/* * SPU file system -- file contents * * (C) Copyright IBM Deutschland Entwicklung GmbH 2005 * * Author: Arnd Bergmann * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #undef DEBUG #include #include #include #include #include #include #include #include #include #include #include "spufs.h" #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000) static int spufs_mem_open(struct inode *inode, struct file *file) { struct spufs_inode_info *i = SPUFS_I(inode); struct spu_context *ctx = i->i_ctx; file->private_data = ctx; file->f_mapping = inode->i_mapping; ctx->local_store = inode->i_mapping; return 0; } static ssize_t spufs_mem_read(struct file *file, char __user *buffer, size_t size, loff_t *pos) { struct spu_context *ctx = file->private_data; char *local_store; int ret; spu_acquire(ctx); local_store = ctx->ops->get_ls(ctx); ret = simple_read_from_buffer(buffer, size, pos, local_store, LS_SIZE); spu_release(ctx); return ret; } static ssize_t spufs_mem_write(struct file *file, const char __user *buffer, size_t size, loff_t *pos) { struct spu_context *ctx = file->private_data; char *local_store; int ret; size = min_t(ssize_t, LS_SIZE - *pos, size); if (size <= 0) return -EFBIG; *pos += size; spu_acquire(ctx); local_store = ctx->ops->get_ls(ctx); ret = copy_from_user(local_store + *pos - size, buffer, size) ? -EFAULT : size; spu_release(ctx); return ret; } static struct page * spufs_mem_mmap_nopage(struct vm_area_struct *vma, unsigned long address, int *type) { struct page *page = NOPAGE_SIGBUS; struct spu_context *ctx = vma->vm_file->private_data; unsigned long offset = address - vma->vm_start; offset += vma->vm_pgoff << PAGE_SHIFT; spu_acquire(ctx); if (ctx->state == SPU_STATE_SAVED) { vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot) & ~(_PAGE_NO_CACHE | _PAGE_GUARDED)); page = vmalloc_to_page(ctx->csa.lscsa->ls + offset); } else { vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot) | _PAGE_NO_CACHE | _PAGE_GUARDED); page = pfn_to_page((ctx->spu->local_store_phys + offset) >> PAGE_SHIFT); } spu_release(ctx); if (type) *type = VM_FAULT_MINOR; page_cache_get(page); return page; } static struct vm_operations_struct spufs_mem_mmap_vmops = { .nopage = spufs_mem_mmap_nopage, }; static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma) { if (!(vma->vm_flags & VM_SHARED)) return -EINVAL; /* FIXME: */ vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot) | _PAGE_NO_CACHE); vma->vm_ops = &spufs_mem_mmap_vmops; return 0; } static struct file_operations spufs_mem_fops = { .open = spufs_mem_open, .read = spufs_mem_read, .write = spufs_mem_write, .llseek = generic_file_llseek, .mmap = spufs_mem_mmap, }; static struct page *spufs_ps_nopage(struct vm_area_struct *vma, unsigned long address, int *type, unsigned long ps_offs, unsigned long ps_size) { struct page *page = NOPAGE_SIGBUS; int fault_type = VM_FAULT_SIGBUS; struct spu_context *ctx = vma->vm_file->private_data; unsigned long offset = address - vma->vm_start; unsigned long area; int ret; offset += vma->vm_pgoff << PAGE_SHIFT; if (offset >= ps_size) goto out; ret = spu_acquire_runnable(ctx); if (ret) goto out; area = ctx->spu->problem_phys + ps_offs; page = pfn_to_page((area + offset) >> PAGE_SHIFT); fault_type = VM_FAULT_MINOR; page_cache_get(page); spu_release(ctx); out: if (type) *type = fault_type; return page; } #if SPUFS_MMAP_4K static struct page *spufs_cntl_mmap_nopage(struct vm_area_struct *vma, unsigned long address, int *type) { return spufs_ps_nopage(vma, address, type, 0x4000, 0x1000); } static struct vm_operations_struct spufs_cntl_mmap_vmops = { .nopage = spufs_cntl_mmap_nopage, }; /* * mmap support for problem state control area [0x4000 - 0x4fff]. */ static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma) { if (!(vma->vm_flags & VM_SHARED)) return -EINVAL; vma->vm_flags |= VM_RESERVED; vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot) | _PAGE_NO_CACHE | _PAGE_GUARDED); vma->vm_ops = &spufs_cntl_mmap_vmops; return 0; } #else /* SPUFS_MMAP_4K */ #define spufs_cntl_mmap NULL #endif /* !SPUFS_MMAP_4K */ static u64 spufs_cntl_get(void *data) { struct spu_context *ctx = data; u64 val; spu_acquire(ctx); val = ctx->ops->status_read(ctx); spu_release(ctx); return val; } static void spufs_cntl_set(void *data, u64 val) { struct spu_context *ctx = data; spu_acquire(ctx); ctx->ops->runcntl_write(ctx, val); spu_release(ctx); } static int spufs_cntl_open(struct inode *inode, struct file *file) { struct spufs_inode_info *i = SPUFS_I(inode); struct spu_context *ctx = i->i_ctx; file->private_data = ctx; file->f_mapping = inode->i_mapping; ctx->cntl = inode->i_mapping; return simple_attr_open(inode, file, spufs_cntl_get, spufs_cntl_set, "0x%08lx"); } static struct file_operations spufs_cntl_fops = { .open = spufs_cntl_open, .release = simple_attr_close, .read = simple_attr_read, .write = simple_attr_write, .mmap = spufs_cntl_mmap, }; static int spufs_regs_open(struct inode *inode, struct file *file) { struct spufs_inode_info *i = SPUFS_I(inode); file->private_data = i->i_ctx; return 0; } static ssize_t spufs_regs_read(struct file *file, char __user *buffer, size_t size, loff_t *pos) { struct spu_context *ctx = file->private_data; struct spu_lscsa *lscsa = ctx->csa.lscsa; int ret; spu_acquire_saved(ctx); ret = simple_read_from_buffer(buffer, size, pos, lscsa->gprs, sizeof lscsa->gprs); spu_release(ctx); return ret; } static ssize_t spufs_regs_write(struct file *file, const char __user *buffer, size_t size, loff_t *pos) { struct spu_context *ctx = file->private_data; struct spu_lscsa *lscsa = ctx->csa.lscsa; int ret; size = min_t(ssize_t, sizeof lscsa->gprs - *pos, size); if (size <= 0) return -EFBIG; *pos += size; spu_acquire_saved(ctx); ret = copy_from_user(lscsa->gprs + *pos - size, buffer, size) ? -EFAULT : size; spu_release(ctx); return ret; } static struct file_operations spufs_regs_fops = { .open = spufs_regs_open, .read = spufs_regs_read, .write = spufs_regs_write, .llseek = generic_file_llseek, }; static ssize_t spufs_fpcr_read(struct file *file, char __user * buffer, size_t size, loff_t * pos) { struct spu_context *ctx = file->private_data; struct spu_lscsa *lscsa = ctx->csa.lscsa; int ret; spu_acquire_saved(ctx); ret = simple_read_from_buffer(buffer, size, pos, &lscsa->fpcr, sizeof(lscsa->fpcr)); spu_release(ctx); return ret; } static ssize_t spufs_fpcr_write(struct file *file, const char __user * buffer, size_t size, loff_t * pos) { struct spu_context *ctx = file->private_data; struct spu_lscsa *lscsa = ctx->csa.lscsa; int ret; size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size); if (size <= 0) return -EFBIG; *pos += size; spu_acquire_saved(ctx); ret = copy_from_user((char *)&lscsa->fpcr + *pos - size, buffer, size) ? -EFAULT : size; spu_release(ctx); return ret; } static struct file_operations spufs_fpcr_fops = { .open = spufs_regs_open, .read = spufs_fpcr_read, .write = spufs_fpcr_write, .llseek = generic_file_llseek, }; /* generic open function for all pipe-like files */ static int spufs_pipe_open(struct inode *inode, struct file *file) { struct spufs_inode_info *i = SPUFS_I(inode); file->private_data = i->i_ctx; return nonseekable_open(inode, file); } /* * Read as many bytes from the mailbox as possible, until * one of the conditions becomes true: * * - no more data available in the mailbox * - end of the user provided buffer * - end of the mapped area */ static ssize_t spufs_mbox_read(struct file *file, char __user *buf, size_t len, loff_t *pos) { struct spu_context *ctx = file->private_data; u32 mbox_data, __user *udata; ssize_t count; if (len < 4) return -EINVAL; if (!access_ok(VERIFY_WRITE, buf, len)) return -EFAULT; udata = (void __user *)buf; spu_acquire(ctx); for (count = 0; (count + 4) <= len; count += 4, udata++) { int ret; ret = ctx->ops->mbox_read(ctx, &mbox_data); if (ret == 0) break; /* * at the end of the mapped area, we can fault * but still need to return the data we have * read successfully so far. */ ret = __put_user(mbox_data, udata); if (ret) { if (!count) count = -EFAULT; break; } } spu_release(ctx); if (!count) count = -EAGAIN; return count; } static struct file_operations spufs_mbox_fops = { .open = spufs_pipe_open, .read = spufs_mbox_read, }; static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf, size_t len, loff_t *pos) { struct spu_context *ctx = file->private_data; u32 mbox_stat; if (len < 4) return -EINVAL; spu_acquire(ctx); mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff; spu_release(ctx); if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat)) return -EFAULT; return 4; } static struct file_operations spufs_mbox_stat_fops = { .open = spufs_pipe_open, .read = spufs_mbox_stat_read, }; /* low-level ibox access function */ size_t spu_ibox_read(struct spu_context *ctx, u32 *data) { return ctx->ops->ibox_read(ctx, data); } static int spufs_ibox_fasync(int fd, struct file *file, int on) { struct spu_context *ctx = file->private_data; return fasync_helper(fd, file, on, &ctx->ibox_fasync); } /* interrupt-level ibox callback function. */ void spufs_ibox_callback(struct spu *spu) { struct spu_context *ctx = spu->ctx; wake_up_all(&ctx->ibox_wq); kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN); } /* * Read as many bytes from the interrupt mailbox as possible, until * one of the conditions becomes true: * * - no more data available in the mailbox * - end of the user provided buffer * - end of the mapped area * * If the file is opened without O_NONBLOCK, we wait here until * any data is available, but return when we have been able to * read something. */ static ssize_t spufs_ibox_read(struct file *file, char __user *buf, size_t len, loff_t *pos) { struct spu_context *ctx = file->private_data; u32 ibox_data, __user *udata; ssize_t count; if (len < 4) return -EINVAL; if (!access_ok(VERIFY_WRITE, buf, len)) return -EFAULT; udata = (void __user *)buf; spu_acquire(ctx); /* wait only for the first element */ count = 0; if (file->f_flags & O_NONBLOCK) { if (!spu_ibox_read(ctx, &ibox_data)) count = -EAGAIN; } else { count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data)); } if (count) goto out; /* if we can't write at all, return -EFAULT */ count = __put_user(ibox_data, udata); if (count) goto out; for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) { int ret; ret = ctx->ops->ibox_read(ctx, &ibox_data); if (ret == 0) break; /* * at the end of the mapped area, we can fault * but still need to return the data we have * read successfully so far. */ ret = __put_user(ibox_data, udata); if (ret) break; } out: spu_release(ctx); return count; } static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait) { struct spu_context *ctx = file->private_data; unsigned int mask; poll_wait(file, &ctx->ibox_wq, wait); spu_acquire(ctx); mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM); spu_release(ctx); return mask; } static struct file_operations spufs_ibox_fops = { .open = spufs_pipe_open, .read = spufs_ibox_read, .poll = spufs_ibox_poll, .fasync = spufs_ibox_fasync, }; static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf, size_t len, loff_t *pos) { struct spu_context *ctx = file->private_data; u32 ibox_stat; if (len < 4) return -EINVAL; spu_acquire(ctx); ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff; spu_release(ctx); if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat)) return -EFAULT; return 4; } static struct file_operations spufs_ibox_stat_fops = { .open = spufs_pipe_open, .read = spufs_ibox_stat_read, }; /* low-level mailbox write */ size_t spu_wbox_write(struct spu_context *ctx, u32 data) { return ctx->ops->wbox_write(ctx, data); } static int spufs_wbox_fasync(int fd, struct file *file, int on) { struct spu_context *ctx = file->private_data; int ret; ret = fasync_helper(fd, file, on, &ctx->wbox_fasync); return ret; } /* interrupt-level wbox callback function. */ void spufs_wbox_callback(struct spu *spu) { struct spu_context *ctx = spu->ctx; wake_up_all(&ctx->wbox_wq); kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT); } /* * Write as many bytes to the interrupt mailbox as possible, until * one of the conditions becomes true: * * - the mailbox is full * - end of the user provided buffer * - end of the mapped area * * If the file is opened without O_NONBLOCK, we wait here until * space is availabyl, but return when we have been able to * write something. */ static ssize_t spufs_wbox_write(struct file *file, const char __user *buf, size_t len, loff_t *pos) { struct spu_context *ctx = file->private_data; u32 wbox_data, __user *udata; ssize_t count; if (len < 4) return -EINVAL; udata = (void __user *)buf; if (!access_ok(VERIFY_READ, buf, len)) return -EFAULT; if (__get_user(wbox_data, udata)) return -EFAULT; spu_acquire(ctx); /* * make sure we can at least write one element, by waiting * in case of !O_NONBLOCK */ count = 0; if (file->f_flags & O_NONBLOCK) { if (!spu_wbox_write(ctx, wbox_data)) count = -EAGAIN; } else { count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data)); } if (count) goto out; /* write aѕ much as possible */ for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) { int ret; ret = __get_user(wbox_data, udata); if (ret) break; ret = spu_wbox_write(ctx, wbox_data); if (ret == 0) break; } out: spu_release(ctx); return count; } static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait) { struct spu_context *ctx = file->private_data; unsigned int mask; poll_wait(file, &ctx->wbox_wq, wait); spu_acquire(ctx); mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM); spu_release(ctx); return mask; } static struct file_operations spufs_wbox_fops = { .open = spufs_pipe_open, .write = spufs_wbox_write, .poll = spufs_wbox_poll, .fasync = spufs_wbox_fasync, }; static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf, size_t len, loff_t *pos) { struct spu_context *ctx = file->private_data; u32 wbox_stat; if (len < 4) return -EINVAL; spu_acquire(ctx); wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff; spu_release(ctx); if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat)) return -EFAULT; return 4; } static struct file_operations spufs_wbox_stat_fops = { .open = spufs_pipe_open, .read = spufs_wbox_stat_read, }; static int spufs_signal1_open(struct inode *inode, struct file *file) { struct spufs_inode_info *i = SPUFS_I(inode); struct spu_context *ctx = i->i_ctx; file->private_data = ctx; file->f_mapping = inode->i_mapping; ctx->signal1 = inode->i_mapping; return nonseekable_open(inode, file); } static ssize_t spufs_signal1_read(struct file *file, char __user *buf, size_t len, loff_t *pos) { struct spu_context *ctx = file->private_data; u32 data; if (len < 4) return -EINVAL; spu_acquire(ctx); data = ctx->ops->signal1_read(ctx); spu_release(ctx); if (copy_to_user(buf, &data, 4)) return -EFAULT; return 4; } static ssize_t spufs_signal1_write(struct file *file, const char __user *buf, size_t len, loff_t *pos) { struct spu_context *ctx; u32 data; ctx = file->private_data; if (len < 4) return -EINVAL; if (copy_from_user(&data, buf, 4)) return -EFAULT; spu_acquire(ctx); ctx->ops->signal1_write(ctx, data); spu_release(ctx); return 4; } static struct page *spufs_signal1_mmap_nopage(struct vm_area_struct *vma, unsigned long address, int *type) { #if PAGE_SIZE == 0x1000 return spufs_ps_nopage(vma, address, type, 0x14000, 0x1000); #elif PAGE_SIZE == 0x10000 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole * signal 1 and 2 area */ return spufs_ps_nopage(vma, address, type, 0x10000, 0x10000); #else #error unsupported page size #endif } static struct vm_operations_struct spufs_signal1_mmap_vmops = { .nopage = spufs_signal1_mmap_nopage, }; static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma) { if (!(vma->vm_flags & VM_SHARED)) return -EINVAL; vma->vm_flags |= VM_RESERVED; vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot) | _PAGE_NO_CACHE | _PAGE_GUARDED); vma->vm_ops = &spufs_signal1_mmap_vmops; return 0; } static struct file_operations spufs_signal1_fops = { .open = spufs_signal1_open, .read = spufs_signal1_read, .write = spufs_signal1_write, .mmap = spufs_signal1_mmap, }; static int spufs_signal2_open(struct inode *inode, struct file *file) { struct spufs_inode_info *i = SPUFS_I(inode); struct spu_context *ctx = i->i_ctx; file->private_data = ctx; file->f_mapping = inode->i_mapping; ctx->signal2 = inode->i_mapping; return nonseekable_open(inode, file); } static ssize_t spufs_signal2_read(struct file *file, char __user *buf, size_t len, loff_t *pos) { struct spu_context *ctx; u32 data; ctx = file->private_data; if (len < 4) return -EINVAL; spu_acquire(ctx); data = ctx->ops->signal2_read(ctx); spu_release(ctx); if (copy_to_user(buf, &data, 4)) return -EFAULT; return 4; } static ssize_t spufs_signal2_write(struct file *file, const char __user *buf, size_t len, loff_t *pos) { struct spu_context *ctx; u32 data; ctx = file->private_data; if (len < 4) return -EINVAL; if (copy_from_user(&data, buf, 4)) return -EFAULT; spu_acquire(ctx); ctx->ops->signal2_write(ctx, data); spu_release(ctx); return 4; } #if SPUFS_MMAP_4K static struct page *spufs_signal2_mmap_nopage(struct vm_area_struct *vma, unsigned long address, int *type) { #if PAGE_SIZE == 0x1000 return spufs_ps_nopage(vma, address, type, 0x1c000, 0x1000); #elif PAGE_SIZE == 0x10000 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole * signal 1 and 2 area */ return spufs_ps_nopage(vma, address, type, 0x10000, 0x10000); #else #error unsupported page size #endif } static struct vm_operations_struct spufs_signal2_mmap_vmops = { .nopage = spufs_signal2_mmap_nopage, }; static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma) { if (!(vma->vm_flags & VM_SHARED)) return -EINVAL; /* FIXME: */ vma->vm_flags |= VM_RESERVED; vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot) | _PAGE_NO_CACHE | _PAGE_GUARDED); vma->vm_ops = &spufs_signal2_mmap_vmops; return 0; } #else /* SPUFS_MMAP_4K */ #define spufs_signal2_mmap NULL #endif /* !SPUFS_MMAP_4K */ static struct file_operations spufs_signal2_fops = { .open = spufs_signal2_open, .read = spufs_signal2_read, .write = spufs_signal2_write, .mmap = spufs_signal2_mmap, }; static void spufs_signal1_type_set(void *data, u64 val) { struct spu_context *ctx = data; spu_acquire(ctx); ctx->ops->signal1_type_set(ctx, val); spu_release(ctx); } static u64 spufs_signal1_type_get(void *data) { struct spu_context *ctx = data; u64 ret; spu_acquire(ctx); ret = ctx->ops->signal1_type_get(ctx); spu_release(ctx); return ret; } DEFINE_SIMPLE_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get, spufs_signal1_type_set, "%llu"); static void spufs_signal2_type_set(void *data, u64 val) { struct spu_context *ctx = data; spu_acquire(ctx); ctx->ops->signal2_type_set(ctx, val); spu_release(ctx); } static u64 spufs_signal2_type_get(void *data) { struct spu_context *ctx = data; u64 ret; spu_acquire(ctx); ret = ctx->ops->signal2_type_get(ctx); spu_release(ctx); return ret; } DEFINE_SIMPLE_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get, spufs_signal2_type_set, "%llu"); #if SPUFS_MMAP_4K static struct page *spufs_mss_mmap_nopage(struct vm_area_struct *vma, unsigned long address, int *type) { return spufs_ps_nopage(vma, address, type, 0x0000, 0x1000); } static struct vm_operations_struct spufs_mss_mmap_vmops = { .nopage = spufs_mss_mmap_nopage, }; /* * mmap support for problem state MFC DMA area [0x0000 - 0x0fff]. */ static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma) { if (!(vma->vm_flags & VM_SHARED)) return -EINVAL; vma->vm_flags |= VM_RESERVED; vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot) | _PAGE_NO_CACHE | _PAGE_GUARDED); vma->vm_ops = &spufs_mss_mmap_vmops; return 0; } #else /* SPUFS_MMAP_4K */ #define spufs_mss_mmap NULL #endif /* !SPUFS_MMAP_4K */ static int spufs_mss_open(struct inode *inode, struct file *file) { struct spufs_inode_info *i = SPUFS_I(inode); file->private_data = i->i_ctx; return nonseekable_open(inode, file); } static struct file_operations spufs_mss_fops = { .open = spufs_mss_open, .mmap = spufs_mss_mmap, }; static struct page *spufs_psmap_mmap_nopage(struct vm_area_struct *vma, unsigned long address, int *type) { return spufs_ps_nopage(vma, address, type, 0x0000, 0x20000); } static struct vm_operations_struct spufs_psmap_mmap_vmops = { .nopage = spufs_psmap_mmap_nopage, }; /* * mmap support for full problem state area [0x00000 - 0x1ffff]. */ static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma) { if (!(vma->vm_flags & VM_SHARED)) return -EINVAL; vma->vm_flags |= VM_RESERVED; vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot) | _PAGE_NO_CACHE | _PAGE_GUARDED); vma->vm_ops = &spufs_psmap_mmap_vmops; return 0; } static int spufs_psmap_open(struct inode *inode, struct file *file) { struct spufs_inode_info *i = SPUFS_I(inode); file->private_data = i->i_ctx; return nonseekable_open(inode, file); } static struct file_operations spufs_psmap_fops = { .open = spufs_psmap_open, .mmap = spufs_psmap_mmap, }; #if SPUFS_MMAP_4K static struct page *spufs_mfc_mmap_nopage(struct vm_area_struct *vma, unsigned long address, int *type) { return spufs_ps_nopage(vma, address, type, 0x3000, 0x1000); } static struct vm_operations_struct spufs_mfc_mmap_vmops = { .nopage = spufs_mfc_mmap_nopage, }; /* * mmap support for problem state MFC DMA area [0x0000 - 0x0fff]. */ static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma) { if (!(vma->vm_flags & VM_SHARED)) return -EINVAL; vma->vm_flags |= VM_RESERVED; vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot) | _PAGE_NO_CACHE | _PAGE_GUARDED); vma->vm_ops = &spufs_mfc_mmap_vmops; return 0; } #else /* SPUFS_MMAP_4K */ #define spufs_mfc_mmap NULL #endif /* !SPUFS_MMAP_4K */ static int spufs_mfc_open(struct inode *inode, struct file *file) { struct spufs_inode_info *i = SPUFS_I(inode); struct spu_context *ctx = i->i_ctx; /* we don't want to deal with DMA into other processes */ if (ctx->owner != current->mm) return -EINVAL; if (atomic_read(&inode->i_count) != 1) return -EBUSY; file->private_data = ctx; return nonseekable_open(inode, file); } /* interrupt-level mfc callback function. */ void spufs_mfc_callback(struct spu *spu) { struct spu_context *ctx = spu->ctx; wake_up_all(&ctx->mfc_wq); pr_debug("%s %s\n", __FUNCTION__, spu->name); if (ctx->mfc_fasync) { u32 free_elements, tagstatus; unsigned int mask; /* no need for spu_acquire in interrupt context */ free_elements = ctx->ops->get_mfc_free_elements(ctx); tagstatus = ctx->ops->read_mfc_tagstatus(ctx); mask = 0; if (free_elements & 0xffff) mask |= POLLOUT; if (tagstatus & ctx->tagwait) mask |= POLLIN; kill_fasync(&ctx->mfc_fasync, SIGIO, mask); } } static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status) { /* See if there is one tag group is complete */ /* FIXME we need locking around tagwait */ *status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait; ctx->tagwait &= ~*status; if (*status) return 1; /* enable interrupt waiting for any tag group, may silently fail if interrupts are already enabled */ ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1); return 0; } static ssize_t spufs_mfc_read(struct file *file, char __user *buffer, size_t size, loff_t *pos) { struct spu_context *ctx = file->private_data; int ret = -EINVAL; u32 status; if (size != 4) goto out; spu_acquire(ctx); if (file->f_flags & O_NONBLOCK) { status = ctx->ops->read_mfc_tagstatus(ctx); if (!(status & ctx->tagwait)) ret = -EAGAIN; else ctx->tagwait &= ~status; } else { ret = spufs_wait(ctx->mfc_wq, spufs_read_mfc_tagstatus(ctx, &status)); } spu_release(ctx); if (ret) goto out; ret = 4; if (copy_to_user(buffer, &status, 4)) ret = -EFAULT; out: return ret; } static int spufs_check_valid_dma(struct mfc_dma_command *cmd) { pr_debug("queueing DMA %x %lx %x %x %x\n", cmd->lsa, cmd->ea, cmd->size, cmd->tag, cmd->cmd); switch (cmd->cmd) { case MFC_PUT_CMD: case MFC_PUTF_CMD: case MFC_PUTB_CMD: case MFC_GET_CMD: case MFC_GETF_CMD: case MFC_GETB_CMD: break; default: pr_debug("invalid DMA opcode %x\n", cmd->cmd); return -EIO; } if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) { pr_debug("invalid DMA alignment, ea %lx lsa %x\n", cmd->ea, cmd->lsa); return -EIO; } switch (cmd->size & 0xf) { case 1: break; case 2: if (cmd->lsa & 1) goto error; break; case 4: if (cmd->lsa & 3) goto error; break; case 8: if (cmd->lsa & 7) goto error; break; case 0: if (cmd->lsa & 15) goto error; break; error: default: pr_debug("invalid DMA alignment %x for size %x\n", cmd->lsa & 0xf, cmd->size); return -EIO; } if (cmd->size > 16 * 1024) { pr_debug("invalid DMA size %x\n", cmd->size); return -EIO; } if (cmd->tag & 0xfff0) { /* we reserve the higher tag numbers for kernel use */ pr_debug("invalid DMA tag\n"); return -EIO; } if (cmd->class) { /* not supported in this version */ pr_debug("invalid DMA class\n"); return -EIO; } return 0; } static int spu_send_mfc_command(struct spu_context *ctx, struct mfc_dma_command cmd, int *error) { *error = ctx->ops->send_mfc_command(ctx, &cmd); if (*error == -EAGAIN) { /* wait for any tag group to complete so we have space for the new command */ ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1); /* try again, because the queue might be empty again */ *error = ctx->ops->send_mfc_command(ctx, &cmd); if (*error == -EAGAIN) return 0; } return 1; } static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer, size_t size, loff_t *pos) { struct spu_context *ctx = file->private_data; struct mfc_dma_command cmd; int ret = -EINVAL; if (size != sizeof cmd) goto out; ret = -EFAULT; if (copy_from_user(&cmd, buffer, sizeof cmd)) goto out; ret = spufs_check_valid_dma(&cmd); if (ret) goto out; spu_acquire_runnable(ctx); if (file->f_flags & O_NONBLOCK) { ret = ctx->ops->send_mfc_command(ctx, &cmd); } else { int status; ret = spufs_wait(ctx->mfc_wq, spu_send_mfc_command(ctx, cmd, &status)); if (status) ret = status; } spu_release(ctx); if (ret) goto out; ctx->tagwait |= 1 << cmd.tag; out: return ret; } static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait) { struct spu_context *ctx = file->private_data; u32 free_elements, tagstatus; unsigned int mask; spu_acquire(ctx); ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2); free_elements = ctx->ops->get_mfc_free_elements(ctx); tagstatus = ctx->ops->read_mfc_tagstatus(ctx); spu_release(ctx); poll_wait(file, &ctx->mfc_wq, wait); mask = 0; if (free_elements & 0xffff) mask |= POLLOUT | POLLWRNORM; if (tagstatus & ctx->tagwait) mask |= POLLIN | POLLRDNORM; pr_debug("%s: free %d tagstatus %d tagwait %d\n", __FUNCTION__, free_elements, tagstatus, ctx->tagwait); return mask; } static int spufs_mfc_flush(struct file *file, fl_owner_t id) { struct spu_context *ctx = file->private_data; int ret; spu_acquire(ctx); #if 0 /* this currently hangs */ ret = spufs_wait(ctx->mfc_wq, ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2)); if (ret) goto out; ret = spufs_wait(ctx->mfc_wq, ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait); out: #else ret = 0; #endif spu_release(ctx); return ret; } static int spufs_mfc_fsync(struct file *file, struct dentry *dentry, int datasync) { return spufs_mfc_flush(file, NULL); } static int spufs_mfc_fasync(int fd, struct file *file, int on) { struct spu_context *ctx = file->private_data; return fasync_helper(fd, file, on, &ctx->mfc_fasync); } static struct file_operations spufs_mfc_fops = { .open = spufs_mfc_open, .read = spufs_mfc_read, .write = spufs_mfc_write, .poll = spufs_mfc_poll, .flush = spufs_mfc_flush, .fsync = spufs_mfc_fsync, .fasync = spufs_mfc_fasync, .mmap = spufs_mfc_mmap, }; static int spufs_recycle_open(struct inode *inode, struct file *file) { file->private_data = SPUFS_I(inode)->i_ctx; return nonseekable_open(inode, file); } static ssize_t spufs_recycle_write(struct file *file, const char __user *buffer, size_t size, loff_t *pos) { struct spu_context *ctx = file->private_data; int ret; if (!(ctx->flags & SPU_CREATE_ISOLATE)) return -EINVAL; if (size < 1) return -EINVAL; ret = spu_recycle_isolated(ctx); if (ret) return ret; return size; } static struct file_operations spufs_recycle_fops = { .open = spufs_recycle_open, .write = spufs_recycle_write, }; static void spufs_npc_set(void *data, u64 val) { struct spu_context *ctx = data; spu_acquire(ctx); ctx->ops->npc_write(ctx, val); spu_release(ctx); } static u64 spufs_npc_get(void *data) { struct spu_context *ctx = data; u64 ret; spu_acquire(ctx); ret = ctx->ops->npc_read(ctx); spu_release(ctx); return ret; } DEFINE_SIMPLE_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set, "%llx\n") static void spufs_decr_set(void *data, u64 val) { struct spu_context *ctx = data; struct spu_lscsa *lscsa = ctx->csa.lscsa; spu_acquire_saved(ctx); lscsa->decr.slot[0] = (u32) val; spu_release(ctx); } static u64 spufs_decr_get(void *data) { struct spu_context *ctx = data; struct spu_lscsa *lscsa = ctx->csa.lscsa; u64 ret; spu_acquire_saved(ctx); ret = lscsa->decr.slot[0]; spu_release(ctx); return ret; } DEFINE_SIMPLE_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set, "%llx\n") static void spufs_decr_status_set(void *data, u64 val) { struct spu_context *ctx = data; struct spu_lscsa *lscsa = ctx->csa.lscsa; spu_acquire_saved(ctx); lscsa->decr_status.slot[0] = (u32) val; spu_release(ctx); } static u64 spufs_decr_status_get(void *data) { struct spu_context *ctx = data; struct spu_lscsa *lscsa = ctx->csa.lscsa; u64 ret; spu_acquire_saved(ctx); ret = lscsa->decr_status.slot[0]; spu_release(ctx); return ret; } DEFINE_SIMPLE_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get, spufs_decr_status_set, "%llx\n") static void spufs_spu_tag_mask_set(void *data, u64 val) { struct spu_context *ctx = data; struct spu_lscsa *lscsa = ctx->csa.lscsa; spu_acquire_saved(ctx); lscsa->tag_mask.slot[0] = (u32) val; spu_release(ctx); } static u64 spufs_spu_tag_mask_get(void *data) { struct spu_context *ctx = data; struct spu_lscsa *lscsa = ctx->csa.lscsa; u64 ret; spu_acquire_saved(ctx); ret = lscsa->tag_mask.slot[0]; spu_release(ctx); return ret; } DEFINE_SIMPLE_ATTRIBUTE(spufs_spu_tag_mask_ops, spufs_spu_tag_mask_get, spufs_spu_tag_mask_set, "%llx\n") static void spufs_event_mask_set(void *data, u64 val) { struct spu_context *ctx = data; struct spu_lscsa *lscsa = ctx->csa.lscsa; spu_acquire_saved(ctx); lscsa->event_mask.slot[0] = (u32) val; spu_release(ctx); } static u64 spufs_event_mask_get(void *data) { struct spu_context *ctx = data; struct spu_lscsa *lscsa = ctx->csa.lscsa; u64 ret; spu_acquire_saved(ctx); ret = lscsa->event_mask.slot[0]; spu_release(ctx); return ret; } DEFINE_SIMPLE_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get, spufs_event_mask_set, "%llx\n") static void spufs_srr0_set(void *data, u64 val) { struct spu_context *ctx = data; struct spu_lscsa *lscsa = ctx->csa.lscsa; spu_acquire_saved(ctx); lscsa->srr0.slot[0] = (u32) val; spu_release(ctx); } static u64 spufs_srr0_get(void *data) { struct spu_context *ctx = data; struct spu_lscsa *lscsa = ctx->csa.lscsa; u64 ret; spu_acquire_saved(ctx); ret = lscsa->srr0.slot[0]; spu_release(ctx); return ret; } DEFINE_SIMPLE_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set, "%llx\n") static u64 spufs_id_get(void *data) { struct spu_context *ctx = data; u64 num; spu_acquire(ctx); if (ctx->state == SPU_STATE_RUNNABLE) num = ctx->spu->number; else num = (unsigned int)-1; spu_release(ctx); return num; } DEFINE_SIMPLE_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n") static u64 spufs_object_id_get(void *data) { struct spu_context *ctx = data; return ctx->object_id; } static void spufs_object_id_set(void *data, u64 id) { struct spu_context *ctx = data; ctx->object_id = id; } DEFINE_SIMPLE_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get, spufs_object_id_set, "0x%llx\n"); struct tree_descr spufs_dir_contents[] = { { "mem", &spufs_mem_fops, 0666, }, { "regs", &spufs_regs_fops, 0666, }, { "mbox", &spufs_mbox_fops, 0444, }, { "ibox", &spufs_ibox_fops, 0444, }, { "wbox", &spufs_wbox_fops, 0222, }, { "mbox_stat", &spufs_mbox_stat_fops, 0444, }, { "ibox_stat", &spufs_ibox_stat_fops, 0444, }, { "wbox_stat", &spufs_wbox_stat_fops, 0444, }, { "signal1", &spufs_signal1_fops, 0666, }, { "signal2", &spufs_signal2_fops, 0666, }, { "signal1_type", &spufs_signal1_type, 0666, }, { "signal2_type", &spufs_signal2_type, 0666, }, { "mss", &spufs_mss_fops, 0666, }, { "mfc", &spufs_mfc_fops, 0666, }, { "cntl", &spufs_cntl_fops, 0666, }, { "npc", &spufs_npc_ops, 0666, }, { "fpcr", &spufs_fpcr_fops, 0666, }, { "decr", &spufs_decr_ops, 0666, }, { "decr_status", &spufs_decr_status_ops, 0666, }, { "spu_tag_mask", &spufs_spu_tag_mask_ops, 0666, }, { "event_mask", &spufs_event_mask_ops, 0666, }, { "srr0", &spufs_srr0_ops, 0666, }, { "psmap", &spufs_psmap_fops, 0666, }, { "phys-id", &spufs_id_ops, 0666, }, { "object-id", &spufs_object_id_ops, 0666, }, {}, }; struct tree_descr spufs_dir_nosched_contents[] = { { "mem", &spufs_mem_fops, 0666, }, { "mbox", &spufs_mbox_fops, 0444, }, { "ibox", &spufs_ibox_fops, 0444, }, { "wbox", &spufs_wbox_fops, 0222, }, { "mbox_stat", &spufs_mbox_stat_fops, 0444, }, { "ibox_stat", &spufs_ibox_stat_fops, 0444, }, { "wbox_stat", &spufs_wbox_stat_fops, 0444, }, { "signal1", &spufs_signal1_fops, 0666, }, { "signal2", &spufs_signal2_fops, 0666, }, { "signal1_type", &spufs_signal1_type, 0666, }, { "signal2_type", &spufs_signal2_type, 0666, }, { "mss", &spufs_mss_fops, 0666, }, { "mfc", &spufs_mfc_fops, 0666, }, { "cntl", &spufs_cntl_fops, 0666, }, { "npc", &spufs_npc_ops, 0666, }, { "psmap", &spufs_psmap_fops, 0666, }, { "phys-id", &spufs_id_ops, 0666, }, { "object-id", &spufs_object_id_ops, 0666, }, { "recycle", &spufs_recycle_fops, 0222, }, {}, };