pgoff = offset >> PAGE_SHIFT; if (write_combine) vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot); else vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); ret = remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, vma->vm_end - vma->vm_start, vma->vm_page_prot); return ret; } /* This provides legacy IO read access on a bus */ int pci_legacy_read(struct pci_bus *bus, loff_t port, u32 *val, size_t size) { unsigned long offset; struct pci_controller *hose = pci_bus_to_host(bus); struct resource *rp = &hose->io_resource; void __iomem *addr; /* Check if port can be supported by that bus. We only check * the ranges of the PHB though, not the bus itself as the rules * for forwarding legacy cycles down bridges are not our problem * here. So if the host bridge supports it, we do it. */ offset = (unsigned long)hose->io_base_virt - _IO_BASE; offset += port; if (!(rp->flags & IORESOURCE_IO)) return -ENXIO; if (offset < rp->start || (offset + size) > rp->end) return -ENXIO; addr = hose->io_base_virt + port; switch(size) { case 1: *((u8 *)val) = in_8(addr); return 1; case 2: if (port & 1) return -EINVAL; *((u16 *)val) = in_le16(addr); return 2; case 4: if (port & 3) return -EINVAL; *((u32 *)val) = in_le32(addr); return 4; } return -EINVAL; } /* This provides legacy IO write access on a bus */ int pci_legacy_write(struct pci_bus *bus, loff_t port, u32 val, size_t size) { unsigned long offset; struct pci_controller *hose = pci_bus_to_host(bus); struct resource *rp = &hose->io_resource; void __iomem *addr; /* Check if port can be supported by that bus. We only check * the ranges of the PHB though, not the bus itself as the rules * for forwarding legacy cycles down bridges are not our problem * here. So if the host bridge supports it, we do it. */ offset = (unsigned long)hose->io_base_virt - _IO_BASE; offset += port; if (!(rp->flags & IORESOURCE_IO)) return -ENXIO; if (offset < rp->start || (offset + size) > rp->end) return -ENXIO; addr = hose->io_base_virt + port; /* WARNING: The generic code is idiotic. It gets passed a pointer * to what can be a 1, 2 or 4 byte quantity and always reads that * as a u32, which means that we have to correct the location of * the data read within those 32 bits for size 1 and 2 */ switch(size) { case 1: out_8(addr, val >> 24); return 1; case 2: if (port & 1) return -EINVAL; out_le16(addr, val >> 16); return 2; case 4: if (port & 3) return -EINVAL; out_le32(addr, val); return 4; } return -EINVAL; } /* This provides legacy IO or memory mmap access on a bus */ int pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma, enum pci_mmap_state mmap_state) { struct pci_controller *hose = pci_bus_to_host(bus); resource_size_t offset = ((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT; resource_size_t size = vma->vm_end - vma->vm_start; struct resource *rp; pr_debug("pci_mmap_legacy_page_range(%04x:%02x, %s @%llx..%llx)\n", pci_domain_nr(bus), bus->number, mmap_state == pci_mmap_mem ? "MEM" : "IO", (unsigned long long)offset, (unsigned long long)(offset + size - 1)); if (mmap_state == pci_mmap_mem) { /* Hack alert ! * * Because X is lame and can fail starting if it gets an error trying * to mmap legacy_mem (instead of just moving on without legacy memory * access) we fake it here by giving it anonymous memory, effectively * behaving just like /dev/zero */ if ((offset + size) > hose->isa_mem_size) { printk(KERN_DEBUG "Process %s (pid:%d) mapped non-existing PCI legacy memory for 0%04x:%02x\n", current->comm, current->pid, pci_domain_nr(bus), bus->number); if (vma->vm_flags & VM_SHARED) return shmem_zero_setup(vma); return 0; } offset += hose->isa_mem_phys; } else { unsigned long io_offset = (unsigned long)hose->io_base_virt - _IO_BASE; unsigned long roffset = offset + io_offset; rp = &hose->io_resource; if (!(rp->flags & IORESOURCE_IO)) return -ENXIO; if (roffset < rp->start || (roffset + size) > rp->end) return -ENXIO; offset += hose->io_base_phys; } pr_debug(" -> mapping phys %llx\n", (unsigned long long)offset); vma->vm_pgoff = offset >> PAGE_SHIFT; vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); return remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, vma->vm_end - vma->vm_start, vma->vm_page_prot); } void pci_resource_to_user(const struct pci_dev *dev, int bar, const struct resource *rsrc, resource_size_t *start, resource_size_t *end) { struct pci_bus_region region; if (rsrc->flags & IORESOURCE_IO) { pcibios_resource_to_bus(dev->bus, ®ion, (struct resource *) rsrc); *start = region.start; *end = region.end; return; } /* We pass a CPU physical address to userland for MMIO instead of a * BAR value because X is lame and expects to be able to use that * to pass to /dev/mem! * * That means we may have 64-bit values where some apps only expect * 32 (like X itself since it thinks only Sparc has 64-bit MMIO). */ *start = rsrc->start; *end = rsrc->end; } /** * pci_process_bridge_OF_ranges - Parse PCI bridge resources from device tree * @hose: newly allocated pci_controller to be setup * @dev: device node of the host bridge * @primary: set if primary bus (32 bits only, soon to be deprecated) * * This function will parse the "ranges" property of a PCI host bridge device * node and setup the resource mapping of a pci controller based on its * content. * * Life would be boring if it wasn't for a few issues that we have to deal * with here: * * - We can only cope with one IO space range and up to 3 Memory space * ranges. However, some machines (thanks Apple !) tend to split their * space into lots of small contiguous ranges. So we have to coalesce. * * - Some busses have IO space not starting at 0, which causes trouble with * the way we do our IO resource renumbering. The code somewhat deals with * it for 64 bits but I would expect problems on 32 bits. * * - Some 32 bits platforms such as 4xx can have physical space larger than * 32 bits so we need to use 64 bits values for the parsing */ void pci_process_bridge_OF_ranges(struct pci_controller *hose, struct device_node *dev, int primary) { int memno = 0; struct resource *res; struct of_pci_range range; struct of_pci_range_parser parser; printk(KERN_INFO "PCI host bridge %s %s ranges:\n", dev->full_name, primary ? "(primary)" : ""); /* Check for ranges property */ if (of_pci_range_parser_init(&parser, dev)) return; /* Parse it */ for_each_of_pci_range(&parser, &range) { /* If we failed translation or got a zero-sized region * (some FW try to feed us with non sensical zero sized regions * such as power3 which look like some kind of attempt at exposing * the VGA memory hole) */ if (range.cpu_addr == OF_BAD_ADDR || range.size == 0) continue; /* Act based on address space type */ res = NULL; switch (range.flags & IORESOURCE_TYPE_BITS) { case IORESOURCE_IO: printk(KERN_INFO " IO 0x%016llx..0x%016llx -> 0x%016llx\n", range.cpu_addr, range.cpu_addr + range.size - 1, range.pci_addr); /* We support only one IO range */ if (hose->pci_io_size) { printk(KERN_INFO " \\--> Skipped (too many) !\n"); continue; } #ifdef CONFIG_PPC32 /* On 32 bits, limit I/O space to 16MB */ if (range.size > 0x01000000) range.size = 0x01000000; /* 32 bits needs to map IOs here */ hose->io_base_virt = ioremap(range.cpu_addr, range.size); /* Expect trouble if pci_addr is not 0 */ if (primary) isa_io_base = (unsigned long)hose->io_base_virt; #endif /* CONFIG_PPC32 */ /* pci_io_size and io_base_phys always represent IO * space starting at 0 so we factor in pci_addr */ hose->pci_io_size = range.pci_addr + range.size; hose->io_base_phys = range.cpu_addr - range.pci_addr; /* Build resource */ res = &hose->io_resource; range.cpu_addr = range.pci_addr; break; case IORESOURCE_MEM: printk(KERN_INFO " MEM 0x%016llx..0x%016llx -> 0x%016llx %s\n", range.cpu_addr, range.cpu_addr + range.size - 1, range.pci_addr, (range.pci_space & 0x40000000) ? "Prefetch" : ""); /* We support only 3 memory ranges */ if (memno >= 3) { printk(KERN_INFO " \\--> Skipped (too many) !\n"); continue; } /* Handles ISA memory hole space here */ if (range.pci_addr == 0) { if (primary || isa_mem_base == 0) isa_mem_base = range.cpu_addr; hose->isa_mem_phys = range.cpu_addr; hose->isa_mem_size = range.size; } /* Build resource */ hose->mem_offset[memno] = range.cpu_addr - range.pci_addr; res = &hose->mem_resources[memno++]; break; } if (res != NULL) { res->name = dev->full_name; res->flags = range.flags; res->start = range.cpu_addr; res->end = range.cpu_addr + range.size - 1; res->parent = res->child = res->sibling = NULL; } } } /* Decide whether to display the domain number in /proc */ int pci_proc_domain(struct pci_bus *bus) { struct pci_controller *hose = pci_bus_to_host(bus); if (!pci_has_flag(PCI_ENABLE_PROC_DOMAINS)) return 0; if (pci_has_flag(PCI_COMPAT_DOMAIN_0)) return hose->global_number != 0; return 1; } int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge) { if (ppc_md.pcibios_root_bridge_prepare) return ppc_md.pcibios_root_bridge_prepare(bridge); return 0; } /* This header fixup will do the resource fixup for all devices as they are * probed, but not for bridge ranges */ static void pcibios_fixup_resources(struct pci_dev *dev) { struct pci_controller *hose = pci_bus_to_host(dev->bus); int i; if (!hose) { printk(KERN_ERR "No host bridge for PCI dev %s !\n", pci_name(dev)); return; } if (dev->is_virtfn) return; for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { struct resource *res = dev->resource + i; struct pci_bus_region reg; if (!res->flags) continue; /* If we're going to re-assign everything, we mark all resources * as unset (and 0-base them). In addition, we mark BARs starting * at 0 as unset as well, except if PCI_PROBE_ONLY is also set * since in that case, we don't want to re-assign anything */ pcibios_resource_to_bus(dev->bus, ®, res); if (pci_has_flag(PCI_REASSIGN_ALL_RSRC) || (reg.start == 0 && !pci_has_flag(PCI_PROBE_ONLY))) { /* Only print message if not re-assigning */ if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC)) pr_debug("PCI:%s Resource %d %pR is unassigned\n", pci_name(dev), i, res); res->end -= res->start; res->start = 0; res->flags |= IORESOURCE_UNSET; continue; } pr_debug("PCI:%s Resource %d %pR\n", pci_name(dev), i, res); } /* Call machine specific resource fixup */ if (ppc_md.pcibios_fixup_resources) ppc_md.pcibios_fixup_resources(dev); } DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pcibios_fixup_resources); /* This function tries to figure out if a bridge resource has been initialized * by the firmware or not. It doesn't have to be absolutely bullet proof, but * things go more smoothly when it gets it right. It should covers cases such * as Apple "closed" bridge resources and bare-metal pSeries unassigned bridges */ static int pcibios_uninitialized_bridge_resource(struct pci_bus *bus, struct resource *res) { struct pci_controller *hose = pci_bus_to_host(bus); struct pci_dev *dev = bus->self; resource_size_t offset; struct pci_bus_region region; u16 command; int i; /* We don't do anything if PCI_PROBE_ONLY is set */ if (pci_has_flag(PCI_PROBE_ONLY)) return 0; /* Job is a bit different between memory and IO */ if (res->flags & IORESOURCE_MEM) { pcibios_resource_to_bus(dev->bus, ®ion, res); /* If the BAR is non-0 then it's probably been initialized */ if (region.start != 0) return 0; /* The BAR is 0, let's check if memory decoding is enabled on * the bridge. If not, we consider it unassigned */ pci_read_config_word(dev, PCI_COMMAND, &command); if ((command & PCI_COMMAND_MEMORY) == 0) return 1; /* Memory decoding is enabled and the BAR is 0. If any of the bridge * resources covers that starting address (0 then it's good enough for * us for memory space) */ for (i = 0; i < 3; i++) { if ((hose->mem_resources[i].flags & IORESOURCE_MEM) && hose->mem_resources[i].start == hose->mem_offset[i]) return 0; } /* Well, it starts at 0 and we know it will collide so we may as * well consider it as unassigned. That covers the Apple case. */ return 1; } else { /* If the BAR is non-0, then we consider it assigned */ offset = (unsigned long)hose->io_base_virt - _IO_BASE; if (((res->start - offset) & 0xfffffffful) != 0) return 0; /* Here, we are a bit different than memory as typically IO space * starting at low addresses -is- valid. What we do instead if that * we consider as unassigned anything that doesn't have IO enabled * in the PCI command register, and that's it. */ pci_read_config_word(dev, PCI_COMMAND, &command); if (command & PCI_COMMAND_IO) return 0; /* It's starting at 0 and IO is disabled in the bridge, consider * it unassigned */ return 1; } } /* Fixup resources of a PCI<->PCI bridge */ static void pcibios_fixup_bridge(struct pci_bus *bus) { struct resource *res; int i; struct pci_dev *dev = bus->self; pci_bus_for_each_resource(bus, res, i) { if (!res || !res->flags) continue; if (i >= 3 && bus->self->transparent) continue; /* If we're going to reassign everything, we can * shrink the P2P resource to have size as being * of 0 in order to save space. */ if (pci_has_flag(PCI_REASSIGN_ALL_RSRC)) { res->flags |= IORESOURCE_UNSET; res->start = 0; res->end = -1; continue; } pr_debug("PCI:%s Bus rsrc %d %pR\n", pci_name(dev), i, res); /* Try to detect uninitialized P2P bridge resources, * and clear them out so they get re-assigned later */ if (pcibios_uninitialized_bridge_resource(bus, res)) { res->flags = 0; pr_debug("PCI:%s (unassigned)\n", pci_name(dev)); } } } void pcibios_setup_bus_self(struct pci_bus *bus) { struct pci_controller *phb; /* Fix up the bus resources for P2P bridges */ if (bus->self != NULL) pcibios_fixup_bridge(bus); /* Platform specific bus fixups. This is currently only used * by fsl_pci and I'm hoping to get rid of it at some point */ if (ppc_md.pcibios_fixup_bus) ppc_md.pcibios_fixup_bus(bus); /* Setup bus DMA mappings */ phb = pci_bus_to_host(bus); if (phb->controller_ops.dma_bus_setup) phb->controller_ops.dma_bus_setup(bus); } static void pcibios_setup_device(struct pci_dev *dev) { struct pci_controller *phb; /* Fixup NUMA node as it may not be setup yet by the generic * code and is needed by the DMA init */ set_dev_node(&dev->dev, pcibus_to_node(dev->bus)); /* Hook up default DMA ops */ set_dma_ops(&dev->dev, pci_dma_ops); set_dma_offset(&dev->dev, PCI_DRAM_OFFSET); /* Additional platform DMA/iommu setup */ phb = pci_bus_to_host(dev->bus); if (phb->controller_ops.dma_dev_setup) phb->controller_ops.dma_dev_setup(dev); /* Read default IRQs and fixup if necessary */ pci_read_irq_line(dev); if (ppc_md.pci_irq_fixup) ppc_md.pci_irq_fixup(dev); } int pcibios_add_device(struct pci_dev *dev) { /* * We can only call pcibios_setup_device() after bus setup is complete, * since some of the platform specific DMA setup code depends on it. */ if (dev->bus->is_added) pcibios_setup_device(dev); #ifdef CONFIG_PCI_IOV if (ppc_md.pcibios_fixup_sriov) ppc_md.pcibios_fixup_sriov(dev); #endif /* CONFIG_PCI_IOV */ return 0; } void pcibios_setup_bus_devices(struct pci_bus *bus) { struct pci_dev *dev; pr_debug("PCI: Fixup bus devices %d (%s)\n", bus->number, bus->self ? pci_name(bus->self) : "PHB"); list_for_each_entry(dev, &bus->devices, bus_list) { /* Cardbus can call us to add new devices to a bus, so ignore * those who are already fully discovered */ if (dev->is_added) continue; pcibios_setup_device(dev); } } void pcibios_set_master(struct pci_dev *dev) { /* No special bus mastering setup handling */ } void pcibios_fixup_bus(struct pci_bus *bus) { /* When called from the generic PCI probe, read PCI<->PCI bridge * bases. This is -not- called when generating the PCI tree from * the OF device-tree. */ pci_read_bridge_bases(bus); /* Now fixup the bus bus */ pcibios_setup_bus_self(bus); /* Now fixup devices on that bus */ pcibios_setup_bus_devices(bus); } EXPORT_SYMBOL(pcibios_fixup_bus); void pci_fixup_cardbus(struct pci_bus *bus) { /* Now fixup devices on that bus */ pcibios_setup_bus_devices(bus); } static int skip_isa_ioresource_align(struct pci_dev *dev) { if (pci_has_flag(PCI_CAN_SKIP_ISA_ALIGN) && !(dev->bus->bridge_ctl & PCI_BRIDGE_CTL_ISA)) return 1; return 0; } /* * We need to avoid collisions with `mirrored' VGA ports * and other strange ISA hardware, so we always want the * addresses to be allocated in the 0x000-0x0ff region * modulo 0x400. * * Why? Because some silly external IO cards only decode * the low 10 bits of the IO address. The 0x00-0xff region * is reserved for motherboard devices that decode all 16 * bits, so it's ok to allocate at, say, 0x2800-0x28ff, * but we want to try to avoid allocating at 0x2900-0x2bff * which might have be mirrored at 0x0100-0x03ff.. */ resource_size_t pcibios_align_resource(void *data, const struct resource *res, resource_size_t size, resource_size_t align) { struct pci_dev *dev = data; resource_size_t start = res->start; if (res->flags & IORESOURCE_IO) { if (skip_isa_ioresource_align(dev)) return start; if (start & 0x300) start = (start + 0x3ff) & ~0x3ff; } return start; } EXPORT_SYMBOL(pcibios_align_resource); /* * Reparent resource children of pr that conflict with res * under res, and make res replace those children. */ static int reparent_resources(struct resource *parent, struct resource *res) { struct resource *p, **pp; struct resource **firstpp = NULL; for (pp = &parent->child; (p = *pp) != NULL; pp = &p->sibling) { if (p->end < res->start) continue; if (res->end < p->start) break; if (p->start < res->start || p->end > res->end) return -1; /* not completely contained */ if (firstpp == NULL) firstpp = pp; } if (firstpp == NULL) return -1; /* didn't find any conflicting entries? */ res->parent = parent; res->child = *firstpp; res->sibling = *pp; *firstpp = res; *pp = NULL; for (p = res->child; p != NULL; p = p->sibling) { p->parent = res; pr_debug("PCI: Reparented %s %pR under %s\n", p->name, p, res->name); } return 0; } /* * Handle resources of PCI devices. If the world were perfect, we could * just allocate all the resource regions and do nothing more. It isn't. * On the other hand, we cannot just re-allocate all devices, as it would * require us to know lots of host bridge internals. So we attempt to * keep as much of the original configuration as possible, but tweak it * when it's found to be wrong. * * Known BIOS problems we have to work around: * - I/O or memory regions not configured * - regions configured, but not enabled in the command register * - bogus I/O addresses above 64K used * - expansion ROMs left enabled (this may sound harmless, but given * the fact the PCI specs explicitly allow address decoders to be * shared between expansion ROMs and other resource regions, it's * at least dangerous) * * Our solution: * (1) Allocate resources for all buses behind PCI-to-PCI bridges. * This gives us fixed barriers on where we can allocate. * (2) Allocate resources for all enabled devices. If there is * a collision, just mark the resource as unallocated. Also * disable expansion ROMs during this step. * (3) Try to allocate resources for disabled devices. If the * resources were assigned correctly, everything goes well, * if they weren't, they won't disturb allocation of other * resources. * (4) Assign new addresses to resources which were either * not configured at all or misconfigured. If explicitly * requested by the user, configure expansion ROM address * as well. */ static void pcibios_allocate_bus_resources(struct pci_bus *bus) { struct pci_bus *b; int i; struct resource *res, *pr; pr_debug("PCI: Allocating bus resources for %04x:%02x...\n", pci_domain_nr(bus), bus->number); pci_bus_for_each_resource(bus, res, i) { if (!res || !res->flags || res->start > res->end || res->parent) continue; /* If the resource was left unset at this point, we clear it */ if (res->flags & IORESOURCE_UNSET) goto clear_resource; if (bus->parent == NULL) pr = (res->flags & IORESOURCE_IO) ? &ioport_resource : &iomem_resource; else { pr = pci_find_parent_resource(bus->self, res); if (pr == res) { /* this happens when the generic PCI * code (wrongly) decides that this * bridge is transparent -- paulus */ continue; } } pr_debug("PCI: %s (bus %d) bridge rsrc %d: %pR, parent %p (%s)\n", bus->self ? pci_name(bus->self) : "PHB", bus->number, i, res, pr, (pr && pr->name) ? pr->name : "nil"); if (pr && !(pr->flags & IORESOURCE_UNSET)) { struct pci_dev *dev = bus->self; if (request_resource(pr, res) == 0) continue; /* * Must be a conflict with an existing entry. * Move that entry (or entries) under the * bridge resource and try again. */ if (reparent_resources(pr, res) == 0) continue; if (dev && i < PCI_BRIDGE_RESOURCE_NUM && pci_claim_bridge_resource(dev, i + PCI_BRIDGE_RESOURCES) == 0) continue; } pr_warning("PCI: Cannot allocate resource region " "%d of PCI bridge %d, will remap\n", i, bus->number); clear_resource: /* The resource might be figured out when doing * reassignment based on the resources required * by the downstream PCI devices. Here we set * the size of the resource to be 0 in order to * save more space. */ res->start = 0; res->end = -1; res->flags = 0; } list_for_each_entry(b, &bus->children, node) pcibios_allocate_bus_resources(b); } static inline void alloc_resource(struct pci_dev *dev, int idx) { struct resource *pr, *r = &dev->resource[idx]; pr_debug("PCI: Allocating %s: Resource %d: %pR\n", pci_name(dev), idx, r); pr = pci_find_parent_resource(dev, r); if (!pr || (pr->flags & IORESOURCE_UNSET) || request_resource(pr, r) < 0) { printk(KERN_WARNING "PCI: Cannot allocate resource region %d" " of device %s, will remap\n", idx, pci_name(dev)); if (pr) pr_debug("PCI: parent is %p: %pR\n", pr, pr); /* We'll assign a new address later */ r->flags |= IORESOURCE_UNSET; r->end -= r->start; r->start = 0; } } static void __init pcibios_allocate_resources(int pass) { struct pci_dev *dev = NULL; int idx, disabled; u16 command; struct resource *r; for_each_pci_dev(dev) { pci_read_config_word(dev, PCI_COMMAND, &command); for (idx = 0; idx <= PCI_ROM_RESOURCE; idx++) { r = &dev->resource[idx]; if (r->parent) /* Already allocated */ continue; if (!r->flags || (r->flags & IORESOURCE_UNSET)) continue; /* Not assigned at all */ /* We only allocate ROMs on pass 1 just in case they * have been screwed up by firmware */ if (idx == PCI_ROM_RESOURCE ) disabled = 1; if (r->flags & IORESOURCE_IO) disabled = !(command & PCI_COMMAND_IO); else disabled = !(command & PCI_COMMAND_MEMORY); if (pass == disabled) alloc_resource(dev, idx); } if (pass) continue; r = &dev->resource[PCI_ROM_RESOURCE]; if (r->flags) { /* Turn the ROM off, leave the resource region, * but keep it unregistered. */ u32 reg; pci_read_config_dword(dev, dev->rom_base_reg, ®); if (reg & PCI_ROM_ADDRESS_ENABLE) { pr_debug("PCI: Switching off ROM of %s\n", pci_name(dev)); r->flags &= ~IORESOURCE_ROM_ENABLE; pci_write_config_dword(dev, dev->rom_base_reg, reg & ~PCI_ROM_ADDRESS_ENABLE); } } } } static void __init pcibios_reserve_legacy_regions(struct pci_bus *bus) { struct pci_controller *hose = pci_bus_to_host(bus); resource_size_t offset; struct resource *res, *pres; int i; pr_debug("Reserving legacy ranges for domain %04x\n", pci_domain_nr(bus)); /* Check for IO */ if (!(hose->io_resource.flags & IORESOURCE_IO)) goto no_io; offset = (unsigned long)hose->io_base_virt - _IO_BASE; res = kzalloc(sizeof(struct resource), GFP_KERNEL); BUG_ON(res == NULL); res->name = "Legacy IO"; res->flags = IORESOURCE_IO; res->start = offset; res->end = (offset + 0xfff) & 0xfffffffful; pr_debug("Candidate legacy IO: %pR\n", res); if (request_resource(&hose->io_resource, res)) { printk(KERN_DEBUG "PCI %04x:%02x Cannot reserve Legacy IO %pR\n", pci_domain_nr(bus), bus->number, res); kfree(res); } no_io: /* Check for memory */ for (i = 0; i < 3; i++) { pres = &hose->mem_resources[i]; offset = hose->mem_offset[i]; if (!(pres->flags & IORESOURCE_MEM)) continue; pr_debug("hose mem res: %pR\n", pres); if ((pres->start - offset) <= 0xa0000 && (pres->end - offset) >= 0xbffff) break; } if (i >= 3) return; res = kzalloc(sizeof(struct resource), GFP_KERNEL); BUG_ON(res == NULL); res->name = "Legacy VGA memory"; res->flags = IORESOURCE_MEM; res->start = 0xa0000 + offset; res->end = 0xbffff + offset; pr_debug("Candidate VGA memory: %pR\n", res); if (request_resource(pres, res)) { printk(KERN_DEBUG "PCI %04x:%02x Cannot reserve VGA memory %pR\n", pci_domain_nr(bus), bus->number, res); kfree(res); } } void __init pcibios_resource_survey(void) { struct pci_bus *b; /* Allocate and assign resources */ list_for_each_entry(b, &pci_root_buses, node) pcibios_allocate_bus_resources(b); if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC)) { pcibios_allocate_resources(0); pcibios_allocate_resources(1); } /* Before we start assigning unassigned resource, we try to reserve * the low IO area and the VGA memory area if they intersect the * bus available resources to avoid allocating things on top of them */ if (!pci_has_flag(PCI_PROBE_ONLY)) { list_for_each_entry(b, &pci_root_buses, node) pcibios_reserve_legacy_regions(b); } /* Now, if the platform didn't decide to blindly trust the firmware, * we proceed to assigning things that were left unassigned */ if (!pci_has_flag(PCI_PROBE_ONLY)) { pr_debug("PCI: Assigning unassigned resources...\n"); pci_assign_unassigned_resources(); } /* Call machine dependent fixup */ if (ppc_md.pcibios_fixup) ppc_md.pcibios_fixup(); } /* This is used by the PCI hotplug driver to allocate resource * of newly plugged busses. We can try to consolidate with the * rest of the code later, for now, keep it as-is as our main * resource allocation function doesn't deal with sub-trees yet. */ void pcibios_claim_one_bus(struct pci_bus *bus) { struct pci_dev *dev; struct pci_bus *child_bus; list_for_each_entry(dev, &bus->devices, bus_list) { int i; for (i = 0; i < PCI_NUM_RESOURCES; i++) { struct resource *r = &dev->resource[i]; if (r->parent || !r->start || !r->flags) continue; pr_debug("PCI: Claiming %s: Resource %d: %pR\n", pci_name(dev), i, r); if (pci_claim_resource(dev, i) == 0) continue; pci_claim_bridge_resource(dev, i); } } list_for_each_entry(child_bus, &bus->children, node) pcibios_claim_one_bus(child_bus); } EXPORT_SYMBOL_GPL(pcibios_claim_one_bus); /* pcibios_finish_adding_to_bus * * This is to be called by the hotplug code after devices have been * added to a bus, this include calling it for a PHB that is just * being added */ void pcibios_finish_adding_to_bus(struct pci_bus *bus) { pr_debug("PCI: Finishing adding to hotplug bus %04x:%02x\n", pci_domain_nr(bus), bus->number); /* Allocate bus and devices resources */ pcibios_allocate_bus_resources(bus); pcibios_claim_one_bus(bus); if (!pci_has_flag(PCI_PROBE_ONLY)) { if (bus->self) pci_assign_unassigned_bridge_resources(bus->self); else pci_assign_unassigned_bus_resources(bus); } /* Fixup EEH */ eeh_add_device_tree_late(bus); /* Add new devices to global lists. Register in proc, sysfs. */ pci_bus_add_devices(bus); /* sysfs files should only be added after devices are added */ eeh_add_sysfs_files(bus); } EXPORT_SYMBOL_GPL(pcibios_finish_adding_to_bus); int pcibios_enable_device(struct pci_dev *dev, int mask) { struct pci_controller *phb = pci_bus_to_host(dev->bus); if (phb->controller_ops.enable_device_hook) if (!phb->controller_ops.enable_device_hook(dev)) return -EINVAL; return pci_enable_resources(dev, mask); } void pcibios_disable_device(struct pci_dev *dev) { struct pci_controller *phb = pci_bus_to_host(dev->bus); if (phb->controller_ops.disable_device) phb->controller_ops.disable_device(dev); } resource_size_t pcibios_io_space_offset(struct pci_controller *hose) { return (unsigned long) hose->io_base_virt - _IO_BASE; } static void pcibios_setup_phb_resources(struct pci_controller *hose, struct list_head *resources) { struct resource *res; resource_size_t offset; int i; /* Hookup PHB IO resource */ res = &hose->io_resource; if (!res->flags) { pr_debug("PCI: I/O resource not set for host" " bridge %s (domain %d)\n", hose->dn->full_name, hose->global_number); } else { offset = pcibios_io_space_offset(hose); pr_debug("PCI: PHB IO resource = %pR off 0x%08llx\n", res, (unsigned long long)offset); pci_add_resource_offset(resources, res, offset); } /* Hookup PHB Memory resources */ for (i = 0; i < 3; ++i) { res = &hose->mem_resources[i]; if (!res->flags) { if (i == 0) printk(KERN_ERR "PCI: Memory resource 0 not set for " "host bridge %s (domain %d)\n", hose->dn->full_name, hose->global_number); continue; } offset = hose->mem_offset[i]; pr_debug("PCI: PHB MEM resource %d = %pR off 0x%08llx\n", i, res, (unsigned long long)offset); pci_add_resource_offset(resources, res, offset); } } /* * Null PCI config access functions, for the case when we can't * find a hose. */ #define NULL_PCI_OP(rw, size, type) \ static int \ null_##rw##_config_##size(struct pci_dev *dev, int offset, type val) \ { \ return PCIBIOS_DEVICE_NOT_FOUND; \ } static int null_read_config(struct pci_bus *bus, unsigned int devfn, int offset, int len, u32 *val) { return PCIBIOS_DEVICE_NOT_FOUND; } static int null_write_config(struct pci_bus *bus, unsigned int devfn, int offset, int len, u32 val) { return PCIBIOS_DEVICE_NOT_FOUND; } static struct pci_ops null_pci_ops = { .read = null_read_config, .write = null_write_config, }; /* * These functions are used early on before PCI scanning is done * and all of the pci_dev and pci_bus structures have been created. */ static struct pci_bus * fake_pci_bus(struct pci_controller *hose, int busnr) { static struct pci_bus bus; if (hose == NULL) { printk(KERN_ERR "Can't find hose for PCI bus %d!\n", busnr); } bus.number = busnr; bus.sysdata = hose; bus.ops = hose? hose->ops: &null_pci_ops; return &bus; } #define EARLY_PCI_OP(rw, size, type) \ int early_##rw##_config_##size(struct pci_controller *hose, int bus, \ int devfn, int offset, type value) \ { \ return pci_bus_##rw##_config_##size(fake_pci_bus(hose, bus), \ devfn, offset, value); \ } EARLY_PCI_OP(read, byte, u8 *) EARLY_PCI_OP(read, word, u16 *) EARLY_PCI_OP(read, dword, u32 *) EARLY_PCI_OP(write, byte, u8) EARLY_PCI_OP(write, word, u16) EARLY_PCI_OP(write, dword, u32) int early_find_capability(struct pci_controller *hose, int bus, int devfn, int cap) { return pci_bus_find_capability(fake_pci_bus(hose, bus), devfn, cap); } struct device_node *pcibios_get_phb_of_node(struct pci_bus *bus) { struct pci_controller *hose = bus->sysdata; return of_node_get(hose->dn); } /** * pci_scan_phb - Given a pci_controller, setup and scan the PCI bus * @hose: Pointer to the PCI host controller instance structure */ void pcibios_scan_phb(struct pci_controller *hose) { LIST_HEAD(resources); struct pci_bus *bus; struct device_node *node = hose->dn; int mode; pr_debug("PCI: Scanning PHB %s\n", of_node_full_name(node)); /* Get some IO space for the new PHB */ pcibios_setup_phb_io_space(hose); /* Wire up PHB bus resources */ pcibios_setup_phb_resources(hose, &resources); hose->busn.start = hose->first_busno; hose->busn.end = hose->last_busno; hose->busn.flags = IORESOURCE_BUS; pci_add_resource(&resources, &hose->busn); /* Create an empty bus for the toplevel */ bus = pci_create_root_bus(hose->parent, hose->first_busno, hose->ops, hose, &resources); if (bus == NULL) { pr_err("Failed to create bus for PCI domain %04x\n", hose->global_number); pci_free_resource_list(&resources); return; } hose->bus = bus; /* Get probe mode and perform scan */ mode = PCI_PROBE_NORMAL; if (node && hose->controller_ops.probe_mode) mode = hose->controller_ops.probe_mode(bus); pr_debug(" probe mode: %d\n", mode); if (mode == PCI_PROBE_DEVTREE) of_scan_bus(node, bus); if (mode == PCI_PROBE_NORMAL) { pci_bus_update_busn_res_end(bus, 255); hose->last_busno = pci_scan_child_bus(bus); pci_bus_update_busn_res_end(bus, hose->last_busno); } /* Platform gets a chance to do some global fixups before * we proceed to resource allocation */ if (ppc_md.pcibios_fixup_phb) ppc_md.pcibios_fixup_phb(hose); /* Configure PCI Express settings */ if (bus && !pci_has_flag(PCI_PROBE_ONLY)) { struct pci_bus *child; list_for_each_entry(child, &bus->children, node) pcie_bus_configure_settings(child); } } EXPORT_SYMBOL_GPL(pcibios_scan_phb); static void fixup_hide_host_resource_fsl(struct pci_dev *dev) { int i, class = dev->class >> 8; /* When configured as agent, programing interface = 1 */ int prog_if = dev->class & 0xf; if ((class == PCI_CLASS_PROCESSOR_POWERPC || class == PCI_CLASS_BRIDGE_OTHER) && (dev->hdr_type == PCI_HEADER_TYPE_NORMAL) && (prog_if == 0) && (dev->bus->parent == NULL)) { for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { dev->resource[i].start = 0; dev->resource[i].end = 0; dev->resource[i].flags = 0; } } } DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_MOTOROLA, PCI_ANY_ID, fixup_hide_host_resource_fsl); DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_FREESCALE, PCI_ANY_ID, fixup_hide_host_resource_fsl); static void fixup_vga(struct pci_dev *pdev) { u16 cmd; pci_read_config_word(pdev, PCI_COMMAND, &cmd); if ((cmd & (PCI_COMMAND_IO | PCI_COMMAND_MEMORY)) || !vga_default_device()) vga_set_default_device(pdev); } DECLARE_PCI_FIXUP_CLASS_FINAL(PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_DISPLAY_VGA, 8, fixup_vga);