// SPDX-License-Identifier: GPL-2.0-or-later /* * battery.c - ACPI Battery Driver (Revision: 2.0) * * Copyright (C) 2007 Alexey Starikovskiy * Copyright (C) 2004-2007 Vladimir Lebedev * Copyright (C) 2001, 2002 Andy Grover * Copyright (C) 2001, 2002 Paul Diefenbaugh */ #define pr_fmt(fmt) "ACPI: battery: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define ACPI_BATTERY_VALUE_UNKNOWN 0xFFFFFFFF #define ACPI_BATTERY_CAPACITY_VALID(capacity) \ ((capacity) != 0 && (capacity) != ACPI_BATTERY_VALUE_UNKNOWN) #define ACPI_BATTERY_DEVICE_NAME "Battery" /* Battery power unit: 0 means mW, 1 means mA */ #define ACPI_BATTERY_POWER_UNIT_MA 1 #define ACPI_BATTERY_STATE_DISCHARGING 0x1 #define ACPI_BATTERY_STATE_CHARGING 0x2 #define ACPI_BATTERY_STATE_CRITICAL 0x4 MODULE_AUTHOR("Paul Diefenbaugh"); MODULE_AUTHOR("Alexey Starikovskiy "); MODULE_DESCRIPTION("ACPI Battery Driver"); MODULE_LICENSE("GPL"); static async_cookie_t async_cookie; static bool battery_driver_registered; static int battery_bix_broken_package; static int battery_notification_delay_ms; static int battery_ac_is_broken; static unsigned int cache_time = 1000; module_param(cache_time, uint, 0644); MODULE_PARM_DESC(cache_time, "cache time in milliseconds"); static const struct acpi_device_id battery_device_ids[] = { {"PNP0C0A", 0}, /* Microsoft Surface Go 3 */ {"MSHW0146", 0}, {"", 0}, }; MODULE_DEVICE_TABLE(acpi, battery_device_ids); enum { ACPI_BATTERY_ALARM_PRESENT, ACPI_BATTERY_XINFO_PRESENT, ACPI_BATTERY_QUIRK_PERCENTAGE_CAPACITY, /* On Lenovo Thinkpad models from 2010 and 2011, the power unit * switches between mWh and mAh depending on whether the system * is running on battery or not. When mAh is the unit, most * reported values are incorrect and need to be adjusted by * 10000/design_voltage. Verified on x201, t410, t410s, and x220. * Pre-2010 and 2012 models appear to always report in mWh and * are thus unaffected (tested with t42, t61, t500, x200, x300, * and x230). Also, in mid-2012 Lenovo issued a BIOS update for * the 2011 models that fixes the issue (tested on x220 with a * post-1.29 BIOS), but as of Nov. 2012, no such update is * available for the 2010 models. */ ACPI_BATTERY_QUIRK_THINKPAD_MAH, /* for batteries reporting current capacity with design capacity * on a full charge, but showing degradation in full charge cap. */ ACPI_BATTERY_QUIRK_DEGRADED_FULL_CHARGE, }; struct acpi_battery { struct mutex lock; struct mutex sysfs_lock; struct power_supply *bat; struct power_supply_desc bat_desc; struct acpi_device *device; struct notifier_block pm_nb; struct list_head list; unsigned long update_time; int revision; int rate_now; int capacity_now; int voltage_now; int design_capacity; int full_charge_capacity; int technology; int design_voltage; int design_capacity_warning; int design_capacity_low; int cycle_count; int measurement_accuracy; int max_sampling_time; int min_sampling_time; int max_averaging_interval; int min_averaging_interval; int capacity_granularity_1; int capacity_granularity_2; int alarm; char model_number[32]; char serial_number[32]; char type[32]; char oem_info[32]; int state; int power_unit; unsigned long flags; }; #define to_acpi_battery(x) power_supply_get_drvdata(x) static inline int acpi_battery_present(struct acpi_battery *battery) { return battery->device->status.battery_present; } static int acpi_battery_technology(struct acpi_battery *battery) { if (!strcasecmp("NiCd", battery->type)) return POWER_SUPPLY_TECHNOLOGY_NiCd; if (!strcasecmp("NiMH", battery->type)) return POWER_SUPPLY_TECHNOLOGY_NiMH; if (!strcasecmp("LION", battery->type)) return POWER_SUPPLY_TECHNOLOGY_LION; if (!strncasecmp("LI-ION", battery->type, 6)) return POWER_SUPPLY_TECHNOLOGY_LION; if (!strcasecmp("LiP", battery->type)) return POWER_SUPPLY_TECHNOLOGY_LIPO; return POWER_SUPPLY_TECHNOLOGY_UNKNOWN; } static int acpi_battery_get_state(struct acpi_battery *battery); static int acpi_battery_is_charged(struct acpi_battery *battery) { /* charging, discharging or critical low */ if (battery->state != 0) return 0; /* battery not reporting charge */ if (battery->capacity_now == ACPI_BATTERY_VALUE_UNKNOWN || battery->capacity_now == 0) return 0; /* good batteries update full_charge as the batteries degrade */ if (battery->full_charge_capacity == battery->capacity_now) return 1; /* fallback to using design values for broken batteries */ if (battery->design_capacity <= battery->capacity_now) return 1; /* we don't do any sort of metric based on percentages */ return 0; } static bool acpi_battery_is_degraded(struct acpi_battery *battery) { return ACPI_BATTERY_CAPACITY_VALID(battery->full_charge_capacity) && ACPI_BATTERY_CAPACITY_VALID(battery->design_capacity) && battery->full_charge_capacity < battery->design_capacity; } static int acpi_battery_handle_discharging(struct acpi_battery *battery) { /* * Some devices wrongly report discharging if the battery's charge level * was above the device's start charging threshold atm the AC adapter * was plugged in and the device thus did not start a new charge cycle. */ if ((battery_ac_is_broken || power_supply_is_system_supplied()) && battery->rate_now == 0) return POWER_SUPPLY_STATUS_NOT_CHARGING; return POWER_SUPPLY_STATUS_DISCHARGING; } static int acpi_battery_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { int full_capacity = ACPI_BATTERY_VALUE_UNKNOWN, ret = 0; struct acpi_battery *battery = to_acpi_battery(psy); if (acpi_battery_present(battery)) { /* run battery update only if it is present */ acpi_battery_get_state(battery); } else if (psp != POWER_SUPPLY_PROP_PRESENT) return -ENODEV; switch (psp) { case POWER_SUPPLY_PROP_STATUS: if (battery->state & ACPI_BATTERY_STATE_DISCHARGING) val->intval = acpi_battery_handle_discharging(battery); else if (battery->state & ACPI_BATTERY_STATE_CHARGING) val->intval = POWER_SUPPLY_STATUS_CHARGING; else if (acpi_battery_is_charged(battery)) val->intval = POWER_SUPPLY_STATUS_FULL; else val->intval = POWER_SUPPLY_STATUS_NOT_CHARGING; break; case POWER_SUPPLY_PROP_PRESENT: val->intval = acpi_battery_present(battery); break; case POWER_SUPPLY_PROP_TECHNOLOGY: val->intval = acpi_battery_technology(battery); break; case POWER_SUPPLY_PROP_CYCLE_COUNT: val->intval = battery->cycle_count; break; case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: if (battery->design_voltage == ACPI_BATTERY_VALUE_UNKNOWN) ret = -ENODEV; else val->intval = battery->design_voltage * 1000; break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: if (battery->voltage_now == ACPI_BATTERY_VALUE_UNKNOWN) ret = -ENODEV; else val->intval = battery->voltage_now * 1000; break; case POWER_SUPPLY_PROP_CURRENT_NOW: case POWER_SUPPLY_PROP_POWER_NOW: if (battery->rate_now == ACPI_BATTERY_VALUE_UNKNOWN) ret = -ENODEV; else val->intval = battery->rate_now * 1000; break; case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: if (!ACPI_BATTERY_CAPACITY_VALID(battery->design_capacity)) ret = -ENODEV; else val->intval = battery->design_capacity * 1000; break; case POWER_SUPPLY_PROP_CHARGE_FULL: case POWER_SUPPLY_PROP_ENERGY_FULL: if (!ACPI_BATTERY_CAPACITY_VALID(battery->full_charge_capacity)) ret = -ENODEV; else val->intval = battery->full_charge_capacity * 1000; break; case POWER_SUPPLY_PROP_CHARGE_NOW: case POWER_SUPPLY_PROP_ENERGY_NOW: if (battery->capacity_now == ACPI_BATTERY_VALUE_UNKNOWN) ret = -ENODEV; else val->intval = battery->capacity_now * 1000; break; case POWER_SUPPLY_PROP_CAPACITY: if (ACPI_BATTERY_CAPACITY_VALID(battery->full_charge_capacity)) full_capacity = battery->full_charge_capacity; else if (ACPI_BATTERY_CAPACITY_VALID(battery->design_capacity)) full_capacity = battery->design_capacity; if (battery->capacity_now == ACPI_BATTERY_VALUE_UNKNOWN || full_capacity == ACPI_BATTERY_VALUE_UNKNOWN) ret = -ENODEV; else val->intval = battery->capacity_now * 100/ full_capacity; break; case POWER_SUPPLY_PROP_CAPACITY_LEVEL: if (battery->state & ACPI_BATTERY_STATE_CRITICAL) val->intval = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; else if (test_bit(ACPI_BATTERY_ALARM_PRESENT, &battery->flags) && (battery->capacity_now <= battery->alarm)) val->intval = POWER_SUPPLY_CAPACITY_LEVEL_LOW; else if (acpi_battery_is_charged(battery)) val->intval = POWER_SUPPLY_CAPACITY_LEVEL_FULL; else val->intval = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; break; case POWER_SUPPLY_PROP_MODEL_NAME: val->strval = battery->model_number; break; case POWER_SUPPLY_PROP_MANUFACTURER: val->strval = battery->oem_info; break; case POWER_SUPPLY_PROP_SERIAL_NUMBER: val->strval = battery->serial_number; break; default: ret = -EINVAL; } return ret; } static enum power_supply_property charge_battery_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CYCLE_COUNT, POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_MODEL_NAME, POWER_SUPPLY_PROP_MANUFACTURER, POWER_SUPPLY_PROP_SERIAL_NUMBER, }; static enum power_supply_property charge_battery_full_cap_broken_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CYCLE_COUNT, POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_MODEL_NAME, POWER_SUPPLY_PROP_MANUFACTURER, POWER_SUPPLY_PROP_SERIAL_NUMBER, }; static enum power_supply_property energy_battery_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CYCLE_COUNT, POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_POWER_NOW, POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, POWER_SUPPLY_PROP_ENERGY_FULL, POWER_SUPPLY_PROP_ENERGY_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_MODEL_NAME, POWER_SUPPLY_PROP_MANUFACTURER, POWER_SUPPLY_PROP_SERIAL_NUMBER, }; static enum power_supply_property energy_battery_full_cap_broken_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CYCLE_COUNT, POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_POWER_NOW, POWER_SUPPLY_PROP_ENERGY_NOW, POWER_SUPPLY_PROP_MODEL_NAME, POWER_SUPPLY_PROP_MANUFACTURER, POWER_SUPPLY_PROP_SERIAL_NUMBER, }; /* Battery Management */ struct acpi_offsets { size_t offset; /* offset inside struct acpi_sbs_battery */ u8 mode; /* int or string? */ }; static const struct acpi_offsets state_offsets[] = { {offsetof(struct acpi_battery, state), 0}, {offsetof(struct acpi_battery, rate_now), 0}, {offsetof(struct acpi_battery, capacity_now), 0}, {offsetof(struct acpi_battery, voltage_now), 0}, }; static const struct acpi_offsets info_offsets[] = { {offsetof(struct acpi_battery, power_unit), 0}, {offsetof(struct acpi_battery, design_capacity), 0}, {offsetof(struct acpi_battery, full_charge_capacity), 0}, {offsetof(struct acpi_battery, technology), 0}, {offsetof(struct acpi_battery, design_voltage), 0}, {offsetof(struct acpi_battery, design_capacity_warning), 0}, {offsetof(struct acpi_battery, design_capacity_low), 0}, {offsetof(struct acpi_battery, capacity_granularity_1), 0}, {offsetof(struct acpi_battery, capacity_granularity_2), 0}, {offsetof(struct acpi_battery, model_number), 1}, {offsetof(struct acpi_battery, serial_number), 1}, {offsetof(struct acpi_battery, type), 1}, {offsetof(struct acpi_battery, oem_info), 1}, }; static const struct acpi_offsets extended_info_offsets[] = { {offsetof(struct acpi_battery, revision), 0}, {offsetof(struct acpi_battery, power_unit), 0}, {offsetof(struct acpi_battery, design_capacity), 0}, {offsetof(struct acpi_battery, full_charge_capacity), 0}, {offsetof(struct acpi_battery, technology), 0}, {offsetof(struct acpi_battery, design_voltage), 0}, {offsetof(struct acpi_battery, design_capacity_warning), 0}, {offsetof(struct acpi_battery, design_capacity_low), 0}, {offsetof(struct acpi_battery, cycle_count), 0}, {offsetof(struct acpi_battery, measurement_accuracy), 0}, {offsetof(struct acpi_battery, max_sampling_time), 0}, {offsetof(struct acpi_battery, min_sampling_time), 0}, {offsetof(struct acpi_battery, max_averaging_interval), 0}, {offsetof(struct acpi_battery, min_averaging_interval), 0}, {offsetof(struct acpi_battery, capacity_granularity_1), 0}, {offsetof(struct acpi_battery, capacity_granularity_2), 0}, {offsetof(struct acpi_battery, model_number), 1}, {offsetof(struct acpi_battery, serial_number), 1}, {offsetof(struct acpi_battery, type), 1}, {offsetof(struct acpi_battery, oem_info), 1}, }; static int extract_package(struct acpi_battery *battery, union acpi_object *package, const struct acpi_offsets *offsets, int num) { int i; union acpi_object *element; if (package->type != ACPI_TYPE_PACKAGE) return -EFAULT; for (i = 0; i < num; ++i) { if (package->package.count <= i) return -EFAULT; element = &package->package.elements[i]; if (offsets[i].mode) { u8 *ptr = (u8 *)battery + offsets[i].offset; if (element->type == ACPI_TYPE_STRING || element->type == ACPI_TYPE_BUFFER) strncpy(ptr, element->string.pointer, 32); else if (element->type == ACPI_TYPE_INTEGER) { strncpy(ptr, (u8 *)&element->integer.value, sizeof(u64)); ptr[sizeof(u64)] = 0; } else *ptr = 0; /* don't have value */ } else { int *x = (int *)((u8 *)battery + offsets[i].offset); *x = (element->type == ACPI_TYPE_INTEGER) ? element->integer.value : -1; } } return 0; } static int acpi_battery_get_status(struct acpi_battery *battery) { if (acpi_bus_get_status(battery->device)) { acpi_handle_info(battery->device->handle, "_STA evaluation failed\n"); return -ENODEV; } return 0; } static int extract_battery_info(const int use_bix, struct acpi_battery *battery, const struct acpi_buffer *buffer) { int result = -EFAULT; if (use_bix && battery_bix_broken_package) result = extract_package(battery, buffer->pointer, extended_info_offsets + 1, ARRAY_SIZE(extended_info_offsets) - 1); else if (use_bix) result = extract_package(battery, buffer->pointer, extended_info_offsets, ARRAY_SIZE(extended_info_offsets)); else result = extract_package(battery, buffer->pointer, info_offsets, ARRAY_SIZE(info_offsets)); if (test_bit(ACPI_BATTERY_QUIRK_PERCENTAGE_CAPACITY, &battery->flags)) battery->full_charge_capacity = battery->design_capacity; if (test_bit(ACPI_BATTERY_QUIRK_THINKPAD_MAH, &battery->flags) && battery->power_unit && battery->design_voltage) { battery->design_capacity = battery->design_capacity * 10000 / battery->design_voltage; battery->full_charge_capacity = battery->full_charge_capacity * 10000 / battery->design_voltage; battery->design_capacity_warning = battery->design_capacity_warning * 10000 / battery->design_voltage; /* Curiously, design_capacity_low, unlike the rest of them, * is correct. */ /* capacity_granularity_* equal 1 on the systems tested, so * it's impossible to tell if they would need an adjustment * or not if their values were higher. */ } if (test_bit(ACPI_BATTERY_QUIRK_DEGRADED_FULL_CHARGE, &battery->flags) && battery->capacity_now > battery->full_charge_capacity) battery->capacity_now = battery->full_charge_capacity; return result; } static int acpi_battery_get_info(struct acpi_battery *battery) { const int xinfo = test_bit(ACPI_BATTERY_XINFO_PRESENT, &battery->flags); int use_bix; int result = -ENODEV; if (!acpi_battery_present(battery)) return 0; for (use_bix = xinfo ? 1 : 0; use_bix >= 0; use_bix--) { struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; acpi_status status = AE_ERROR; mutex_lock(&battery->lock); status = acpi_evaluate_object(battery->device->handle, use_bix ? "_BIX":"_BIF", NULL, &buffer); mutex_unlock(&battery->lock); if (ACPI_FAILURE(status)) { acpi_handle_info(battery->device->handle, "%s evaluation failed: %s\n", use_bix ? "_BIX":"_BIF", acpi_format_exception(status)); } else { result = extract_battery_info(use_bix, battery, &buffer); kfree(buffer.pointer); break; } } if (!result && !use_bix && xinfo) pr_warn(FW_BUG "The _BIX method is broken, using _BIF.\n"); return result; } static int acpi_battery_get_state(struct acpi_battery *battery) { int result = 0; acpi_status status = 0; struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; if (!acpi_battery_present(battery)) return 0; if (battery->update_time && time_before(jiffies, battery->update_time + msecs_to_jiffies(cache_time))) return 0; mutex_lock(&battery->lock); status = acpi_evaluate_object(battery->device->handle, "_BST", NULL, &buffer); mutex_unlock(&battery->lock); if (ACPI_FAILURE(status)) { acpi_handle_info(battery->device->handle, "_BST evaluation failed: %s", acpi_format_exception(status)); return -ENODEV; } result = extract_package(battery, buffer.pointer, state_offsets, ARRAY_SIZE(state_offsets)); battery->update_time = jiffies; kfree(buffer.pointer); /* For buggy DSDTs that report negative 16-bit values for either * charging or discharging current and/or report 0 as 65536 * due to bad math. */ if (battery->power_unit == ACPI_BATTERY_POWER_UNIT_MA && battery->rate_now != ACPI_BATTERY_VALUE_UNKNOWN && (s16)(battery->rate_now) < 0) { battery->rate_now = abs((s16)battery->rate_now); pr_warn_once(FW_BUG "(dis)charge rate invalid.\n"); } if (test_bit(ACPI_BATTERY_QUIRK_PERCENTAGE_CAPACITY, &battery->flags) && battery->capacity_now >= 0 && battery->capacity_now <= 100) battery->capacity_now = (battery->capacity_now * battery->full_charge_capacity) / 100; if (test_bit(ACPI_BATTERY_QUIRK_THINKPAD_MAH, &battery->flags) && battery->power_unit && battery->design_voltage) { battery->capacity_now = battery->capacity_now * 10000 / battery->design_voltage; } if (test_bit(ACPI_BATTERY_QUIRK_DEGRADED_FULL_CHARGE, &battery->flags) && battery->capacity_now > battery->full_charge_capacity) battery->capacity_now = battery->full_charge_capacity; return result; } static int acpi_battery_set_alarm(struct acpi_battery *battery) { acpi_status status = 0; if (!acpi_battery_present(battery) || !test_bit(ACPI_BATTERY_ALARM_PRESENT, &battery->flags)) return -ENODEV; mutex_lock(&battery->lock); status = acpi_execute_simple_method(battery->device->handle, "_BTP", battery->alarm); mutex_unlock(&battery->lock); if (ACPI_FAILURE(status)) return -ENODEV; acpi_handle_debug(battery->device->handle, "Alarm set to %d\n", battery->alarm); return 0; } static int acpi_battery_init_alarm(struct acpi_battery *battery) { /* See if alarms are supported, and if so, set default */ if (!acpi_has_method(battery->device->handle, "_BTP")) { clear_bit(ACPI_BATTERY_ALARM_PRESENT, &battery->flags); return 0; } set_bit(ACPI_BATTERY_ALARM_PRESENT, &battery->flags); if (!battery->alarm) battery->alarm = battery->design_capacity_warning; return acpi_battery_set_alarm(battery); } static ssize_t acpi_battery_alarm_show(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_battery *battery = to_acpi_battery(dev_get_drvdata(dev)); return sprintf(buf, "%d\n", battery->alarm * 1000); } static ssize_t acpi_battery_alarm_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned long x; struct acpi_battery *battery = to_acpi_battery(dev_get_drvdata(dev)); if (sscanf(buf, "%lu\n", &x) == 1) battery->alarm = x/1000; if (acpi_battery_present(battery)) acpi_battery_set_alarm(battery); return count; } static const struct device_attribute alarm_attr = { .attr = {.name = "alarm", .mode = 0644}, .show = acpi_battery_alarm_show, .store = acpi_battery_alarm_store, }; /* * The Battery Hooking API * * This API is used inside other drivers that need to expose * platform-specific behaviour within the generic driver in a * generic way. * */ static LIST_HEAD(acpi_battery_list); static LIST_HEAD(battery_hook_list); static DEFINE_MUTEX(hook_mutex); static void __battery_hook_unregister(struct acpi_battery_hook *hook, int lock) { struct acpi_battery *battery; /* * In order to remove a hook, we first need to * de-register all the batteries that are registered. */ if (lock) mutex_lock(&hook_mutex); list_for_each_entry(battery, &acpi_battery_list, list) { hook->remove_battery(battery->bat); } list_del(&hook->list); if (lock) mutex_unlock(&hook_mutex); pr_info("extension unregistered: %s\n", hook->name); } void battery_hook_unregister(struct acpi_battery_hook *hook) { __battery_hook_unregister(hook, 1); } EXPORT_SYMBOL_GPL(battery_hook_unregister); void battery_hook_register(struct acpi_battery_hook *hook) { struct acpi_battery *battery; mutex_lock(&hook_mutex); INIT_LIST_HEAD(&hook->list); list_add(&hook->list, &battery_hook_list); /* * Now that the driver is registered, we need * to notify the hook that a battery is available * for each battery, so that the driver may add * its attributes. */ list_for_each_entry(battery, &acpi_battery_list, list) { if (hook->add_battery(battery->bat)) { /* * If a add-battery returns non-zero, * the registration of the extension has failed, * and we will not add it to the list of loaded * hooks. */ pr_err("extension failed to load: %s", hook->name); __battery_hook_unregister(hook, 0); goto end; } } pr_info("new extension: %s\n", hook->name); end: mutex_unlock(&hook_mutex); } EXPORT_SYMBOL_GPL(battery_hook_register); /* * This function gets called right after the battery sysfs * attributes have been added, so that the drivers that * define custom sysfs attributes can add their own. */ static void battery_hook_add_battery(struct acpi_battery *battery) { struct acpi_battery_hook *hook_node, *tmp; mutex_lock(&hook_mutex); INIT_LIST_HEAD(&battery->list); list_add(&battery->list, &acpi_battery_list); /* * Since we added a new battery to the list, we need to * iterate over the hooks and call add_battery for each * hook that was registered. This usually happens * when a battery gets hotplugged or initialized * during the battery module initialization. */ list_for_each_entry_safe(hook_node, tmp, &battery_hook_list, list) { if (hook_node->add_battery(battery->bat)) { /* * The notification of the extensions has failed, to * prevent further errors we will unload the extension. */ pr_err("error in extension, unloading: %s", hook_node->name); __battery_hook_unregister(hook_node, 0); } } mutex_unlock(&hook_mutex); } static void battery_hook_remove_battery(struct acpi_battery *battery) { struct acpi_battery_hook *hook; mutex_lock(&hook_mutex); /* * Before removing the hook, we need to remove all * custom attributes from the battery. */ list_for_each_entry(hook, &battery_hook_list, list) { hook->remove_battery(battery->bat); } /* Then, just remove the battery from the list */ list_del(&battery->list); mutex_unlock(&hook_mutex); } static void __exit battery_hook_exit(void) { struct acpi_battery_hook *hook; struct acpi_battery_hook *ptr; /* * At this point, the acpi_bus_unregister_driver() * has called remove for all batteries. We just * need to remove the hooks. */ list_for_each_entry_safe(hook, ptr, &battery_hook_list, list) { __battery_hook_unregister(hook, 1); } mutex_destroy(&hook_mutex); } static int sysfs_add_battery(struct acpi_battery *battery) { struct power_supply_config psy_cfg = { .drv_data = battery, }; bool full_cap_broken = false; if (!ACPI_BATTERY_CAPACITY_VALID(battery->full_charge_capacity) && !ACPI_BATTERY_CAPACITY_VALID(battery->design_capacity)) full_cap_broken = true; if (battery->power_unit == ACPI_BATTERY_POWER_UNIT_MA) { if (full_cap_broken) { battery->bat_desc.properties = charge_battery_full_cap_broken_props; battery->bat_desc.num_properties = ARRAY_SIZE(charge_battery_full_cap_broken_props); } else { battery->bat_desc.properties = charge_battery_props; battery->bat_desc.num_properties = ARRAY_SIZE(charge_battery_props); } } else { if (full_cap_broken) { battery->bat_desc.properties = energy_battery_full_cap_broken_props; battery->bat_desc.num_properties = ARRAY_SIZE(energy_battery_full_cap_broken_props); } else { battery->bat_desc.properties = energy_battery_props; battery->bat_desc.num_properties = ARRAY_SIZE(energy_battery_props); } } battery->bat_desc.name = acpi_device_bid(battery->device); battery->bat_desc.type = POWER_SUPPLY_TYPE_BATTERY; battery->bat_desc.get_property = acpi_battery_get_property; battery->bat = power_supply_register_no_ws(&battery->device->dev, &battery->bat_desc, &psy_cfg); if (IS_ERR(battery->bat)) { int result = PTR_ERR(battery->bat); battery->bat = NULL; return result; } battery_hook_add_battery(battery); return device_create_file(&battery->bat->dev, &alarm_attr); } static void sysfs_remove_battery(struct acpi_battery *battery) { mutex_lock(&battery->sysfs_lock); if (!battery->bat) { mutex_unlock(&battery->sysfs_lock); return; } battery_hook_remove_battery(battery); device_remove_file(&battery->bat->dev, &alarm_attr); power_supply_unregister(battery->bat); battery->bat = NULL; mutex_unlock(&battery->sysfs_lock); } static void find_battery(const struct dmi_header *dm, void *private) { struct acpi_battery *battery = (struct acpi_battery *)private; /* Note: the hardcoded offsets below have been extracted from * the source code of dmidecode. */ if (dm->type == DMI_ENTRY_PORTABLE_BATTERY && dm->length >= 8) { const u8 *dmi_data = (const u8 *)(dm + 1); int dmi_capacity = get_unaligned((const u16 *)(dmi_data + 6)); if (dm->length >= 18) dmi_capacity *= dmi_data[17]; if (battery->design_capacity * battery->design_voltage / 1000 != dmi_capacity && battery->design_capacity * 10 == dmi_capacity) set_bit(ACPI_BATTERY_QUIRK_THINKPAD_MAH, &battery->flags); } } /* * According to the ACPI spec, some kinds of primary batteries can * report percentage battery remaining capacity directly to OS. * In this case, it reports the Last Full Charged Capacity == 100 * and BatteryPresentRate == 0xFFFFFFFF. * * Now we found some battery reports percentage remaining capacity * even if it's rechargeable. * https://bugzilla.kernel.org/show_bug.cgi?id=15979 * * Handle this correctly so that they won't break userspace. */ static void acpi_battery_quirks(struct acpi_battery *battery) { if (test_bit(ACPI_BATTERY_QUIRK_PERCENTAGE_CAPACITY, &battery->flags)) return; if (battery->full_charge_capacity == 100 && battery->rate_now == ACPI_BATTERY_VALUE_UNKNOWN && battery->capacity_now >= 0 && battery->capacity_now <= 100) { set_bit(ACPI_BATTERY_QUIRK_PERCENTAGE_CAPACITY, &battery->flags); battery->full_charge_capacity = battery->design_capacity; battery->capacity_now = (battery->capacity_now * battery->full_charge_capacity) / 100; } if (test_bit(ACPI_BATTERY_QUIRK_THINKPAD_MAH, &battery->flags)) return; if (battery->power_unit && dmi_name_in_vendors("LENOVO")) { const char *s; s = dmi_get_system_info(DMI_PRODUCT_VERSION); if (s && !strncasecmp(s, "ThinkPad", 8)) { dmi_walk(find_battery, battery); if (test_bit(ACPI_BATTERY_QUIRK_THINKPAD_MAH, &battery->flags) && battery->design_voltage) { battery->design_capacity = battery->design_capacity * 10000 / battery->design_voltage; battery->full_charge_capacity = battery->full_charge_capacity * 10000 / battery->design_voltage; battery->design_capacity_warning = battery->design_capacity_warning * 10000 / battery->design_voltage; battery->capacity_now = battery->capacity_now * 10000 / battery->design_voltage; } } } if (test_bit(ACPI_BATTERY_QUIRK_DEGRADED_FULL_CHARGE, &battery->flags)) return; if (acpi_battery_is_degraded(battery) && battery->capacity_now > battery->full_charge_capacity) { set_bit(ACPI_BATTERY_QUIRK_DEGRADED_FULL_CHARGE, &battery->flags); battery->capacity_now = battery->full_charge_capacity; } } static int acpi_battery_update(struct acpi_battery *battery, bool resume) { int result = acpi_battery_get_status(battery); if (result) return result; if (!acpi_battery_present(battery)) { sysfs_remove_battery(battery); battery->update_time = 0; return 0; } if (resume) return 0; if (!battery->update_time) { result = acpi_battery_get_info(battery); if (result) return result; acpi_battery_init_alarm(battery); } result = acpi_battery_get_state(battery); if (result) return result; acpi_battery_quirks(battery); if (!battery->bat) { result = sysfs_add_battery(battery); if (result) return result; } /* * Wakeup the system if battery is critical low * or lower than the alarm level */ if ((battery->state & ACPI_BATTERY_STATE_CRITICAL) || (test_bit(ACPI_BATTERY_ALARM_PRESENT, &battery->flags) && (battery->capacity_now <= battery->alarm))) acpi_pm_wakeup_event(&battery->device->dev); return result; } static void acpi_battery_refresh(struct acpi_battery *battery) { int power_unit; if (!battery->bat) return; power_unit = battery->power_unit; acpi_battery_get_info(battery); if (power_unit == battery->power_unit) return; /* The battery has changed its reporting units. */ sysfs_remove_battery(battery); sysfs_add_battery(battery); } /* Driver Interface */ static void acpi_battery_notify(struct acpi_device *device, u32 event) { struct acpi_battery *battery = acpi_driver_data(device); struct power_supply *old; if (!battery) return; old = battery->bat; /* * On Acer Aspire V5-573G notifications are sometimes triggered too * early. For example, when AC is unplugged and notification is * triggered, battery state is still reported as "Full", and changes to * "Discharging" only after short delay, without any notification. */ if (battery_notification_delay_ms > 0) msleep(battery_notification_delay_ms); if (event == ACPI_BATTERY_NOTIFY_INFO) acpi_battery_refresh(battery); acpi_battery_update(battery, false); acpi_bus_generate_netlink_event(device->pnp.device_class, dev_name(&device->dev), event, acpi_battery_present(battery)); acpi_notifier_call_chain(device, event, acpi_battery_present(battery)); /* acpi_battery_update could remove power_supply object */ if (old && battery->bat) power_supply_changed(battery->bat); } static int battery_notify(struct notifier_block *nb, unsigned long mode, void *_unused) { struct acpi_battery *battery = container_of(nb, struct acpi_battery, pm_nb); int result; switch (mode) { case PM_POST_HIBERNATION: case PM_POST_SUSPEND: if (!acpi_battery_present(battery)) return 0; if (battery->bat) { acpi_battery_refresh(battery); } else { result = acpi_battery_get_info(battery); if (result) return result; result = sysfs_add_battery(battery); if (result) return result; } acpi_battery_init_alarm(battery); acpi_battery_get_state(battery); break; } return 0; } static int __init battery_bix_broken_package_quirk(const struct dmi_system_id *d) { battery_bix_broken_package = 1; return 0; } static int __init battery_notification_delay_quirk(const struct dmi_system_id *d) { battery_notification_delay_ms = 1000; return 0; } static int __init battery_ac_is_broken_quirk(const struct dmi_system_id *d) { battery_ac_is_broken = 1; return 0; } static const struct dmi_system_id bat_dmi_table[] __initconst = { { /* NEC LZ750/LS */ .callback = battery_bix_broken_package_quirk, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "NEC"), DMI_MATCH(DMI_PRODUCT_NAME, "PC-LZ750LS"), }, }, { /* Acer Aspire V5-573G */ .callback = battery_notification_delay_quirk, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Acer"), DMI_MATCH(DMI_PRODUCT_NAME, "Aspire V5-573G"), }, }, { /* Point of View mobii wintab p800w */ .callback = battery_ac_is_broken_quirk, .matches = { DMI_MATCH(DMI_BOARD_VENDOR, "AMI Corporation"), DMI_MATCH(DMI_BOARD_NAME, "Aptio CRB"), DMI_MATCH(DMI_BIOS_VERSION, "3BAIR1013"), /* Above matches are too generic, add bios-date match */ DMI_MATCH(DMI_BIOS_DATE, "08/22/2014"), }, }, { /* Microsoft Surface Go 3 */ .callback = battery_notification_delay_quirk, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Microsoft Corporation"), DMI_MATCH(DMI_PRODUCT_NAME, "Surface Go 3"), }, }, {}, }; /* * Some machines'(E,G Lenovo Z480) ECs are not stable * during boot up and this causes battery driver fails to be * probed due to failure of getting battery information * from EC sometimes. After several retries, the operation * may work. So add retry code here and 20ms sleep between * every retries. */ static int acpi_battery_update_retry(struct acpi_battery *battery) { int retry, ret; for (retry = 5; retry; retry--) { ret = acpi_battery_update(battery, false); if (!ret) break; msleep(20); } return ret; } static int acpi_battery_add(struct acpi_device *device) { int result = 0; struct acpi_battery *battery = NULL; if (!device) return -EINVAL; if (device->dep_unmet) return -EPROBE_DEFER; battery = kzalloc(sizeof(struct acpi_battery), GFP_KERNEL); if (!battery) return -ENOMEM; battery->device = device; strcpy(acpi_device_name(device), ACPI_BATTERY_DEVICE_NAME); strcpy(acpi_device_class(device), ACPI_BATTERY_CLASS); device->driver_data = battery; mutex_init(&battery->lock); mutex_init(&battery->sysfs_lock); if (acpi_has_method(battery->device->handle, "_BIX")) set_bit(ACPI_BATTERY_XINFO_PRESENT, &battery->flags); result = acpi_battery_update_retry(battery); if (result) goto fail; pr_info("Slot [%s] (battery %s)\n", acpi_device_bid(device), device->status.battery_present ? "present" : "absent"); battery->pm_nb.notifier_call = battery_notify; register_pm_notifier(&battery->pm_nb); device_init_wakeup(&device->dev, 1); return result; fail: sysfs_remove_battery(battery); mutex_destroy(&battery->lock); mutex_destroy(&battery->sysfs_lock); kfree(battery); return result; } static void acpi_battery_remove(struct acpi_device *device) { struct acpi_battery *battery = NULL; if (!device || !acpi_driver_data(device)) return; device_init_wakeup(&device->dev, 0); battery = acpi_driver_data(device); unregister_pm_notifier(&battery->pm_nb); sysfs_remove_battery(battery); mutex_destroy(&battery->lock); mutex_destroy(&battery->sysfs_lock); kfree(battery); } #ifdef CONFIG_PM_SLEEP /* this is needed to learn about changes made in suspended state */ static int acpi_battery_resume(struct device *dev) { struct acpi_battery *battery; if (!dev) return -EINVAL; battery = acpi_driver_data(to_acpi_device(dev)); if (!battery) return -EINVAL; battery->update_time = 0; acpi_battery_update(battery, true); return 0; } #else #define acpi_battery_resume NULL #endif static SIMPLE_DEV_PM_OPS(acpi_battery_pm, NULL, acpi_battery_resume); static struct acpi_driver acpi_battery_driver = { .name = "battery", .class = ACPI_BATTERY_CLASS, .ids = battery_device_ids, .flags = ACPI_DRIVER_ALL_NOTIFY_EVENTS, .ops = { .add = acpi_battery_add, .remove = acpi_battery_remove, .notify = acpi_battery_notify, }, .drv.pm = &acpi_battery_pm, }; static void __init acpi_battery_init_async(void *unused, async_cookie_t cookie) { int result; if (acpi_quirk_skip_acpi_ac_and_battery()) return; dmi_check_system(bat_dmi_table); result = acpi_bus_register_driver(&acpi_battery_driver); battery_driver_registered = (result == 0); } static int __init acpi_battery_init(void) { if (acpi_disabled) return -ENODEV; async_cookie = async_schedule(acpi_battery_init_async, NULL); return 0; } static void __exit acpi_battery_exit(void) { async_synchronize_cookie(async_cookie + 1); if (battery_driver_registered) { acpi_bus_unregister_driver(&acpi_battery_driver); battery_hook_exit(); } } module_init(acpi_battery_init); module_exit(acpi_battery_exit);