// SPDX-License-Identifier: GPL-2.0 /* * handling kvm guest interrupts * * Copyright IBM Corp. 2008, 2020 * * Author(s): Carsten Otte */ #define KMSG_COMPONENT "kvm-s390" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "kvm-s390.h" #include "gaccess.h" #include "trace-s390.h" #include "pci.h" #define PFAULT_INIT 0x0600 #define PFAULT_DONE 0x0680 #define VIRTIO_PARAM 0x0d00 static struct kvm_s390_gib *gib; /* handle external calls via sigp interpretation facility */ static int sca_ext_call_pending(struct kvm_vcpu *vcpu, int *src_id) { int c, scn; if (!kvm_s390_test_cpuflags(vcpu, CPUSTAT_ECALL_PEND)) return 0; BUG_ON(!kvm_s390_use_sca_entries()); read_lock(&vcpu->kvm->arch.sca_lock); if (vcpu->kvm->arch.use_esca) { struct esca_block *sca = vcpu->kvm->arch.sca; union esca_sigp_ctrl sigp_ctrl = sca->cpu[vcpu->vcpu_id].sigp_ctrl; c = sigp_ctrl.c; scn = sigp_ctrl.scn; } else { struct bsca_block *sca = vcpu->kvm->arch.sca; union bsca_sigp_ctrl sigp_ctrl = sca->cpu[vcpu->vcpu_id].sigp_ctrl; c = sigp_ctrl.c; scn = sigp_ctrl.scn; } read_unlock(&vcpu->kvm->arch.sca_lock); if (src_id) *src_id = scn; return c; } static int sca_inject_ext_call(struct kvm_vcpu *vcpu, int src_id) { int expect, rc; BUG_ON(!kvm_s390_use_sca_entries()); read_lock(&vcpu->kvm->arch.sca_lock); if (vcpu->kvm->arch.use_esca) { struct esca_block *sca = vcpu->kvm->arch.sca; union esca_sigp_ctrl *sigp_ctrl = &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); union esca_sigp_ctrl new_val = {0}, old_val; old_val = READ_ONCE(*sigp_ctrl); new_val.scn = src_id; new_val.c = 1; old_val.c = 0; expect = old_val.value; rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value); } else { struct bsca_block *sca = vcpu->kvm->arch.sca; union bsca_sigp_ctrl *sigp_ctrl = &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); union bsca_sigp_ctrl new_val = {0}, old_val; old_val = READ_ONCE(*sigp_ctrl); new_val.scn = src_id; new_val.c = 1; old_val.c = 0; expect = old_val.value; rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value); } read_unlock(&vcpu->kvm->arch.sca_lock); if (rc != expect) { /* another external call is pending */ return -EBUSY; } kvm_s390_set_cpuflags(vcpu, CPUSTAT_ECALL_PEND); return 0; } static void sca_clear_ext_call(struct kvm_vcpu *vcpu) { if (!kvm_s390_use_sca_entries()) return; kvm_s390_clear_cpuflags(vcpu, CPUSTAT_ECALL_PEND); read_lock(&vcpu->kvm->arch.sca_lock); if (vcpu->kvm->arch.use_esca) { struct esca_block *sca = vcpu->kvm->arch.sca; union esca_sigp_ctrl *sigp_ctrl = &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); WRITE_ONCE(sigp_ctrl->value, 0); } else { struct bsca_block *sca = vcpu->kvm->arch.sca; union bsca_sigp_ctrl *sigp_ctrl = &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); WRITE_ONCE(sigp_ctrl->value, 0); } read_unlock(&vcpu->kvm->arch.sca_lock); } int psw_extint_disabled(struct kvm_vcpu *vcpu) { return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT); } static int psw_ioint_disabled(struct kvm_vcpu *vcpu) { return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO); } static int psw_mchk_disabled(struct kvm_vcpu *vcpu) { return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK); } static int psw_interrupts_disabled(struct kvm_vcpu *vcpu) { return psw_extint_disabled(vcpu) && psw_ioint_disabled(vcpu) && psw_mchk_disabled(vcpu); } static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu) { if (psw_extint_disabled(vcpu) || !(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK)) return 0; if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu)) /* No timer interrupts when single stepping */ return 0; return 1; } static int ckc_irq_pending(struct kvm_vcpu *vcpu) { const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm); const u64 ckc = vcpu->arch.sie_block->ckc; if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) { if ((s64)ckc >= (s64)now) return 0; } else if (ckc >= now) { return 0; } return ckc_interrupts_enabled(vcpu); } static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu) { return !psw_extint_disabled(vcpu) && (vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK); } static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu) { if (!cpu_timer_interrupts_enabled(vcpu)) return 0; return kvm_s390_get_cpu_timer(vcpu) >> 63; } static uint64_t isc_to_isc_bits(int isc) { return (0x80 >> isc) << 24; } static inline u32 isc_to_int_word(u8 isc) { return ((u32)isc << 27) | 0x80000000; } static inline u8 int_word_to_isc(u32 int_word) { return (int_word & 0x38000000) >> 27; } /* * To use atomic bitmap functions, we have to provide a bitmap address * that is u64 aligned. However, the ipm might be u32 aligned. * Therefore, we logically start the bitmap at the very beginning of the * struct and fixup the bit number. */ #define IPM_BIT_OFFSET (offsetof(struct kvm_s390_gisa, ipm) * BITS_PER_BYTE) /** * gisa_set_iam - change the GISA interruption alert mask * * @gisa: gisa to operate on * @iam: new IAM value to use * * Change the IAM atomically with the next alert address and the IPM * of the GISA if the GISA is not part of the GIB alert list. All three * fields are located in the first long word of the GISA. * * Returns: 0 on success * -EBUSY in case the gisa is part of the alert list */ static inline int gisa_set_iam(struct kvm_s390_gisa *gisa, u8 iam) { u64 word, _word; word = READ_ONCE(gisa->u64.word[0]); do { if ((u64)gisa != word >> 32) return -EBUSY; _word = (word & ~0xffUL) | iam; } while (!try_cmpxchg(&gisa->u64.word[0], &word, _word)); return 0; } /** * gisa_clear_ipm - clear the GISA interruption pending mask * * @gisa: gisa to operate on * * Clear the IPM atomically with the next alert address and the IAM * of the GISA unconditionally. All three fields are located in the * first long word of the GISA. */ static inline void gisa_clear_ipm(struct kvm_s390_gisa *gisa) { u64 word, _word; word = READ_ONCE(gisa->u64.word[0]); do { _word = word & ~(0xffUL << 24); } while (!try_cmpxchg(&gisa->u64.word[0], &word, _word)); } /** * gisa_get_ipm_or_restore_iam - return IPM or restore GISA IAM * * @gi: gisa interrupt struct to work on * * Atomically restores the interruption alert mask if none of the * relevant ISCs are pending and return the IPM. * * Returns: the relevant pending ISCs */ static inline u8 gisa_get_ipm_or_restore_iam(struct kvm_s390_gisa_interrupt *gi) { u8 pending_mask, alert_mask; u64 word, _word; word = READ_ONCE(gi->origin->u64.word[0]); do { alert_mask = READ_ONCE(gi->alert.mask); pending_mask = (u8)(word >> 24) & alert_mask; if (pending_mask) return pending_mask; _word = (word & ~0xffUL) | alert_mask; } while (!try_cmpxchg(&gi->origin->u64.word[0], &word, _word)); return 0; } static inline void gisa_set_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc) { set_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa); } static inline u8 gisa_get_ipm(struct kvm_s390_gisa *gisa) { return READ_ONCE(gisa->ipm); } static inline int gisa_tac_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc) { return test_and_clear_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa); } static inline unsigned long pending_irqs_no_gisa(struct kvm_vcpu *vcpu) { unsigned long pending = vcpu->kvm->arch.float_int.pending_irqs | vcpu->arch.local_int.pending_irqs; pending &= ~vcpu->kvm->arch.float_int.masked_irqs; return pending; } static inline unsigned long pending_irqs(struct kvm_vcpu *vcpu) { struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int; unsigned long pending_mask; pending_mask = pending_irqs_no_gisa(vcpu); if (gi->origin) pending_mask |= gisa_get_ipm(gi->origin) << IRQ_PEND_IO_ISC_7; return pending_mask; } static inline int isc_to_irq_type(unsigned long isc) { return IRQ_PEND_IO_ISC_0 - isc; } static inline int irq_type_to_isc(unsigned long irq_type) { return IRQ_PEND_IO_ISC_0 - irq_type; } static unsigned long disable_iscs(struct kvm_vcpu *vcpu, unsigned long active_mask) { int i; for (i = 0; i <= MAX_ISC; i++) if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i))) active_mask &= ~(1UL << (isc_to_irq_type(i))); return active_mask; } static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu) { unsigned long active_mask; active_mask = pending_irqs(vcpu); if (!active_mask) return 0; if (psw_extint_disabled(vcpu)) active_mask &= ~IRQ_PEND_EXT_MASK; if (psw_ioint_disabled(vcpu)) active_mask &= ~IRQ_PEND_IO_MASK; else active_mask = disable_iscs(vcpu, active_mask); if (!(vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK)) __clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask); if (!(vcpu->arch.sie_block->gcr[0] & CR0_EMERGENCY_SIGNAL_SUBMASK)) __clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask); if (!(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK)) __clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask); if (!(vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK)) __clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask); if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK)) { __clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask); __clear_bit(IRQ_PEND_EXT_SERVICE_EV, &active_mask); } if (psw_mchk_disabled(vcpu)) active_mask &= ~IRQ_PEND_MCHK_MASK; /* PV guest cpus can have a single interruption injected at a time. */ if (kvm_s390_pv_cpu_get_handle(vcpu) && vcpu->arch.sie_block->iictl != IICTL_CODE_NONE) active_mask &= ~(IRQ_PEND_EXT_II_MASK | IRQ_PEND_IO_MASK | IRQ_PEND_MCHK_MASK); /* * Check both floating and local interrupt's cr14 because * bit IRQ_PEND_MCHK_REP could be set in both cases. */ if (!(vcpu->arch.sie_block->gcr[14] & (vcpu->kvm->arch.float_int.mchk.cr14 | vcpu->arch.local_int.irq.mchk.cr14))) __clear_bit(IRQ_PEND_MCHK_REP, &active_mask); /* * STOP irqs will never be actively delivered. They are triggered via * intercept requests and cleared when the stop intercept is performed. */ __clear_bit(IRQ_PEND_SIGP_STOP, &active_mask); return active_mask; } static void __set_cpu_idle(struct kvm_vcpu *vcpu) { kvm_s390_set_cpuflags(vcpu, CPUSTAT_WAIT); set_bit(vcpu->vcpu_idx, vcpu->kvm->arch.idle_mask); } static void __unset_cpu_idle(struct kvm_vcpu *vcpu) { kvm_s390_clear_cpuflags(vcpu, CPUSTAT_WAIT); clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.idle_mask); } static void __reset_intercept_indicators(struct kvm_vcpu *vcpu) { kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IO_INT | CPUSTAT_EXT_INT | CPUSTAT_STOP_INT); vcpu->arch.sie_block->lctl = 0x0000; vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT); if (guestdbg_enabled(vcpu)) { vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 | LCTL_CR10 | LCTL_CR11); vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT); } } static void set_intercept_indicators_io(struct kvm_vcpu *vcpu) { if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_IO_MASK)) return; if (psw_ioint_disabled(vcpu)) kvm_s390_set_cpuflags(vcpu, CPUSTAT_IO_INT); else vcpu->arch.sie_block->lctl |= LCTL_CR6; } static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu) { if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_EXT_MASK)) return; if (psw_extint_disabled(vcpu)) kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); else vcpu->arch.sie_block->lctl |= LCTL_CR0; } static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu) { if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_MCHK_MASK)) return; if (psw_mchk_disabled(vcpu)) vcpu->arch.sie_block->ictl |= ICTL_LPSW; else vcpu->arch.sie_block->lctl |= LCTL_CR14; } static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu) { if (kvm_s390_is_stop_irq_pending(vcpu)) kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT); } /* Set interception request for non-deliverable interrupts */ static void set_intercept_indicators(struct kvm_vcpu *vcpu) { set_intercept_indicators_io(vcpu); set_intercept_indicators_ext(vcpu); set_intercept_indicators_mchk(vcpu); set_intercept_indicators_stop(vcpu); } static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; int rc = 0; vcpu->stat.deliver_cputm++; trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER, 0, 0); if (kvm_s390_pv_cpu_is_protected(vcpu)) { vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; vcpu->arch.sie_block->eic = EXT_IRQ_CPU_TIMER; } else { rc = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER, (u16 *)__LC_EXT_INT_CODE); rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR); rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); } clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); return rc ? -EFAULT : 0; } static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; int rc = 0; vcpu->stat.deliver_ckc++; trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP, 0, 0); if (kvm_s390_pv_cpu_is_protected(vcpu)) { vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; vcpu->arch.sie_block->eic = EXT_IRQ_CLK_COMP; } else { rc = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP, (u16 __user *)__LC_EXT_INT_CODE); rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR); rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); } clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); return rc ? -EFAULT : 0; } static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; struct kvm_s390_ext_info ext; int rc; spin_lock(&li->lock); ext = li->irq.ext; clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs); li->irq.ext.ext_params2 = 0; spin_unlock(&li->lock); VCPU_EVENT(vcpu, 4, "deliver: pfault init token 0x%llx", ext.ext_params2); trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT, 0, ext.ext_params2); rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE); rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR); rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2); return rc ? -EFAULT : 0; } static int __write_machine_check(struct kvm_vcpu *vcpu, struct kvm_s390_mchk_info *mchk) { unsigned long ext_sa_addr; unsigned long lc; freg_t fprs[NUM_FPRS]; union mci mci; int rc; /* * All other possible payload for a machine check (e.g. the register * contents in the save area) will be handled by the ultravisor, as * the hypervisor does not not have the needed information for * protected guests. */ if (kvm_s390_pv_cpu_is_protected(vcpu)) { vcpu->arch.sie_block->iictl = IICTL_CODE_MCHK; vcpu->arch.sie_block->mcic = mchk->mcic; vcpu->arch.sie_block->faddr = mchk->failing_storage_address; vcpu->arch.sie_block->edc = mchk->ext_damage_code; return 0; } mci.val = mchk->mcic; /* take care of lazy register loading */ kvm_s390_fpu_store(vcpu->run); save_access_regs(vcpu->run->s.regs.acrs); if (MACHINE_HAS_GS && vcpu->arch.gs_enabled) save_gs_cb(current->thread.gs_cb); /* Extended save area */ rc = read_guest_lc(vcpu, __LC_MCESAD, &ext_sa_addr, sizeof(unsigned long)); /* Only bits 0 through 63-LC are used for address formation */ lc = ext_sa_addr & MCESA_LC_MASK; if (test_kvm_facility(vcpu->kvm, 133)) { switch (lc) { case 0: case 10: ext_sa_addr &= ~0x3ffUL; break; case 11: ext_sa_addr &= ~0x7ffUL; break; case 12: ext_sa_addr &= ~0xfffUL; break; default: ext_sa_addr = 0; break; } } else { ext_sa_addr &= ~0x3ffUL; } if (!rc && mci.vr && ext_sa_addr && test_kvm_facility(vcpu->kvm, 129)) { if (write_guest_abs(vcpu, ext_sa_addr, vcpu->run->s.regs.vrs, 512)) mci.vr = 0; } else { mci.vr = 0; } if (!rc && mci.gs && ext_sa_addr && test_kvm_facility(vcpu->kvm, 133) && (lc == 11 || lc == 12)) { if (write_guest_abs(vcpu, ext_sa_addr + 1024, &vcpu->run->s.regs.gscb, 32)) mci.gs = 0; } else { mci.gs = 0; } /* General interruption information */ rc |= put_guest_lc(vcpu, 1, (u8 __user *) __LC_AR_MODE_ID); rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); rc |= put_guest_lc(vcpu, mci.val, (u64 __user *) __LC_MCCK_CODE); /* Register-save areas */ if (cpu_has_vx()) { convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs); rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, fprs, 128); } else { rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, vcpu->run->s.regs.fprs, 128); } rc |= write_guest_lc(vcpu, __LC_GPREGS_SAVE_AREA, vcpu->run->s.regs.gprs, 128); rc |= put_guest_lc(vcpu, vcpu->run->s.regs.fpc, (u32 __user *) __LC_FP_CREG_SAVE_AREA); rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->todpr, (u32 __user *) __LC_TOD_PROGREG_SAVE_AREA); rc |= put_guest_lc(vcpu, kvm_s390_get_cpu_timer(vcpu), (u64 __user *) __LC_CPU_TIMER_SAVE_AREA); rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->ckc >> 8, (u64 __user *) __LC_CLOCK_COMP_SAVE_AREA); rc |= write_guest_lc(vcpu, __LC_AREGS_SAVE_AREA, &vcpu->run->s.regs.acrs, 64); rc |= write_guest_lc(vcpu, __LC_CREGS_SAVE_AREA, &vcpu->arch.sie_block->gcr, 128); /* Extended interruption information */ rc |= put_guest_lc(vcpu, mchk->ext_damage_code, (u32 __user *) __LC_EXT_DAMAGE_CODE); rc |= put_guest_lc(vcpu, mchk->failing_storage_address, (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR); rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA, &mchk->fixed_logout, sizeof(mchk->fixed_logout)); return rc ? -EFAULT : 0; } static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu) { struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; struct kvm_s390_mchk_info mchk = {}; int deliver = 0; int rc = 0; spin_lock(&fi->lock); spin_lock(&li->lock); if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) || test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) { /* * If there was an exigent machine check pending, then any * repressible machine checks that might have been pending * are indicated along with it, so always clear bits for * repressible and exigent interrupts */ mchk = li->irq.mchk; clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs); clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs); memset(&li->irq.mchk, 0, sizeof(mchk)); deliver = 1; } /* * We indicate floating repressible conditions along with * other pending conditions. Channel Report Pending and Channel * Subsystem damage are the only two and are indicated by * bits in mcic and masked in cr14. */ if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) { mchk.mcic |= fi->mchk.mcic; mchk.cr14 |= fi->mchk.cr14; memset(&fi->mchk, 0, sizeof(mchk)); deliver = 1; } spin_unlock(&li->lock); spin_unlock(&fi->lock); if (deliver) { VCPU_EVENT(vcpu, 3, "deliver: machine check mcic 0x%llx", mchk.mcic); trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_MCHK, mchk.cr14, mchk.mcic); vcpu->stat.deliver_machine_check++; rc = __write_machine_check(vcpu, &mchk); } return rc; } static int __must_check __deliver_restart(struct kvm_vcpu *vcpu) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; int rc = 0; VCPU_EVENT(vcpu, 3, "%s", "deliver: cpu restart"); vcpu->stat.deliver_restart_signal++; trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0); if (kvm_s390_pv_cpu_is_protected(vcpu)) { vcpu->arch.sie_block->iictl = IICTL_CODE_RESTART; } else { rc = write_guest_lc(vcpu, offsetof(struct lowcore, restart_old_psw), &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); rc |= read_guest_lc(vcpu, offsetof(struct lowcore, restart_psw), &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); } clear_bit(IRQ_PEND_RESTART, &li->pending_irqs); return rc ? -EFAULT : 0; } static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; struct kvm_s390_prefix_info prefix; spin_lock(&li->lock); prefix = li->irq.prefix; li->irq.prefix.address = 0; clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs); spin_unlock(&li->lock); vcpu->stat.deliver_prefix_signal++; trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX, prefix.address, 0); kvm_s390_set_prefix(vcpu, prefix.address); return 0; } static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; int rc; int cpu_addr; spin_lock(&li->lock); cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS); clear_bit(cpu_addr, li->sigp_emerg_pending); if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS)) clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs); spin_unlock(&li->lock); VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp emerg"); vcpu->stat.deliver_emergency_signal++; trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY, cpu_addr, 0); if (kvm_s390_pv_cpu_is_protected(vcpu)) { vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; vcpu->arch.sie_block->eic = EXT_IRQ_EMERGENCY_SIG; vcpu->arch.sie_block->extcpuaddr = cpu_addr; return 0; } rc = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG, (u16 *)__LC_EXT_INT_CODE); rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR); rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); return rc ? -EFAULT : 0; } static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; struct kvm_s390_extcall_info extcall; int rc; spin_lock(&li->lock); extcall = li->irq.extcall; li->irq.extcall.code = 0; clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs); spin_unlock(&li->lock); VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp ext call"); vcpu->stat.deliver_external_call++; trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL, extcall.code, 0); if (kvm_s390_pv_cpu_is_protected(vcpu)) { vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; vcpu->arch.sie_block->eic = EXT_IRQ_EXTERNAL_CALL; vcpu->arch.sie_block->extcpuaddr = extcall.code; return 0; } rc = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL, (u16 *)__LC_EXT_INT_CODE); rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR); rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); return rc ? -EFAULT : 0; } static int __deliver_prog_pv(struct kvm_vcpu *vcpu, u16 code) { switch (code) { case PGM_SPECIFICATION: vcpu->arch.sie_block->iictl = IICTL_CODE_SPECIFICATION; break; case PGM_OPERAND: vcpu->arch.sie_block->iictl = IICTL_CODE_OPERAND; break; default: return -EINVAL; } return 0; } static int __must_check __deliver_prog(struct kvm_vcpu *vcpu) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; struct kvm_s390_pgm_info pgm_info; int rc = 0, nullifying = false; u16 ilen; spin_lock(&li->lock); pgm_info = li->irq.pgm; clear_bit(IRQ_PEND_PROG, &li->pending_irqs); memset(&li->irq.pgm, 0, sizeof(pgm_info)); spin_unlock(&li->lock); ilen = pgm_info.flags & KVM_S390_PGM_FLAGS_ILC_MASK; VCPU_EVENT(vcpu, 3, "deliver: program irq code 0x%x, ilen:%d", pgm_info.code, ilen); vcpu->stat.deliver_program++; trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT, pgm_info.code, 0); /* PER is handled by the ultravisor */ if (kvm_s390_pv_cpu_is_protected(vcpu)) return __deliver_prog_pv(vcpu, pgm_info.code & ~PGM_PER); switch (pgm_info.code & ~PGM_PER) { case PGM_AFX_TRANSLATION: case PGM_ASX_TRANSLATION: case PGM_EX_TRANSLATION: case PGM_LFX_TRANSLATION: case PGM_LSTE_SEQUENCE: case PGM_LSX_TRANSLATION: case PGM_LX_TRANSLATION: case PGM_PRIMARY_AUTHORITY: case PGM_SECONDARY_AUTHORITY: nullifying = true; fallthrough; case PGM_SPACE_SWITCH: rc = put_guest_lc(vcpu, pgm_info.trans_exc_code, (u64 *)__LC_TRANS_EXC_CODE); break; case PGM_ALEN_TRANSLATION: case PGM_ALE_SEQUENCE: case PGM_ASTE_INSTANCE: case PGM_ASTE_SEQUENCE: case PGM_ASTE_VALIDITY: case PGM_EXTENDED_AUTHORITY: rc = put_guest_lc(vcpu, pgm_info.exc_access_id, (u8 *)__LC_EXC_ACCESS_ID); nullifying = true; break; case PGM_ASCE_TYPE: case PGM_PAGE_TRANSLATION: case PGM_REGION_FIRST_TRANS: case PGM_REGION_SECOND_TRANS: case PGM_REGION_THIRD_TRANS: case PGM_SEGMENT_TRANSLATION: rc = put_guest_lc(vcpu, pgm_info.trans_exc_code, (u64 *)__LC_TRANS_EXC_CODE); rc |= put_guest_lc(vcpu, pgm_info.exc_access_id, (u8 *)__LC_EXC_ACCESS_ID); rc |= put_guest_lc(vcpu, pgm_info.op_access_id, (u8 *)__LC_OP_ACCESS_ID); nullifying = true; break; case PGM_MONITOR: rc = put_guest_lc(vcpu, pgm_info.mon_class_nr, (u16 *)__LC_MON_CLASS_NR); rc |= put_guest_lc(vcpu, pgm_info.mon_code, (u64 *)__LC_MON_CODE); break; case PGM_VECTOR_PROCESSING: case PGM_DATA: rc = put_guest_lc(vcpu, pgm_info.data_exc_code, (u32 *)__LC_DATA_EXC_CODE); break; case PGM_PROTECTION: rc = put_guest_lc(vcpu, pgm_info.trans_exc_code, (u64 *)__LC_TRANS_EXC_CODE); rc |= put_guest_lc(vcpu, pgm_info.exc_access_id, (u8 *)__LC_EXC_ACCESS_ID); break; case PGM_STACK_FULL: case PGM_STACK_EMPTY: case PGM_STACK_SPECIFICATION: case PGM_STACK_TYPE: case PGM_STACK_OPERATION: case PGM_TRACE_TABEL: case PGM_CRYPTO_OPERATION: nullifying = true; break; } if (pgm_info.code & PGM_PER) { rc |= put_guest_lc(vcpu, pgm_info.per_code, (u8 *) __LC_PER_CODE); rc |= put_guest_lc(vcpu, pgm_info.per_atmid, (u8 *)__LC_PER_ATMID); rc |= put_guest_lc(vcpu, pgm_info.per_address, (u64 *) __LC_PER_ADDRESS); rc |= put_guest_lc(vcpu, pgm_info.per_access_id, (u8 *) __LC_PER_ACCESS_ID); } if (nullifying && !(pgm_info.flags & KVM_S390_PGM_FLAGS_NO_REWIND)) kvm_s390_rewind_psw(vcpu, ilen); /* bit 1+2 of the target are the ilc, so we can directly use ilen */ rc |= put_guest_lc(vcpu, ilen, (u16 *) __LC_PGM_ILC); rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea, (u64 *) __LC_PGM_LAST_BREAK); rc |= put_guest_lc(vcpu, pgm_info.code, (u16 *)__LC_PGM_INT_CODE); rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); return rc ? -EFAULT : 0; } #define SCCB_MASK 0xFFFFFFF8 #define SCCB_EVENT_PENDING 0x3 static int write_sclp(struct kvm_vcpu *vcpu, u32 parm) { int rc; if (kvm_s390_pv_cpu_get_handle(vcpu)) { vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; vcpu->arch.sie_block->eic = EXT_IRQ_SERVICE_SIG; vcpu->arch.sie_block->eiparams = parm; return 0; } rc = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE); rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR); rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); rc |= put_guest_lc(vcpu, parm, (u32 *)__LC_EXT_PARAMS); return rc ? -EFAULT : 0; } static int __must_check __deliver_service(struct kvm_vcpu *vcpu) { struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; struct kvm_s390_ext_info ext; spin_lock(&fi->lock); if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->masked_irqs) || !(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) { spin_unlock(&fi->lock); return 0; } ext = fi->srv_signal; memset(&fi->srv_signal, 0, sizeof(ext)); clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs); clear_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs); if (kvm_s390_pv_cpu_is_protected(vcpu)) set_bit(IRQ_PEND_EXT_SERVICE, &fi->masked_irqs); spin_unlock(&fi->lock); VCPU_EVENT(vcpu, 4, "deliver: sclp parameter 0x%x", ext.ext_params); vcpu->stat.deliver_service_signal++; trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE, ext.ext_params, 0); return write_sclp(vcpu, ext.ext_params); } static int __must_check __deliver_service_ev(struct kvm_vcpu *vcpu) { struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; struct kvm_s390_ext_info ext; spin_lock(&fi->lock); if (!(test_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs))) { spin_unlock(&fi->lock); return 0; } ext = fi->srv_signal; /* only clear the event bits */ fi->srv_signal.ext_params &= ~SCCB_EVENT_PENDING; clear_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs); spin_unlock(&fi->lock); VCPU_EVENT(vcpu, 4, "%s", "deliver: sclp parameter event"); vcpu->stat.deliver_service_signal++; trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE, ext.ext_params, 0); return write_sclp(vcpu, ext.ext_params & SCCB_EVENT_PENDING); } static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu) { struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; struct kvm_s390_interrupt_info *inti; int rc = 0; spin_lock(&fi->lock); inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT], struct kvm_s390_interrupt_info, list); if (inti) { list_del(&inti->list); fi->counters[FIRQ_CNTR_PFAULT] -= 1; } if (list_empty(&fi->lists[FIRQ_LIST_PFAULT])) clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs); spin_unlock(&fi->lock); if (inti) { trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_PFAULT_DONE, 0, inti->ext.ext_params2); VCPU_EVENT(vcpu, 4, "deliver: pfault done token 0x%llx", inti->ext.ext_params2); rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *)__LC_EXT_INT_CODE); rc |= put_guest_lc(vcpu, PFAULT_DONE, (u16 *)__LC_EXT_CPU_ADDR); rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); rc |= put_guest_lc(vcpu, inti->ext.ext_params2, (u64 *)__LC_EXT_PARAMS2); kfree(inti); } return rc ? -EFAULT : 0; } static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu) { struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; struct kvm_s390_interrupt_info *inti; int rc = 0; spin_lock(&fi->lock); inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO], struct kvm_s390_interrupt_info, list); if (inti) { VCPU_EVENT(vcpu, 4, "deliver: virtio parm: 0x%x,parm64: 0x%llx", inti->ext.ext_params, inti->ext.ext_params2); vcpu->stat.deliver_virtio++; trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, inti->type, inti->ext.ext_params, inti->ext.ext_params2); list_del(&inti->list); fi->counters[FIRQ_CNTR_VIRTIO] -= 1; } if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO])) clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs); spin_unlock(&fi->lock); if (inti) { rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *)__LC_EXT_INT_CODE); rc |= put_guest_lc(vcpu, VIRTIO_PARAM, (u16 *)__LC_EXT_CPU_ADDR); rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); rc |= put_guest_lc(vcpu, inti->ext.ext_params, (u32 *)__LC_EXT_PARAMS); rc |= put_guest_lc(vcpu, inti->ext.ext_params2, (u64 *)__LC_EXT_PARAMS2); kfree(inti); } return rc ? -EFAULT : 0; } static int __do_deliver_io(struct kvm_vcpu *vcpu, struct kvm_s390_io_info *io) { int rc; if (kvm_s390_pv_cpu_is_protected(vcpu)) { vcpu->arch.sie_block->iictl = IICTL_CODE_IO; vcpu->arch.sie_block->subchannel_id = io->subchannel_id; vcpu->arch.sie_block->subchannel_nr = io->subchannel_nr; vcpu->arch.sie_block->io_int_parm = io->io_int_parm; vcpu->arch.sie_block->io_int_word = io->io_int_word; return 0; } rc = put_guest_lc(vcpu, io->subchannel_id, (u16 *)__LC_SUBCHANNEL_ID); rc |= put_guest_lc(vcpu, io->subchannel_nr, (u16 *)__LC_SUBCHANNEL_NR); rc |= put_guest_lc(vcpu, io->io_int_parm, (u32 *)__LC_IO_INT_PARM); rc |= put_guest_lc(vcpu, io->io_int_word, (u32 *)__LC_IO_INT_WORD); rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); return rc ? -EFAULT : 0; } static int __must_check __deliver_io(struct kvm_vcpu *vcpu, unsigned long irq_type) { struct list_head *isc_list; struct kvm_s390_float_interrupt *fi; struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int; struct kvm_s390_interrupt_info *inti = NULL; struct kvm_s390_io_info io; u32 isc; int rc = 0; fi = &vcpu->kvm->arch.float_int; spin_lock(&fi->lock); isc = irq_type_to_isc(irq_type); isc_list = &fi->lists[isc]; inti = list_first_entry_or_null(isc_list, struct kvm_s390_interrupt_info, list); if (inti) { if (inti->type & KVM_S390_INT_IO_AI_MASK) VCPU_EVENT(vcpu, 4, "%s", "deliver: I/O (AI)"); else VCPU_EVENT(vcpu, 4, "deliver: I/O %x ss %x schid %04x", inti->io.subchannel_id >> 8, inti->io.subchannel_id >> 1 & 0x3, inti->io.subchannel_nr); vcpu->stat.deliver_io++; trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, inti->type, ((__u32)inti->io.subchannel_id << 16) | inti->io.subchannel_nr, ((__u64)inti->io.io_int_parm << 32) | inti->io.io_int_word); list_del(&inti->list); fi->counters[FIRQ_CNTR_IO] -= 1; } if (list_empty(isc_list)) clear_bit(irq_type, &fi->pending_irqs); spin_unlock(&fi->lock); if (inti) { rc = __do_deliver_io(vcpu, &(inti->io)); kfree(inti); goto out; } if (gi->origin && gisa_tac_ipm_gisc(gi->origin, isc)) { /* * in case an adapter interrupt was not delivered * in SIE context KVM will handle the delivery */ VCPU_EVENT(vcpu, 4, "%s isc %u", "deliver: I/O (AI/gisa)", isc); memset(&io, 0, sizeof(io)); io.io_int_word = isc_to_int_word(isc); vcpu->stat.deliver_io++; trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_IO(1, 0, 0, 0), ((__u32)io.subchannel_id << 16) | io.subchannel_nr, ((__u64)io.io_int_parm << 32) | io.io_int_word); rc = __do_deliver_io(vcpu, &io); } out: return rc; } /* Check whether an external call is pending (deliverable or not) */ int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; if (!sclp.has_sigpif) return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs); return sca_ext_call_pending(vcpu, NULL); } int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop) { if (deliverable_irqs(vcpu)) return 1; if (kvm_cpu_has_pending_timer(vcpu)) return 1; /* external call pending and deliverable */ if (kvm_s390_ext_call_pending(vcpu) && !psw_extint_disabled(vcpu) && (vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK)) return 1; if (!exclude_stop && kvm_s390_is_stop_irq_pending(vcpu)) return 1; return 0; } int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) { return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu); } static u64 __calculate_sltime(struct kvm_vcpu *vcpu) { const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm); const u64 ckc = vcpu->arch.sie_block->ckc; u64 cputm, sltime = 0; if (ckc_interrupts_enabled(vcpu)) { if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) { if ((s64)now < (s64)ckc) sltime = tod_to_ns((s64)ckc - (s64)now); } else if (now < ckc) { sltime = tod_to_ns(ckc - now); } /* already expired */ if (!sltime) return 0; if (cpu_timer_interrupts_enabled(vcpu)) { cputm = kvm_s390_get_cpu_timer(vcpu); /* already expired? */ if (cputm >> 63) return 0; return min_t(u64, sltime, tod_to_ns(cputm)); } } else if (cpu_timer_interrupts_enabled(vcpu)) { sltime = kvm_s390_get_cpu_timer(vcpu); /* already expired? */ if (sltime >> 63) return 0; } return sltime; } int kvm_s390_handle_wait(struct kvm_vcpu *vcpu) { struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int; u64 sltime; vcpu->stat.exit_wait_state++; /* fast path */ if (kvm_arch_vcpu_runnable(vcpu)) return 0; if (psw_interrupts_disabled(vcpu)) { VCPU_EVENT(vcpu, 3, "%s", "disabled wait"); return -EOPNOTSUPP; /* disabled wait */ } if (gi->origin && (gisa_get_ipm_or_restore_iam(gi) & vcpu->arch.sie_block->gcr[6] >> 24)) return 0; if (!ckc_interrupts_enabled(vcpu) && !cpu_timer_interrupts_enabled(vcpu)) { VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer"); __set_cpu_idle(vcpu); goto no_timer; } sltime = __calculate_sltime(vcpu); if (!sltime) return 0; __set_cpu_idle(vcpu); hrtimer_start(&vcpu->arch.ckc_timer, sltime, HRTIMER_MODE_REL); VCPU_EVENT(vcpu, 4, "enabled wait: %llu ns", sltime); no_timer: kvm_vcpu_srcu_read_unlock(vcpu); kvm_vcpu_halt(vcpu); vcpu->valid_wakeup = false; __unset_cpu_idle(vcpu); kvm_vcpu_srcu_read_lock(vcpu); hrtimer_cancel(&vcpu->arch.ckc_timer); return 0; } void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu) { vcpu->valid_wakeup = true; kvm_vcpu_wake_up(vcpu); /* * The VCPU might not be sleeping but rather executing VSIE. Let's * kick it, so it leaves the SIE to process the request. */ kvm_s390_vsie_kick(vcpu); } enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer) { struct kvm_vcpu *vcpu; u64 sltime; vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer); sltime = __calculate_sltime(vcpu); /* * If the monotonic clock runs faster than the tod clock we might be * woken up too early and have to go back to sleep to avoid deadlocks. */ if (sltime && hrtimer_forward_now(timer, ns_to_ktime(sltime))) return HRTIMER_RESTART; kvm_s390_vcpu_wakeup(vcpu); return HRTIMER_NORESTART; } void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; spin_lock(&li->lock); li->pending_irqs = 0; bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS); memset(&li->irq, 0, sizeof(li->irq)); spin_unlock(&li->lock); sca_clear_ext_call(vcpu); } int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; int rc = 0; bool delivered = false; unsigned long irq_type; unsigned long irqs; __reset_intercept_indicators(vcpu); /* pending ckc conditions might have been invalidated */ clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); if (ckc_irq_pending(vcpu)) set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); /* pending cpu timer conditions might have been invalidated */ clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); if (cpu_timer_irq_pending(vcpu)) set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); while ((irqs = deliverable_irqs(vcpu)) && !rc) { /* bits are in the reverse order of interrupt priority */ irq_type = find_last_bit(&irqs, IRQ_PEND_COUNT); switch (irq_type) { case IRQ_PEND_IO_ISC_0: case IRQ_PEND_IO_ISC_1: case IRQ_PEND_IO_ISC_2: case IRQ_PEND_IO_ISC_3: case IRQ_PEND_IO_ISC_4: case IRQ_PEND_IO_ISC_5: case IRQ_PEND_IO_ISC_6: case IRQ_PEND_IO_ISC_7: rc = __deliver_io(vcpu, irq_type); break; case IRQ_PEND_MCHK_EX: case IRQ_PEND_MCHK_REP: rc = __deliver_machine_check(vcpu); break; case IRQ_PEND_PROG: rc = __deliver_prog(vcpu); break; case IRQ_PEND_EXT_EMERGENCY: rc = __deliver_emergency_signal(vcpu); break; case IRQ_PEND_EXT_EXTERNAL: rc = __deliver_external_call(vcpu); break; case IRQ_PEND_EXT_CLOCK_COMP: rc = __deliver_ckc(vcpu); break; case IRQ_PEND_EXT_CPU_TIMER: rc = __deliver_cpu_timer(vcpu); break; case IRQ_PEND_RESTART: rc = __deliver_restart(vcpu); break; case IRQ_PEND_SET_PREFIX: rc = __deliver_set_prefix(vcpu); break; case IRQ_PEND_PFAULT_INIT: rc = __deliver_pfault_init(vcpu); break; case IRQ_PEND_EXT_SERVICE: rc = __deliver_service(vcpu); break; case IRQ_PEND_EXT_SERVICE_EV: rc = __deliver_service_ev(vcpu); break; case IRQ_PEND_PFAULT_DONE: rc = __deliver_pfault_done(vcpu); break; case IRQ_PEND_VIRTIO: rc = __deliver_virtio(vcpu); break; default: WARN_ONCE(1, "Unknown pending irq type %ld", irq_type); clear_bit(irq_type, &li->pending_irqs); } delivered |= !rc; } /* * We delivered at least one interrupt and modified the PC. Force a * singlestep event now. */ if (delivered && guestdbg_sstep_enabled(vcpu)) { struct kvm_debug_exit_arch *debug_exit = &vcpu->run->debug.arch; debug_exit->addr = vcpu->arch.sie_block->gpsw.addr; debug_exit->type = KVM_SINGLESTEP; vcpu->guest_debug |= KVM_GUESTDBG_EXIT_PENDING; } set_intercept_indicators(vcpu); return rc; } static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; vcpu->stat.inject_program++; VCPU_EVENT(vcpu, 3, "inject: program irq code 0x%x", irq->u.pgm.code); trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT, irq->u.pgm.code, 0); if (!(irq->u.pgm.flags & KVM_S390_PGM_FLAGS_ILC_VALID)) { /* auto detection if no valid ILC was given */ irq->u.pgm.flags &= ~KVM_S390_PGM_FLAGS_ILC_MASK; irq->u.pgm.flags |= kvm_s390_get_ilen(vcpu); irq->u.pgm.flags |= KVM_S390_PGM_FLAGS_ILC_VALID; } if (irq->u.pgm.code == PGM_PER) { li->irq.pgm.code |= PGM_PER; li->irq.pgm.flags = irq->u.pgm.flags; /* only modify PER related information */ li->irq.pgm.per_address = irq->u.pgm.per_address; li->irq.pgm.per_code = irq->u.pgm.per_code; li->irq.pgm.per_atmid = irq->u.pgm.per_atmid; li->irq.pgm.per_access_id = irq->u.pgm.per_access_id; } else if (!(irq->u.pgm.code & PGM_PER)) { li->irq.pgm.code = (li->irq.pgm.code & PGM_PER) | irq->u.pgm.code; li->irq.pgm.flags = irq->u.pgm.flags; /* only modify non-PER information */ li->irq.pgm.trans_exc_code = irq->u.pgm.trans_exc_code; li->irq.pgm.mon_code = irq->u.pgm.mon_code; li->irq.pgm.data_exc_code = irq->u.pgm.data_exc_code; li->irq.pgm.mon_class_nr = irq->u.pgm.mon_class_nr; li->irq.pgm.exc_access_id = irq->u.pgm.exc_access_id; li->irq.pgm.op_access_id = irq->u.pgm.op_access_id; } else { li->irq.pgm = irq->u.pgm; } set_bit(IRQ_PEND_PROG, &li->pending_irqs); return 0; } static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; vcpu->stat.inject_pfault_init++; VCPU_EVENT(vcpu, 4, "inject: pfault init parameter block at 0x%llx", irq->u.ext.ext_params2); trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT, irq->u.ext.ext_params, irq->u.ext.ext_params2); li->irq.ext = irq->u.ext; set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs); kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); return 0; } static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; struct kvm_s390_extcall_info *extcall = &li->irq.extcall; uint16_t src_id = irq->u.extcall.code; vcpu->stat.inject_external_call++; VCPU_EVENT(vcpu, 4, "inject: external call source-cpu:%u", src_id); trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL, src_id, 0); /* sending vcpu invalid */ if (kvm_get_vcpu_by_id(vcpu->kvm, src_id) == NULL) return -EINVAL; if (sclp.has_sigpif && !kvm_s390_pv_cpu_get_handle(vcpu)) return sca_inject_ext_call(vcpu, src_id); if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs)) return -EBUSY; *extcall = irq->u.extcall; kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); return 0; } static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; struct kvm_s390_prefix_info *prefix = &li->irq.prefix; vcpu->stat.inject_set_prefix++; VCPU_EVENT(vcpu, 3, "inject: set prefix to %x", irq->u.prefix.address); trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX, irq->u.prefix.address, 0); if (!is_vcpu_stopped(vcpu)) return -EBUSY; *prefix = irq->u.prefix; set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs); return 0; } #define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS) static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; struct kvm_s390_stop_info *stop = &li->irq.stop; int rc = 0; vcpu->stat.inject_stop_signal++; trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0); if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS) return -EINVAL; if (is_vcpu_stopped(vcpu)) { if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS) rc = kvm_s390_store_status_unloaded(vcpu, KVM_S390_STORE_STATUS_NOADDR); return rc; } if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs)) return -EBUSY; stop->flags = irq->u.stop.flags; kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT); return 0; } static int __inject_sigp_restart(struct kvm_vcpu *vcpu) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; vcpu->stat.inject_restart++; VCPU_EVENT(vcpu, 3, "%s", "inject: restart int"); trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0); set_bit(IRQ_PEND_RESTART, &li->pending_irqs); return 0; } static int __inject_sigp_emergency(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; vcpu->stat.inject_emergency_signal++; VCPU_EVENT(vcpu, 4, "inject: emergency from cpu %u", irq->u.emerg.code); trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY, irq->u.emerg.code, 0); /* sending vcpu invalid */ if (kvm_get_vcpu_by_id(vcpu->kvm, irq->u.emerg.code) == NULL) return -EINVAL; set_bit(irq->u.emerg.code, li->sigp_emerg_pending); set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs); kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); return 0; } static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; struct kvm_s390_mchk_info *mchk = &li->irq.mchk; vcpu->stat.inject_mchk++; VCPU_EVENT(vcpu, 3, "inject: machine check mcic 0x%llx", irq->u.mchk.mcic); trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0, irq->u.mchk.mcic); /* * Because repressible machine checks can be indicated along with * exigent machine checks (PoP, Chapter 11, Interruption action) * we need to combine cr14, mcic and external damage code. * Failing storage address and the logout area should not be or'ed * together, we just indicate the last occurrence of the corresponding * machine check */ mchk->cr14 |= irq->u.mchk.cr14; mchk->mcic |= irq->u.mchk.mcic; mchk->ext_damage_code |= irq->u.mchk.ext_damage_code; mchk->failing_storage_address = irq->u.mchk.failing_storage_address; memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout, sizeof(mchk->fixed_logout)); if (mchk->mcic & MCHK_EX_MASK) set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs); else if (mchk->mcic & MCHK_REP_MASK) set_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs); return 0; } static int __inject_ckc(struct kvm_vcpu *vcpu) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; vcpu->stat.inject_ckc++; VCPU_EVENT(vcpu, 3, "%s", "inject: clock comparator external"); trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP, 0, 0); set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); return 0; } static int __inject_cpu_timer(struct kvm_vcpu *vcpu) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; vcpu->stat.inject_cputm++; VCPU_EVENT(vcpu, 3, "%s", "inject: cpu timer external"); trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER, 0, 0); set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); return 0; } static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm, int isc, u32 schid) { struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc]; struct kvm_s390_interrupt_info *iter; u16 id = (schid & 0xffff0000U) >> 16; u16 nr = schid & 0x0000ffffU; spin_lock(&fi->lock); list_for_each_entry(iter, isc_list, list) { if (schid && (id != iter->io.subchannel_id || nr != iter->io.subchannel_nr)) continue; /* found an appropriate entry */ list_del_init(&iter->list); fi->counters[FIRQ_CNTR_IO] -= 1; if (list_empty(isc_list)) clear_bit(isc_to_irq_type(isc), &fi->pending_irqs); spin_unlock(&fi->lock); return iter; } spin_unlock(&fi->lock); return NULL; } static struct kvm_s390_interrupt_info *get_top_io_int(struct kvm *kvm, u64 isc_mask, u32 schid) { struct kvm_s390_interrupt_info *inti = NULL; int isc; for (isc = 0; isc <= MAX_ISC && !inti; isc++) { if (isc_mask & isc_to_isc_bits(isc)) inti = get_io_int(kvm, isc, schid); } return inti; } static int get_top_gisa_isc(struct kvm *kvm, u64 isc_mask, u32 schid) { struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; unsigned long active_mask; int isc; if (schid) goto out; if (!gi->origin) goto out; active_mask = (isc_mask & gisa_get_ipm(gi->origin) << 24) << 32; while (active_mask) { isc = __fls(active_mask) ^ (BITS_PER_LONG - 1); if (gisa_tac_ipm_gisc(gi->origin, isc)) return isc; clear_bit_inv(isc, &active_mask); } out: return -EINVAL; } /* * Dequeue and return an I/O interrupt matching any of the interruption * subclasses as designated by the isc mask in cr6 and the schid (if != 0). * Take into account the interrupts pending in the interrupt list and in GISA. * * Note that for a guest that does not enable I/O interrupts * but relies on TPI, a flood of classic interrupts may starve * out adapter interrupts on the same isc. Linux does not do * that, and it is possible to work around the issue by configuring * different iscs for classic and adapter interrupts in the guest, * but we may want to revisit this in the future. */ struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm, u64 isc_mask, u32 schid) { struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; struct kvm_s390_interrupt_info *inti, *tmp_inti; int isc; inti = get_top_io_int(kvm, isc_mask, schid); isc = get_top_gisa_isc(kvm, isc_mask, schid); if (isc < 0) /* no AI in GISA */ goto out; if (!inti) /* AI in GISA but no classical IO int */ goto gisa_out; /* both types of interrupts present */ if (int_word_to_isc(inti->io.io_int_word) <= isc) { /* classical IO int with higher priority */ gisa_set_ipm_gisc(gi->origin, isc); goto out; } gisa_out: tmp_inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT); if (tmp_inti) { tmp_inti->type = KVM_S390_INT_IO(1, 0, 0, 0); tmp_inti->io.io_int_word = isc_to_int_word(isc); if (inti) kvm_s390_reinject_io_int(kvm, inti); inti = tmp_inti; } else gisa_set_ipm_gisc(gi->origin, isc); out: return inti; } static int __inject_service(struct kvm *kvm, struct kvm_s390_interrupt_info *inti) { struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; kvm->stat.inject_service_signal++; spin_lock(&fi->lock); fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING; /* We always allow events, track them separately from the sccb ints */ if (fi->srv_signal.ext_params & SCCB_EVENT_PENDING) set_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs); /* * Early versions of the QEMU s390 bios will inject several * service interrupts after another without handling a * condition code indicating busy. * We will silently ignore those superfluous sccb values. * A future version of QEMU will take care of serialization * of servc requests */ if (fi->srv_signal.ext_params & SCCB_MASK) goto out; fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK; set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs); out: spin_unlock(&fi->lock); kfree(inti); return 0; } static int __inject_virtio(struct kvm *kvm, struct kvm_s390_interrupt_info *inti) { struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; kvm->stat.inject_virtio++; spin_lock(&fi->lock); if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) { spin_unlock(&fi->lock); return -EBUSY; } fi->counters[FIRQ_CNTR_VIRTIO] += 1; list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]); set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs); spin_unlock(&fi->lock); return 0; } static int __inject_pfault_done(struct kvm *kvm, struct kvm_s390_interrupt_info *inti) { struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; kvm->stat.inject_pfault_done++; spin_lock(&fi->lock); if (fi->counters[FIRQ_CNTR_PFAULT] >= (ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) { spin_unlock(&fi->lock); return -EBUSY; } fi->counters[FIRQ_CNTR_PFAULT] += 1; list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]); set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs); spin_unlock(&fi->lock); return 0; } #define CR_PENDING_SUBCLASS 28 static int __inject_float_mchk(struct kvm *kvm, struct kvm_s390_interrupt_info *inti) { struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; kvm->stat.inject_float_mchk++; spin_lock(&fi->lock); fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS); fi->mchk.mcic |= inti->mchk.mcic; set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs); spin_unlock(&fi->lock); kfree(inti); return 0; } static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti) { struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; struct kvm_s390_float_interrupt *fi; struct list_head *list; int isc; kvm->stat.inject_io++; isc = int_word_to_isc(inti->io.io_int_word); /* * We do not use the lock checking variant as this is just a * performance optimization and we do not hold the lock here. * This is ok as the code will pick interrupts from both "lists" * for delivery. */ if (gi->origin && inti->type & KVM_S390_INT_IO_AI_MASK) { VM_EVENT(kvm, 4, "%s isc %1u", "inject: I/O (AI/gisa)", isc); gisa_set_ipm_gisc(gi->origin, isc); kfree(inti); return 0; } fi = &kvm->arch.float_int; spin_lock(&fi->lock); if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) { spin_unlock(&fi->lock); return -EBUSY; } fi->counters[FIRQ_CNTR_IO] += 1; if (inti->type & KVM_S390_INT_IO_AI_MASK) VM_EVENT(kvm, 4, "%s", "inject: I/O (AI)"); else VM_EVENT(kvm, 4, "inject: I/O %x ss %x schid %04x", inti->io.subchannel_id >> 8, inti->io.subchannel_id >> 1 & 0x3, inti->io.subchannel_nr); list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc]; list_add_tail(&inti->list, list); set_bit(isc_to_irq_type(isc), &fi->pending_irqs); spin_unlock(&fi->lock); return 0; } /* * Find a destination VCPU for a floating irq and kick it. */ static void __floating_irq_kick(struct kvm *kvm, u64 type) { struct kvm_vcpu *dst_vcpu; int sigcpu, online_vcpus, nr_tries = 0; online_vcpus = atomic_read(&kvm->online_vcpus); if (!online_vcpus) return; /* find idle VCPUs first, then round robin */ sigcpu = find_first_bit(kvm->arch.idle_mask, online_vcpus); if (sigcpu == online_vcpus) { do { sigcpu = kvm->arch.float_int.next_rr_cpu++; kvm->arch.float_int.next_rr_cpu %= online_vcpus; /* avoid endless loops if all vcpus are stopped */ if (nr_tries++ >= online_vcpus) return; } while (is_vcpu_stopped(kvm_get_vcpu(kvm, sigcpu))); } dst_vcpu = kvm_get_vcpu(kvm, sigcpu); /* make the VCPU drop out of the SIE, or wake it up if sleeping */ switch (type) { case KVM_S390_MCHK: kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_STOP_INT); break; case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: if (!(type & KVM_S390_INT_IO_AI_MASK && kvm->arch.gisa_int.origin) || kvm_s390_pv_cpu_get_handle(dst_vcpu)) kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_IO_INT); break; default: kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_EXT_INT); break; } kvm_s390_vcpu_wakeup(dst_vcpu); } static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti) { u64 type = READ_ONCE(inti->type); int rc; switch (type) { case KVM_S390_MCHK: rc = __inject_float_mchk(kvm, inti); break; case KVM_S390_INT_VIRTIO: rc = __inject_virtio(kvm, inti); break; case KVM_S390_INT_SERVICE: rc = __inject_service(kvm, inti); break; case KVM_S390_INT_PFAULT_DONE: rc = __inject_pfault_done(kvm, inti); break; case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: rc = __inject_io(kvm, inti); break; default: rc = -EINVAL; } if (rc) return rc; __floating_irq_kick(kvm, type); return 0; } int kvm_s390_inject_vm(struct kvm *kvm, struct kvm_s390_interrupt *s390int) { struct kvm_s390_interrupt_info *inti; int rc; inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT); if (!inti) return -ENOMEM; inti->type = s390int->type; switch (inti->type) { case KVM_S390_INT_VIRTIO: VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx", s390int->parm, s390int->parm64); inti->ext.ext_params = s390int->parm; inti->ext.ext_params2 = s390int->parm64; break; case KVM_S390_INT_SERVICE: VM_EVENT(kvm, 4, "inject: sclp parm:%x", s390int->parm); inti->ext.ext_params = s390int->parm; break; case KVM_S390_INT_PFAULT_DONE: inti->ext.ext_params2 = s390int->parm64; break; case KVM_S390_MCHK: VM_EVENT(kvm, 3, "inject: machine check mcic 0x%llx", s390int->parm64); inti->mchk.cr14 = s390int->parm; /* upper bits are not used */ inti->mchk.mcic = s390int->parm64; break; case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: inti->io.subchannel_id = s390int->parm >> 16; inti->io.subchannel_nr = s390int->parm & 0x0000ffffu; inti->io.io_int_parm = s390int->parm64 >> 32; inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull; break; default: kfree(inti); return -EINVAL; } trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64, 2); rc = __inject_vm(kvm, inti); if (rc) kfree(inti); return rc; } int kvm_s390_reinject_io_int(struct kvm *kvm, struct kvm_s390_interrupt_info *inti) { return __inject_vm(kvm, inti); } int s390int_to_s390irq(struct kvm_s390_interrupt *s390int, struct kvm_s390_irq *irq) { irq->type = s390int->type; switch (irq->type) { case KVM_S390_PROGRAM_INT: if (s390int->parm & 0xffff0000) return -EINVAL; irq->u.pgm.code = s390int->parm; break; case KVM_S390_SIGP_SET_PREFIX: irq->u.prefix.address = s390int->parm; break; case KVM_S390_SIGP_STOP: irq->u.stop.flags = s390int->parm; break; case KVM_S390_INT_EXTERNAL_CALL: if (s390int->parm & 0xffff0000) return -EINVAL; irq->u.extcall.code = s390int->parm; break; case KVM_S390_INT_EMERGENCY: if (s390int->parm & 0xffff0000) return -EINVAL; irq->u.emerg.code = s390int->parm; break; case KVM_S390_MCHK: irq->u.mchk.mcic = s390int->parm64; break; case KVM_S390_INT_PFAULT_INIT: irq->u.ext.ext_params = s390int->parm; irq->u.ext.ext_params2 = s390int->parm64; break; case KVM_S390_RESTART: case KVM_S390_INT_CLOCK_COMP: case KVM_S390_INT_CPU_TIMER: break; default: return -EINVAL; } return 0; } int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs); } int kvm_s390_is_restart_irq_pending(struct kvm_vcpu *vcpu) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; return test_bit(IRQ_PEND_RESTART, &li->pending_irqs); } void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; spin_lock(&li->lock); li->irq.stop.flags = 0; clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs); spin_unlock(&li->lock); } static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) { int rc; switch (irq->type) { case KVM_S390_PROGRAM_INT: rc = __inject_prog(vcpu, irq); break; case KVM_S390_SIGP_SET_PREFIX: rc = __inject_set_prefix(vcpu, irq); break; case KVM_S390_SIGP_STOP: rc = __inject_sigp_stop(vcpu, irq); break; case KVM_S390_RESTART: rc = __inject_sigp_restart(vcpu); break; case KVM_S390_INT_CLOCK_COMP: rc = __inject_ckc(vcpu); break; case KVM_S390_INT_CPU_TIMER: rc = __inject_cpu_timer(vcpu); break; case KVM_S390_INT_EXTERNAL_CALL: rc = __inject_extcall(vcpu, irq); break; case KVM_S390_INT_EMERGENCY: rc = __inject_sigp_emergency(vcpu, irq); break; case KVM_S390_MCHK: rc = __inject_mchk(vcpu, irq); break; case KVM_S390_INT_PFAULT_INIT: rc = __inject_pfault_init(vcpu, irq); break; case KVM_S390_INT_VIRTIO: case KVM_S390_INT_SERVICE: case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: default: rc = -EINVAL; } return rc; } int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; int rc; spin_lock(&li->lock); rc = do_inject_vcpu(vcpu, irq); spin_unlock(&li->lock); if (!rc) kvm_s390_vcpu_wakeup(vcpu); return rc; } static inline void clear_irq_list(struct list_head *_list) { struct kvm_s390_interrupt_info *inti, *n; list_for_each_entry_safe(inti, n, _list, list) { list_del(&inti->list); kfree(inti); } } static void inti_to_irq(struct kvm_s390_interrupt_info *inti, struct kvm_s390_irq *irq) { irq->type = inti->type; switch (inti->type) { case KVM_S390_INT_PFAULT_INIT: case KVM_S390_INT_PFAULT_DONE: case KVM_S390_INT_VIRTIO: irq->u.ext = inti->ext; break; case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: irq->u.io = inti->io; break; } } void kvm_s390_clear_float_irqs(struct kvm *kvm) { struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; int i; mutex_lock(&kvm->lock); if (!kvm_s390_pv_is_protected(kvm)) fi->masked_irqs = 0; mutex_unlock(&kvm->lock); spin_lock(&fi->lock); fi->pending_irqs = 0; memset(&fi->srv_signal, 0, sizeof(fi->srv_signal)); memset(&fi->mchk, 0, sizeof(fi->mchk)); for (i = 0; i < FIRQ_LIST_COUNT; i++) clear_irq_list(&fi->lists[i]); for (i = 0; i < FIRQ_MAX_COUNT; i++) fi->counters[i] = 0; spin_unlock(&fi->lock); kvm_s390_gisa_clear(kvm); }; static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len) { struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; struct kvm_s390_interrupt_info *inti; struct kvm_s390_float_interrupt *fi; struct kvm_s390_irq *buf; struct kvm_s390_irq *irq; int max_irqs; int ret = 0; int n = 0; int i; if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0) return -EINVAL; /* * We are already using -ENOMEM to signal * userspace it may retry with a bigger buffer, * so we need to use something else for this case */ buf = vzalloc(len); if (!buf) return -ENOBUFS; max_irqs = len / sizeof(struct kvm_s390_irq); if (gi->origin && gisa_get_ipm(gi->origin)) { for (i = 0; i <= MAX_ISC; i++) { if (n == max_irqs) { /* signal userspace to try again */ ret = -ENOMEM; goto out_nolock; } if (gisa_tac_ipm_gisc(gi->origin, i)) { irq = (struct kvm_s390_irq *) &buf[n]; irq->type = KVM_S390_INT_IO(1, 0, 0, 0); irq->u.io.io_int_word = isc_to_int_word(i); n++; } } } fi = &kvm->arch.float_int; spin_lock(&fi->lock); for (i = 0; i < FIRQ_LIST_COUNT; i++) { list_for_each_entry(inti, &fi->lists[i], list) { if (n == max_irqs) { /* signal userspace to try again */ ret = -ENOMEM; goto out; } inti_to_irq(inti, &buf[n]); n++; } } if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs) || test_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs)) { if (n == max_irqs) { /* signal userspace to try again */ ret = -ENOMEM; goto out; } irq = (struct kvm_s390_irq *) &buf[n]; irq->type = KVM_S390_INT_SERVICE; irq->u.ext = fi->srv_signal; n++; } if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) { if (n == max_irqs) { /* signal userspace to try again */ ret = -ENOMEM; goto out; } irq = (struct kvm_s390_irq *) &buf[n]; irq->type = KVM_S390_MCHK; irq->u.mchk = fi->mchk; n++; } out: spin_unlock(&fi->lock); out_nolock: if (!ret && n > 0) { if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n)) ret = -EFAULT; } vfree(buf); return ret < 0 ? ret : n; } static int flic_ais_mode_get_all(struct kvm *kvm, struct kvm_device_attr *attr) { struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; struct kvm_s390_ais_all ais; if (attr->attr < sizeof(ais)) return -EINVAL; if (!test_kvm_facility(kvm, 72)) return -EOPNOTSUPP; mutex_lock(&fi->ais_lock); ais.simm = fi->simm; ais.nimm = fi->nimm; mutex_unlock(&fi->ais_lock); if (copy_to_user((void __user *)attr->addr, &ais, sizeof(ais))) return -EFAULT; return 0; } static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr) { int r; switch (attr->group) { case KVM_DEV_FLIC_GET_ALL_IRQS: r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr, attr->attr); break; case KVM_DEV_FLIC_AISM_ALL: r = flic_ais_mode_get_all(dev->kvm, attr); break; default: r = -EINVAL; } return r; } static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti, u64 addr) { struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr; void *target = NULL; void __user *source; u64 size; if (get_user(inti->type, (u64 __user *)addr)) return -EFAULT; switch (inti->type) { case KVM_S390_INT_PFAULT_INIT: case KVM_S390_INT_PFAULT_DONE: case KVM_S390_INT_VIRTIO: case KVM_S390_INT_SERVICE: target = (void *) &inti->ext; source = &uptr->u.ext; size = sizeof(inti->ext); break; case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: target = (void *) &inti->io; source = &uptr->u.io; size = sizeof(inti->io); break; case KVM_S390_MCHK: target = (void *) &inti->mchk; source = &uptr->u.mchk; size = sizeof(inti->mchk); break; default: return -EINVAL; } if (copy_from_user(target, source, size)) return -EFAULT; return 0; } static int enqueue_floating_irq(struct kvm_device *dev, struct kvm_device_attr *attr) { struct kvm_s390_interrupt_info *inti = NULL; int r = 0; int len = attr->attr; if (len % sizeof(struct kvm_s390_irq) != 0) return -EINVAL; else if (len > KVM_S390_FLIC_MAX_BUFFER) return -EINVAL; while (len >= sizeof(struct kvm_s390_irq)) { inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT); if (!inti) return -ENOMEM; r = copy_irq_from_user(inti, attr->addr); if (r) { kfree(inti); return r; } r = __inject_vm(dev->kvm, inti); if (r) { kfree(inti); return r; } len -= sizeof(struct kvm_s390_irq); attr->addr += sizeof(struct kvm_s390_irq); } return r; } static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id) { if (id >= MAX_S390_IO_ADAPTERS) return NULL; id = array_index_nospec(id, MAX_S390_IO_ADAPTERS); return kvm->arch.adapters[id]; } static int register_io_adapter(struct kvm_device *dev, struct kvm_device_attr *attr) { struct s390_io_adapter *adapter; struct kvm_s390_io_adapter adapter_info; if (copy_from_user(&adapter_info, (void __user *)attr->addr, sizeof(adapter_info))) return -EFAULT; if (adapter_info.id >= MAX_S390_IO_ADAPTERS) return -EINVAL; adapter_info.id = array_index_nospec(adapter_info.id, MAX_S390_IO_ADAPTERS); if (dev->kvm->arch.adapters[adapter_info.id] != NULL) return -EINVAL; adapter = kzalloc(sizeof(*adapter), GFP_KERNEL_ACCOUNT); if (!adapter) return -ENOMEM; adapter->id = adapter_info.id; adapter->isc = adapter_info.isc; adapter->maskable = adapter_info.maskable; adapter->masked = false; adapter->swap = adapter_info.swap; adapter->suppressible = (adapter_info.flags) & KVM_S390_ADAPTER_SUPPRESSIBLE; dev->kvm->arch.adapters[adapter->id] = adapter; return 0; } int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked) { int ret; struct s390_io_adapter *adapter = get_io_adapter(kvm, id); if (!adapter || !adapter->maskable) return -EINVAL; ret = adapter->masked; adapter->masked = masked; return ret; } void kvm_s390_destroy_adapters(struct kvm *kvm) { int i; for (i = 0; i < MAX_S390_IO_ADAPTERS; i++) kfree(kvm->arch.adapters[i]); } static int modify_io_adapter(struct kvm_device *dev, struct kvm_device_attr *attr) { struct kvm_s390_io_adapter_req req; struct s390_io_adapter *adapter; int ret; if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req))) return -EFAULT; adapter = get_io_adapter(dev->kvm, req.id); if (!adapter) return -EINVAL; switch (req.type) { case KVM_S390_IO_ADAPTER_MASK: ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask); if (ret > 0) ret = 0; break; /* * The following operations are no longer needed and therefore no-ops. * The gpa to hva translation is done when an IRQ route is set up. The * set_irq code uses get_user_pages_remote() to do the actual write. */ case KVM_S390_IO_ADAPTER_MAP: case KVM_S390_IO_ADAPTER_UNMAP: ret = 0; break; default: ret = -EINVAL; } return ret; } static int clear_io_irq(struct kvm *kvm, struct kvm_device_attr *attr) { const u64 isc_mask = 0xffUL << 24; /* all iscs set */ u32 schid; if (attr->flags) return -EINVAL; if (attr->attr != sizeof(schid)) return -EINVAL; if (copy_from_user(&schid, (void __user *) attr->addr, sizeof(schid))) return -EFAULT; if (!schid) return -EINVAL; kfree(kvm_s390_get_io_int(kvm, isc_mask, schid)); /* * If userspace is conforming to the architecture, we can have at most * one pending I/O interrupt per subchannel, so this is effectively a * clear all. */ return 0; } static int modify_ais_mode(struct kvm *kvm, struct kvm_device_attr *attr) { struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; struct kvm_s390_ais_req req; int ret = 0; if (!test_kvm_facility(kvm, 72)) return -EOPNOTSUPP; if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req))) return -EFAULT; if (req.isc > MAX_ISC) return -EINVAL; trace_kvm_s390_modify_ais_mode(req.isc, (fi->simm & AIS_MODE_MASK(req.isc)) ? (fi->nimm & AIS_MODE_MASK(req.isc)) ? 2 : KVM_S390_AIS_MODE_SINGLE : KVM_S390_AIS_MODE_ALL, req.mode); mutex_lock(&fi->ais_lock); switch (req.mode) { case KVM_S390_AIS_MODE_ALL: fi->simm &= ~AIS_MODE_MASK(req.isc); fi->nimm &= ~AIS_MODE_MASK(req.isc); break; case KVM_S390_AIS_MODE_SINGLE: fi->simm |= AIS_MODE_MASK(req.isc); fi->nimm &= ~AIS_MODE_MASK(req.isc); break; default: ret = -EINVAL; } mutex_unlock(&fi->ais_lock); return ret; } static int kvm_s390_inject_airq(struct kvm *kvm, struct s390_io_adapter *adapter) { struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; struct kvm_s390_interrupt s390int = { .type = KVM_S390_INT_IO(1, 0, 0, 0), .parm = 0, .parm64 = isc_to_int_word(adapter->isc), }; int ret = 0; if (!test_kvm_facility(kvm, 72) || !adapter->suppressible) return kvm_s390_inject_vm(kvm, &s390int); mutex_lock(&fi->ais_lock); if (fi->nimm & AIS_MODE_MASK(adapter->isc)) { trace_kvm_s390_airq_suppressed(adapter->id, adapter->isc); goto out; } ret = kvm_s390_inject_vm(kvm, &s390int); if (!ret && (fi->simm & AIS_MODE_MASK(adapter->isc))) { fi->nimm |= AIS_MODE_MASK(adapter->isc); trace_kvm_s390_modify_ais_mode(adapter->isc, KVM_S390_AIS_MODE_SINGLE, 2); } out: mutex_unlock(&fi->ais_lock); return ret; } static int flic_inject_airq(struct kvm *kvm, struct kvm_device_attr *attr) { unsigned int id = attr->attr; struct s390_io_adapter *adapter = get_io_adapter(kvm, id); if (!adapter) return -EINVAL; return kvm_s390_inject_airq(kvm, adapter); } static int flic_ais_mode_set_all(struct kvm *kvm, struct kvm_device_attr *attr) { struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; struct kvm_s390_ais_all ais; if (!test_kvm_facility(kvm, 72)) return -EOPNOTSUPP; if (copy_from_user(&ais, (void __user *)attr->addr, sizeof(ais))) return -EFAULT; mutex_lock(&fi->ais_lock); fi->simm = ais.simm; fi->nimm = ais.nimm; mutex_unlock(&fi->ais_lock); return 0; } static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr) { int r = 0; unsigned long i; struct kvm_vcpu *vcpu; switch (attr->group) { case KVM_DEV_FLIC_ENQUEUE: r = enqueue_floating_irq(dev, attr); break; case KVM_DEV_FLIC_CLEAR_IRQS: kvm_s390_clear_float_irqs(dev->kvm); break; case KVM_DEV_FLIC_APF_ENABLE: if (kvm_is_ucontrol(dev->kvm)) return -EINVAL; dev->kvm->arch.gmap->pfault_enabled = 1; break; case KVM_DEV_FLIC_APF_DISABLE_WAIT: if (kvm_is_ucontrol(dev->kvm)) return -EINVAL; dev->kvm->arch.gmap->pfault_enabled = 0; /* * Make sure no async faults are in transition when * clearing the queues. So we don't need to worry * about late coming workers. */ synchronize_srcu(&dev->kvm->srcu); kvm_for_each_vcpu(i, vcpu, dev->kvm) kvm_clear_async_pf_completion_queue(vcpu); break; case KVM_DEV_FLIC_ADAPTER_REGISTER: r = register_io_adapter(dev, attr); break; case KVM_DEV_FLIC_ADAPTER_MODIFY: r = modify_io_adapter(dev, attr); break; case KVM_DEV_FLIC_CLEAR_IO_IRQ: r = clear_io_irq(dev->kvm, attr); break; case KVM_DEV_FLIC_AISM: r = modify_ais_mode(dev->kvm, attr); break; case KVM_DEV_FLIC_AIRQ_INJECT: r = flic_inject_airq(dev->kvm, attr); break; case KVM_DEV_FLIC_AISM_ALL: r = flic_ais_mode_set_all(dev->kvm, attr); break; default: r = -EINVAL; } return r; } static int flic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr) { switch (attr->group) { case KVM_DEV_FLIC_GET_ALL_IRQS: case KVM_DEV_FLIC_ENQUEUE: case KVM_DEV_FLIC_CLEAR_IRQS: case KVM_DEV_FLIC_APF_ENABLE: case KVM_DEV_FLIC_APF_DISABLE_WAIT: case KVM_DEV_FLIC_ADAPTER_REGISTER: case KVM_DEV_FLIC_ADAPTER_MODIFY: case KVM_DEV_FLIC_CLEAR_IO_IRQ: case KVM_DEV_FLIC_AISM: case KVM_DEV_FLIC_AIRQ_INJECT: case KVM_DEV_FLIC_AISM_ALL: return 0; } return -ENXIO; } static int flic_create(struct kvm_device *dev, u32 type) { if (!dev) return -EINVAL; if (dev->kvm->arch.flic) return -EINVAL; dev->kvm->arch.flic = dev; return 0; } static void flic_destroy(struct kvm_device *dev) { dev->kvm->arch.flic = NULL; kfree(dev); } /* s390 floating irq controller (flic) */ struct kvm_device_ops kvm_flic_ops = { .name = "kvm-flic", .get_attr = flic_get_attr, .set_attr = flic_set_attr, .has_attr = flic_has_attr, .create = flic_create, .destroy = flic_destroy, }; static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap) { unsigned long bit; bit = bit_nr + (addr % PAGE_SIZE) * 8; return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit; } static struct page *get_map_page(struct kvm *kvm, u64 uaddr) { struct page *page = NULL; mmap_read_lock(kvm->mm); get_user_pages_remote(kvm->mm, uaddr, 1, FOLL_WRITE, &page, NULL); mmap_read_unlock(kvm->mm); return page; } static int adapter_indicators_set(struct kvm *kvm, struct s390_io_adapter *adapter, struct kvm_s390_adapter_int *adapter_int) { unsigned long bit; int summary_set, idx; struct page *ind_page, *summary_page; void *map; ind_page = get_map_page(kvm, adapter_int->ind_addr); if (!ind_page) return -1; summary_page = get_map_page(kvm, adapter_int->summary_addr); if (!summary_page) { put_page(ind_page); return -1; } idx = srcu_read_lock(&kvm->srcu); map = page_address(ind_page); bit = get_ind_bit(adapter_int->ind_addr, adapter_int->ind_offset, adapter->swap); set_bit(bit, map); mark_page_dirty(kvm, adapter_int->ind_addr >> PAGE_SHIFT); set_page_dirty_lock(ind_page); map = page_address(summary_page); bit = get_ind_bit(adapter_int->summary_addr, adapter_int->summary_offset, adapter->swap); summary_set = test_and_set_bit(bit, map); mark_page_dirty(kvm, adapter_int->summary_addr >> PAGE_SHIFT); set_page_dirty_lock(summary_page); srcu_read_unlock(&kvm->srcu, idx); put_page(ind_page); put_page(summary_page); return summary_set ? 0 : 1; } /* * < 0 - not injected due to error * = 0 - coalesced, summary indicator already active * > 0 - injected interrupt */ static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm, int irq_source_id, int level, bool line_status) { int ret; struct s390_io_adapter *adapter; /* We're only interested in the 0->1 transition. */ if (!level) return 0; adapter = get_io_adapter(kvm, e->adapter.adapter_id); if (!adapter) return -1; ret = adapter_indicators_set(kvm, adapter, &e->adapter); if ((ret > 0) && !adapter->masked) { ret = kvm_s390_inject_airq(kvm, adapter); if (ret == 0) ret = 1; } return ret; } /* * Inject the machine check to the guest. */ void kvm_s390_reinject_machine_check(struct kvm_vcpu *vcpu, struct mcck_volatile_info *mcck_info) { struct kvm_s390_interrupt_info inti; struct kvm_s390_irq irq; struct kvm_s390_mchk_info *mchk; union mci mci; __u64 cr14 = 0; /* upper bits are not used */ int rc; mci.val = mcck_info->mcic; if (mci.sr) cr14 |= CR14_RECOVERY_SUBMASK; if (mci.dg) cr14 |= CR14_DEGRADATION_SUBMASK; if (mci.w) cr14 |= CR14_WARNING_SUBMASK; mchk = mci.ck ? &inti.mchk : &irq.u.mchk; mchk->cr14 = cr14; mchk->mcic = mcck_info->mcic; mchk->ext_damage_code = mcck_info->ext_damage_code; mchk->failing_storage_address = mcck_info->failing_storage_address; if (mci.ck) { /* Inject the floating machine check */ inti.type = KVM_S390_MCHK; rc = __inject_vm(vcpu->kvm, &inti); } else { /* Inject the machine check to specified vcpu */ irq.type = KVM_S390_MCHK; rc = kvm_s390_inject_vcpu(vcpu, &irq); } WARN_ON_ONCE(rc); } int kvm_set_routing_entry(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e, const struct kvm_irq_routing_entry *ue) { u64 uaddr; switch (ue->type) { /* we store the userspace addresses instead of the guest addresses */ case KVM_IRQ_ROUTING_S390_ADAPTER: if (kvm_is_ucontrol(kvm)) return -EINVAL; e->set = set_adapter_int; uaddr = gmap_translate(kvm->arch.gmap, ue->u.adapter.summary_addr); if (uaddr == -EFAULT) return -EFAULT; e->adapter.summary_addr = uaddr; uaddr = gmap_translate(kvm->arch.gmap, ue->u.adapter.ind_addr); if (uaddr == -EFAULT) return -EFAULT; e->adapter.ind_addr = uaddr; e->adapter.summary_offset = ue->u.adapter.summary_offset; e->adapter.ind_offset = ue->u.adapter.ind_offset; e->adapter.adapter_id = ue->u.adapter.adapter_id; return 0; default: return -EINVAL; } } int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm, int irq_source_id, int level, bool line_status) { return -EINVAL; } int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; struct kvm_s390_irq *buf; int r = 0; int n; buf = vmalloc(len); if (!buf) return -ENOMEM; if (copy_from_user((void *) buf, irqstate, len)) { r = -EFAULT; goto out_free; } /* * Don't allow setting the interrupt state * when there are already interrupts pending */ spin_lock(&li->lock); if (li->pending_irqs) { r = -EBUSY; goto out_unlock; } for (n = 0; n < len / sizeof(*buf); n++) { r = do_inject_vcpu(vcpu, &buf[n]); if (r) break; } out_unlock: spin_unlock(&li->lock); out_free: vfree(buf); return r; } static void store_local_irq(struct kvm_s390_local_interrupt *li, struct kvm_s390_irq *irq, unsigned long irq_type) { switch (irq_type) { case IRQ_PEND_MCHK_EX: case IRQ_PEND_MCHK_REP: irq->type = KVM_S390_MCHK; irq->u.mchk = li->irq.mchk; break; case IRQ_PEND_PROG: irq->type = KVM_S390_PROGRAM_INT; irq->u.pgm = li->irq.pgm; break; case IRQ_PEND_PFAULT_INIT: irq->type = KVM_S390_INT_PFAULT_INIT; irq->u.ext = li->irq.ext; break; case IRQ_PEND_EXT_EXTERNAL: irq->type = KVM_S390_INT_EXTERNAL_CALL; irq->u.extcall = li->irq.extcall; break; case IRQ_PEND_EXT_CLOCK_COMP: irq->type = KVM_S390_INT_CLOCK_COMP; break; case IRQ_PEND_EXT_CPU_TIMER: irq->type = KVM_S390_INT_CPU_TIMER; break; case IRQ_PEND_SIGP_STOP: irq->type = KVM_S390_SIGP_STOP; irq->u.stop = li->irq.stop; break; case IRQ_PEND_RESTART: irq->type = KVM_S390_RESTART; break; case IRQ_PEND_SET_PREFIX: irq->type = KVM_S390_SIGP_SET_PREFIX; irq->u.prefix = li->irq.prefix; break; } } int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len) { int scn; DECLARE_BITMAP(sigp_emerg_pending, KVM_MAX_VCPUS); struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; unsigned long pending_irqs; struct kvm_s390_irq irq; unsigned long irq_type; int cpuaddr; int n = 0; spin_lock(&li->lock); pending_irqs = li->pending_irqs; memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending, sizeof(sigp_emerg_pending)); spin_unlock(&li->lock); for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) { memset(&irq, 0, sizeof(irq)); if (irq_type == IRQ_PEND_EXT_EMERGENCY) continue; if (n + sizeof(irq) > len) return -ENOBUFS; store_local_irq(&vcpu->arch.local_int, &irq, irq_type); if (copy_to_user(&buf[n], &irq, sizeof(irq))) return -EFAULT; n += sizeof(irq); } if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) { for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) { memset(&irq, 0, sizeof(irq)); if (n + sizeof(irq) > len) return -ENOBUFS; irq.type = KVM_S390_INT_EMERGENCY; irq.u.emerg.code = cpuaddr; if (copy_to_user(&buf[n], &irq, sizeof(irq))) return -EFAULT; n += sizeof(irq); } } if (sca_ext_call_pending(vcpu, &scn)) { if (n + sizeof(irq) > len) return -ENOBUFS; memset(&irq, 0, sizeof(irq)); irq.type = KVM_S390_INT_EXTERNAL_CALL; irq.u.extcall.code = scn; if (copy_to_user(&buf[n], &irq, sizeof(irq))) return -EFAULT; n += sizeof(irq); } return n; } static void __airqs_kick_single_vcpu(struct kvm *kvm, u8 deliverable_mask) { int vcpu_idx, online_vcpus = atomic_read(&kvm->online_vcpus); struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; struct kvm_vcpu *vcpu; u8 vcpu_isc_mask; for_each_set_bit(vcpu_idx, kvm->arch.idle_mask, online_vcpus) { vcpu = kvm_get_vcpu(kvm, vcpu_idx); if (psw_ioint_disabled(vcpu)) continue; vcpu_isc_mask = (u8)(vcpu->arch.sie_block->gcr[6] >> 24); if (deliverable_mask & vcpu_isc_mask) { /* lately kicked but not yet running */ if (test_and_set_bit(vcpu_idx, gi->kicked_mask)) return; kvm_s390_vcpu_wakeup(vcpu); return; } } } static enum hrtimer_restart gisa_vcpu_kicker(struct hrtimer *timer) { struct kvm_s390_gisa_interrupt *gi = container_of(timer, struct kvm_s390_gisa_interrupt, timer); struct kvm *kvm = container_of(gi->origin, struct sie_page2, gisa)->kvm; u8 pending_mask; pending_mask = gisa_get_ipm_or_restore_iam(gi); if (pending_mask) { __airqs_kick_single_vcpu(kvm, pending_mask); hrtimer_forward_now(timer, ns_to_ktime(gi->expires)); return HRTIMER_RESTART; } return HRTIMER_NORESTART; } #define NULL_GISA_ADDR 0x00000000UL #define NONE_GISA_ADDR 0x00000001UL #define GISA_ADDR_MASK 0xfffff000UL static void process_gib_alert_list(void) { struct kvm_s390_gisa_interrupt *gi; u32 final, gisa_phys, origin = 0UL; struct kvm_s390_gisa *gisa; struct kvm *kvm; do { /* * If the NONE_GISA_ADDR is still stored in the alert list * origin, we will leave the outer loop. No further GISA has * been added to the alert list by millicode while processing * the current alert list. */ final = (origin & NONE_GISA_ADDR); /* * Cut off the alert list and store the NONE_GISA_ADDR in the * alert list origin to avoid further GAL interruptions. * A new alert list can be build up by millicode in parallel * for guests not in the yet cut-off alert list. When in the * final loop, store the NULL_GISA_ADDR instead. This will re- * enable GAL interruptions on the host again. */ origin = xchg(&gib->alert_list_origin, (!final) ? NONE_GISA_ADDR : NULL_GISA_ADDR); /* * Loop through the just cut-off alert list and start the * gisa timers to kick idle vcpus to consume the pending * interruptions asap. */ while (origin & GISA_ADDR_MASK) { gisa_phys = origin; gisa = phys_to_virt(gisa_phys); origin = gisa->next_alert; gisa->next_alert = gisa_phys; kvm = container_of(gisa, struct sie_page2, gisa)->kvm; gi = &kvm->arch.gisa_int; if (hrtimer_active(&gi->timer)) hrtimer_cancel(&gi->timer); hrtimer_start(&gi->timer, 0, HRTIMER_MODE_REL); } } while (!final); } void kvm_s390_gisa_clear(struct kvm *kvm) { struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; if (!gi->origin) return; gisa_clear_ipm(gi->origin); VM_EVENT(kvm, 3, "gisa 0x%pK cleared", gi->origin); } void kvm_s390_gisa_init(struct kvm *kvm) { struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; if (!css_general_characteristics.aiv) return; gi->origin = &kvm->arch.sie_page2->gisa; gi->alert.mask = 0; spin_lock_init(&gi->alert.ref_lock); gi->expires = 50 * 1000; /* 50 usec */ hrtimer_init(&gi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); gi->timer.function = gisa_vcpu_kicker; memset(gi->origin, 0, sizeof(struct kvm_s390_gisa)); gi->origin->next_alert = (u32)virt_to_phys(gi->origin); VM_EVENT(kvm, 3, "gisa 0x%pK initialized", gi->origin); } void kvm_s390_gisa_enable(struct kvm *kvm) { struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; struct kvm_vcpu *vcpu; unsigned long i; u32 gisa_desc; if (gi->origin) return; kvm_s390_gisa_init(kvm); gisa_desc = kvm_s390_get_gisa_desc(kvm); if (!gisa_desc) return; kvm_for_each_vcpu(i, vcpu, kvm) { mutex_lock(&vcpu->mutex); vcpu->arch.sie_block->gd = gisa_desc; vcpu->arch.sie_block->eca |= ECA_AIV; VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u", vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id); mutex_unlock(&vcpu->mutex); } } void kvm_s390_gisa_destroy(struct kvm *kvm) { struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; struct kvm_s390_gisa *gisa = gi->origin; if (!gi->origin) return; WARN(gi->alert.mask != 0x00, "unexpected non zero alert.mask 0x%02x", gi->alert.mask); gi->alert.mask = 0x00; if (gisa_set_iam(gi->origin, gi->alert.mask)) process_gib_alert_list(); hrtimer_cancel(&gi->timer); gi->origin = NULL; VM_EVENT(kvm, 3, "gisa 0x%pK destroyed", gisa); } void kvm_s390_gisa_disable(struct kvm *kvm) { struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; struct kvm_vcpu *vcpu; unsigned long i; if (!gi->origin) return; kvm_for_each_vcpu(i, vcpu, kvm) { mutex_lock(&vcpu->mutex); vcpu->arch.sie_block->eca &= ~ECA_AIV; vcpu->arch.sie_block->gd = 0U; mutex_unlock(&vcpu->mutex); VCPU_EVENT(vcpu, 3, "AIV disabled for cpu %03u", vcpu->vcpu_id); } kvm_s390_gisa_destroy(kvm); } /** * kvm_s390_gisc_register - register a guest ISC * * @kvm: the kernel vm to work with * @gisc: the guest interruption sub class to register * * The function extends the vm specific alert mask to use. * The effective IAM mask in the GISA is updated as well * in case the GISA is not part of the GIB alert list. * It will be updated latest when the IAM gets restored * by gisa_get_ipm_or_restore_iam(). * * Returns: the nonspecific ISC (NISC) the gib alert mechanism * has registered with the channel subsystem. * -ENODEV in case the vm uses no GISA * -ERANGE in case the guest ISC is invalid */ int kvm_s390_gisc_register(struct kvm *kvm, u32 gisc) { struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; if (!gi->origin) return -ENODEV; if (gisc > MAX_ISC) return -ERANGE; spin_lock(&gi->alert.ref_lock); gi->alert.ref_count[gisc]++; if (gi->alert.ref_count[gisc] == 1) { gi->alert.mask |= 0x80 >> gisc; gisa_set_iam(gi->origin, gi->alert.mask); } spin_unlock(&gi->alert.ref_lock); return gib->nisc; } EXPORT_SYMBOL_GPL(kvm_s390_gisc_register); /** * kvm_s390_gisc_unregister - unregister a guest ISC * * @kvm: the kernel vm to work with * @gisc: the guest interruption sub class to register * * The function reduces the vm specific alert mask to use. * The effective IAM mask in the GISA is updated as well * in case the GISA is not part of the GIB alert list. * It will be updated latest when the IAM gets restored * by gisa_get_ipm_or_restore_iam(). * * Returns: the nonspecific ISC (NISC) the gib alert mechanism * has registered with the channel subsystem. * -ENODEV in case the vm uses no GISA * -ERANGE in case the guest ISC is invalid * -EINVAL in case the guest ISC is not registered */ int kvm_s390_gisc_unregister(struct kvm *kvm, u32 gisc) { struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; int rc = 0; if (!gi->origin) return -ENODEV; if (gisc > MAX_ISC) return -ERANGE; spin_lock(&gi->alert.ref_lock); if (gi->alert.ref_count[gisc] == 0) { rc = -EINVAL; goto out; } gi->alert.ref_count[gisc]--; if (gi->alert.ref_count[gisc] == 0) { gi->alert.mask &= ~(0x80 >> gisc); gisa_set_iam(gi->origin, gi->alert.mask); } out: spin_unlock(&gi->alert.ref_lock); return rc; } EXPORT_SYMBOL_GPL(kvm_s390_gisc_unregister); static void aen_host_forward(unsigned long si) { struct kvm_s390_gisa_interrupt *gi; struct zpci_gaite *gaite; struct kvm *kvm; gaite = (struct zpci_gaite *)aift->gait + (si * sizeof(struct zpci_gaite)); if (gaite->count == 0) return; if (gaite->aisb != 0) set_bit_inv(gaite->aisbo, phys_to_virt(gaite->aisb)); kvm = kvm_s390_pci_si_to_kvm(aift, si); if (!kvm) return; gi = &kvm->arch.gisa_int; if (!(gi->origin->g1.simm & AIS_MODE_MASK(gaite->gisc)) || !(gi->origin->g1.nimm & AIS_MODE_MASK(gaite->gisc))) { gisa_set_ipm_gisc(gi->origin, gaite->gisc); if (hrtimer_active(&gi->timer)) hrtimer_cancel(&gi->timer); hrtimer_start(&gi->timer, 0, HRTIMER_MODE_REL); kvm->stat.aen_forward++; } } static void aen_process_gait(u8 isc) { bool found = false, first = true; union zpci_sic_iib iib = {{0}}; unsigned long si, flags; spin_lock_irqsave(&aift->gait_lock, flags); if (!aift->gait) { spin_unlock_irqrestore(&aift->gait_lock, flags); return; } for (si = 0;;) { /* Scan adapter summary indicator bit vector */ si = airq_iv_scan(aift->sbv, si, airq_iv_end(aift->sbv)); if (si == -1UL) { if (first || found) { /* Re-enable interrupts. */ zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, isc, &iib); first = found = false; } else { /* Interrupts on and all bits processed */ break; } found = false; si = 0; /* Scan again after re-enabling interrupts */ continue; } found = true; aen_host_forward(si); } spin_unlock_irqrestore(&aift->gait_lock, flags); } static void gib_alert_irq_handler(struct airq_struct *airq, struct tpi_info *tpi_info) { struct tpi_adapter_info *info = (struct tpi_adapter_info *)tpi_info; inc_irq_stat(IRQIO_GAL); if ((info->forward || info->error) && IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) { aen_process_gait(info->isc); if (info->aism != 0) process_gib_alert_list(); } else { process_gib_alert_list(); } } static struct airq_struct gib_alert_irq = { .handler = gib_alert_irq_handler, }; void kvm_s390_gib_destroy(void) { if (!gib) return; if (kvm_s390_pci_interp_allowed() && aift) { mutex_lock(&aift->aift_lock); kvm_s390_pci_aen_exit(); mutex_unlock(&aift->aift_lock); } chsc_sgib(0); unregister_adapter_interrupt(&gib_alert_irq); free_page((unsigned long)gib); gib = NULL; } int __init kvm_s390_gib_init(u8 nisc) { u32 gib_origin; int rc = 0; if (!css_general_characteristics.aiv) { KVM_EVENT(3, "%s", "gib not initialized, no AIV facility"); goto out; } gib = (struct kvm_s390_gib *)get_zeroed_page(GFP_KERNEL_ACCOUNT | GFP_DMA); if (!gib) { rc = -ENOMEM; goto out; } gib_alert_irq.isc = nisc; if (register_adapter_interrupt(&gib_alert_irq)) { pr_err("Registering the GIB alert interruption handler failed\n"); rc = -EIO; goto out_free_gib; } /* adapter interrupts used for AP (applicable here) don't use the LSI */ *gib_alert_irq.lsi_ptr = 0xff; gib->nisc = nisc; gib_origin = virt_to_phys(gib); if (chsc_sgib(gib_origin)) { pr_err("Associating the GIB with the AIV facility failed\n"); free_page((unsigned long)gib); gib = NULL; rc = -EIO; goto out_unreg_gal; } if (kvm_s390_pci_interp_allowed()) { if (kvm_s390_pci_aen_init(nisc)) { pr_err("Initializing AEN for PCI failed\n"); rc = -EIO; goto out_unreg_gal; } } KVM_EVENT(3, "gib 0x%pK (nisc=%d) initialized", gib, gib->nisc); goto out; out_unreg_gal: unregister_adapter_interrupt(&gib_alert_irq); out_free_gib: free_page((unsigned long)gib); gib = NULL; out: return rc; }