// SPDX-License-Identifier: GPL-2.0-only /* * Marvell Armada 370 and Armada XP SoC IRQ handling * * Copyright (C) 2012 Marvell * * Lior Amsalem * Gregory CLEMENT * Thomas Petazzoni * Ben Dooks */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Overall diagram of the Armada XP interrupt controller: * * To CPU 0 To CPU 1 * * /\ /\ * || || * +---------------+ +---------------+ * | | | | * | per-CPU | | per-CPU | * | mask/unmask | | mask/unmask | * | CPU0 | | CPU1 | * | | | | * +---------------+ +---------------+ * /\ /\ * || || * \\_______________________// * || * +-------------------+ * | | * | Global interrupt | * | mask/unmask | * | | * +-------------------+ * /\ * || * interrupt from * device * * The "global interrupt mask/unmask" is modified using the * MPIC_INT_SET_ENABLE and MPIC_INT_CLEAR_ENABLE * registers, which are relative to "main_int_base". * * The "per-CPU mask/unmask" is modified using the MPIC_INT_SET_MASK * and MPIC_INT_CLEAR_MASK registers, which are relative to * "per_cpu_int_base". This base address points to a special address, * which automatically accesses the registers of the current CPU. * * The per-CPU mask/unmask can also be adjusted using the global * per-interrupt MPIC_INT_SOURCE_CTL register, which we use to * configure interrupt affinity. * * Due to this model, all interrupts need to be mask/unmasked at two * different levels: at the global level and at the per-CPU level. * * This driver takes the following approach to deal with this: * * - For global interrupts: * * At ->map() time, a global interrupt is unmasked at the per-CPU * mask/unmask level. It is therefore unmasked at this level for * the current CPU, running the ->map() code. This allows to have * the interrupt unmasked at this level in non-SMP * configurations. In SMP configurations, the ->set_affinity() * callback is called, which using the MPIC_INT_SOURCE_CTL() * readjusts the per-CPU mask/unmask for the interrupt. * * The ->mask() and ->unmask() operations only mask/unmask the * interrupt at the "global" level. * * So, a global interrupt is enabled at the per-CPU level as soon * as it is mapped. At run time, the masking/unmasking takes place * at the global level. * * - For per-CPU interrupts * * At ->map() time, a per-CPU interrupt is unmasked at the global * mask/unmask level. * * The ->mask() and ->unmask() operations mask/unmask the interrupt * at the per-CPU level. * * So, a per-CPU interrupt is enabled at the global level as soon * as it is mapped. At run time, the masking/unmasking takes place * at the per-CPU level. */ /* Registers relative to main_int_base */ #define MPIC_INT_CONTROL 0x00 #define MPIC_INT_CONTROL_NUMINT_MASK GENMASK(12, 2) #define MPIC_SW_TRIG_INT 0x04 #define MPIC_INT_SET_ENABLE 0x30 #define MPIC_INT_CLEAR_ENABLE 0x34 #define MPIC_INT_SOURCE_CTL(hwirq) (0x100 + (hwirq) * 4) #define MPIC_INT_SOURCE_CPU_MASK GENMASK(3, 0) #define MPIC_INT_IRQ_FIQ_MASK(cpuid) ((BIT(0) | BIT(8)) << (cpuid)) /* Registers relative to per_cpu_int_base */ #define MPIC_IN_DRBEL_CAUSE 0x08 #define MPIC_IN_DRBEL_MASK 0x0c #define MPIC_PPI_CAUSE 0x10 #define MPIC_CPU_INTACK 0x44 #define MPIC_CPU_INTACK_IID_MASK GENMASK(9, 0) #define MPIC_INT_SET_MASK 0x48 #define MPIC_INT_CLEAR_MASK 0x4C #define MPIC_INT_FABRIC_MASK 0x54 #define MPIC_INT_CAUSE_PERF(cpu) BIT(cpu) #define MPIC_MAX_PER_CPU_IRQS 28 /* IPI and MSI interrupt definitions for IPI platforms */ #define IPI_DOORBELL_START 0 #define IPI_DOORBELL_END 8 #define IPI_DOORBELL_MASK GENMASK(7, 0) #define PCI_MSI_DOORBELL_START 16 #define PCI_MSI_DOORBELL_NR 16 #define PCI_MSI_DOORBELL_END 32 #define PCI_MSI_DOORBELL_MASK GENMASK(31, 16) /* MSI interrupt definitions for non-IPI platforms */ #define PCI_MSI_FULL_DOORBELL_START 0 #define PCI_MSI_FULL_DOORBELL_NR 32 #define PCI_MSI_FULL_DOORBELL_END 32 #define PCI_MSI_FULL_DOORBELL_MASK GENMASK(31, 0) #define PCI_MSI_FULL_DOORBELL_SRC0_MASK GENMASK(15, 0) #define PCI_MSI_FULL_DOORBELL_SRC1_MASK GENMASK(31, 16) static void __iomem *per_cpu_int_base; static void __iomem *main_int_base; static struct irq_domain *mpic_domain; static u32 doorbell_mask_reg; static int parent_irq; #ifdef CONFIG_PCI_MSI static struct irq_domain *mpic_msi_domain; static struct irq_domain *mpic_msi_inner_domain; static DECLARE_BITMAP(msi_used, PCI_MSI_FULL_DOORBELL_NR); static DEFINE_MUTEX(msi_used_lock); static phys_addr_t msi_doorbell_addr; #endif static inline bool mpic_is_ipi_available(void) { /* * We distinguish IPI availability in the IC by the IC not having a * parent irq defined. If a parent irq is defined, there is a parent * interrupt controller (e.g. GIC) that takes care of inter-processor * interrupts. */ return parent_irq <= 0; } static inline u32 msi_doorbell_mask(void) { return mpic_is_ipi_available() ? PCI_MSI_DOORBELL_MASK : PCI_MSI_FULL_DOORBELL_MASK; } static inline unsigned int msi_doorbell_start(void) { return mpic_is_ipi_available() ? PCI_MSI_DOORBELL_START : PCI_MSI_FULL_DOORBELL_START; } static inline unsigned int msi_doorbell_size(void) { return mpic_is_ipi_available() ? PCI_MSI_DOORBELL_NR : PCI_MSI_FULL_DOORBELL_NR; } static inline unsigned int msi_doorbell_end(void) { return mpic_is_ipi_available() ? PCI_MSI_DOORBELL_END : PCI_MSI_FULL_DOORBELL_END; } static inline bool mpic_is_percpu_irq(irq_hw_number_t hwirq) { return hwirq <= MPIC_MAX_PER_CPU_IRQS; } /* * In SMP mode: * For shared global interrupts, mask/unmask global enable bit * For CPU interrupts, mask/unmask the calling CPU's bit */ static void mpic_irq_mask(struct irq_data *d) { irq_hw_number_t hwirq = irqd_to_hwirq(d); if (!mpic_is_percpu_irq(hwirq)) writel(hwirq, main_int_base + MPIC_INT_CLEAR_ENABLE); else writel(hwirq, per_cpu_int_base + MPIC_INT_SET_MASK); } static void mpic_irq_unmask(struct irq_data *d) { irq_hw_number_t hwirq = irqd_to_hwirq(d); if (!mpic_is_percpu_irq(hwirq)) writel(hwirq, main_int_base + MPIC_INT_SET_ENABLE); else writel(hwirq, per_cpu_int_base + MPIC_INT_CLEAR_MASK); } #ifdef CONFIG_PCI_MSI static struct irq_chip mpic_msi_irq_chip = { .name = "MPIC MSI", .irq_mask = pci_msi_mask_irq, .irq_unmask = pci_msi_unmask_irq, }; static struct msi_domain_info mpic_msi_domain_info = { .flags = (MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI | MSI_FLAG_PCI_MSIX), .chip = &mpic_msi_irq_chip, }; static void mpic_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) { unsigned int cpu = cpumask_first(irq_data_get_effective_affinity_mask(d)); msg->address_lo = lower_32_bits(msi_doorbell_addr); msg->address_hi = upper_32_bits(msi_doorbell_addr); msg->data = BIT(cpu + 8) | (d->hwirq + msi_doorbell_start()); } static int mpic_msi_set_affinity(struct irq_data *d, const struct cpumask *mask, bool force) { unsigned int cpu; if (!force) cpu = cpumask_any_and(mask, cpu_online_mask); else cpu = cpumask_first(mask); if (cpu >= nr_cpu_ids) return -EINVAL; irq_data_update_effective_affinity(d, cpumask_of(cpu)); return IRQ_SET_MASK_OK; } static struct irq_chip mpic_msi_bottom_irq_chip = { .name = "MPIC MSI", .irq_compose_msi_msg = mpic_compose_msi_msg, .irq_set_affinity = mpic_msi_set_affinity, }; static int mpic_msi_alloc(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs, void *args) { int hwirq; mutex_lock(&msi_used_lock); hwirq = bitmap_find_free_region(msi_used, msi_doorbell_size(), order_base_2(nr_irqs)); mutex_unlock(&msi_used_lock); if (hwirq < 0) return -ENOSPC; for (unsigned int i = 0; i < nr_irqs; i++) { irq_domain_set_info(domain, virq + i, hwirq + i, &mpic_msi_bottom_irq_chip, domain->host_data, handle_simple_irq, NULL, NULL); } return 0; } static void mpic_msi_free(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs) { struct irq_data *d = irq_domain_get_irq_data(domain, virq); mutex_lock(&msi_used_lock); bitmap_release_region(msi_used, d->hwirq, order_base_2(nr_irqs)); mutex_unlock(&msi_used_lock); } static const struct irq_domain_ops mpic_msi_domain_ops = { .alloc = mpic_msi_alloc, .free = mpic_msi_free, }; static void mpic_msi_reenable_percpu(void) { u32 reg; /* Enable MSI doorbell mask and combined cpu local interrupt */ reg = readl(per_cpu_int_base + MPIC_IN_DRBEL_MASK); reg |= msi_doorbell_mask(); writel(reg, per_cpu_int_base + MPIC_IN_DRBEL_MASK); /* Unmask local doorbell interrupt */ writel(1, per_cpu_int_base + MPIC_INT_CLEAR_MASK); } static int mpic_msi_init(struct device_node *node, phys_addr_t main_int_phys_base) { msi_doorbell_addr = main_int_phys_base + MPIC_SW_TRIG_INT; mpic_msi_inner_domain = irq_domain_add_linear(NULL, msi_doorbell_size(), &mpic_msi_domain_ops, NULL); if (!mpic_msi_inner_domain) return -ENOMEM; mpic_msi_domain = pci_msi_create_irq_domain(of_node_to_fwnode(node), &mpic_msi_domain_info, mpic_msi_inner_domain); if (!mpic_msi_domain) { irq_domain_remove(mpic_msi_inner_domain); return -ENOMEM; } mpic_msi_reenable_percpu(); /* Unmask low 16 MSI irqs on non-IPI platforms */ if (!mpic_is_ipi_available()) writel(0, per_cpu_int_base + MPIC_INT_CLEAR_MASK); return 0; } #else static __maybe_unused void mpic_msi_reenable_percpu(void) {} static inline int mpic_msi_init(struct device_node *node, phys_addr_t main_int_phys_base) { return 0; } #endif static void mpic_perf_init(void) { u32 cpuid; /* * This Performance Counter Overflow interrupt is specific for * Armada 370 and XP. It is not available on Armada 375, 38x and 39x. */ if (!of_machine_is_compatible("marvell,armada-370-xp")) return; cpuid = cpu_logical_map(smp_processor_id()); /* Enable Performance Counter Overflow interrupts */ writel(MPIC_INT_CAUSE_PERF(cpuid), per_cpu_int_base + MPIC_INT_FABRIC_MASK); } #ifdef CONFIG_SMP static struct irq_domain *mpic_ipi_domain; static void mpic_ipi_mask(struct irq_data *d) { u32 reg; reg = readl(per_cpu_int_base + MPIC_IN_DRBEL_MASK); reg &= ~BIT(d->hwirq); writel(reg, per_cpu_int_base + MPIC_IN_DRBEL_MASK); } static void mpic_ipi_unmask(struct irq_data *d) { u32 reg; reg = readl(per_cpu_int_base + MPIC_IN_DRBEL_MASK); reg |= BIT(d->hwirq); writel(reg, per_cpu_int_base + MPIC_IN_DRBEL_MASK); } static void mpic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask) { unsigned int cpu; u32 map = 0; /* Convert our logical CPU mask into a physical one. */ for_each_cpu(cpu, mask) map |= BIT(cpu_logical_map(cpu)); /* * Ensure that stores to Normal memory are visible to the * other CPUs before issuing the IPI. */ dsb(); /* submit softirq */ writel((map << 8) | d->hwirq, main_int_base + MPIC_SW_TRIG_INT); } static void mpic_ipi_ack(struct irq_data *d) { writel(~BIT(d->hwirq), per_cpu_int_base + MPIC_IN_DRBEL_CAUSE); } static struct irq_chip mpic_ipi_irqchip = { .name = "IPI", .irq_ack = mpic_ipi_ack, .irq_mask = mpic_ipi_mask, .irq_unmask = mpic_ipi_unmask, .ipi_send_mask = mpic_ipi_send_mask, }; static int mpic_ipi_alloc(struct irq_domain *d, unsigned int virq, unsigned int nr_irqs, void *args) { for (unsigned int i = 0; i < nr_irqs; i++) { irq_set_percpu_devid(virq + i); irq_domain_set_info(d, virq + i, i, &mpic_ipi_irqchip, d->host_data, handle_percpu_devid_irq, NULL, NULL); } return 0; } static void mpic_ipi_free(struct irq_domain *d, unsigned int virq, unsigned int nr_irqs) { /* Not freeing IPIs */ } static const struct irq_domain_ops mpic_ipi_domain_ops = { .alloc = mpic_ipi_alloc, .free = mpic_ipi_free, }; static void mpic_ipi_resume(void) { for (irq_hw_number_t i = 0; i < IPI_DOORBELL_END; i++) { unsigned int virq = irq_find_mapping(mpic_ipi_domain, i); struct irq_data *d; if (!virq || !irq_percpu_is_enabled(virq)) continue; d = irq_domain_get_irq_data(mpic_ipi_domain, virq); mpic_ipi_unmask(d); } } static __init int mpic_ipi_init(struct device_node *node) { int base_ipi; mpic_ipi_domain = irq_domain_create_linear(of_node_to_fwnode(node), IPI_DOORBELL_END, &mpic_ipi_domain_ops, NULL); if (WARN_ON(!mpic_ipi_domain)) return -ENOMEM; irq_domain_update_bus_token(mpic_ipi_domain, DOMAIN_BUS_IPI); base_ipi = irq_domain_alloc_irqs(mpic_ipi_domain, IPI_DOORBELL_END, NUMA_NO_NODE, NULL); if (WARN_ON(!base_ipi)) return -ENOMEM; set_smp_ipi_range(base_ipi, IPI_DOORBELL_END); return 0; } static int mpic_set_affinity(struct irq_data *d, const struct cpumask *mask_val, bool force) { irq_hw_number_t hwirq = irqd_to_hwirq(d); unsigned int cpu; /* Select a single core from the affinity mask which is online */ cpu = cpumask_any_and(mask_val, cpu_online_mask); atomic_io_modify(main_int_base + MPIC_INT_SOURCE_CTL(hwirq), MPIC_INT_SOURCE_CPU_MASK, BIT(cpu_logical_map(cpu))); irq_data_update_effective_affinity(d, cpumask_of(cpu)); return IRQ_SET_MASK_OK; } static void mpic_smp_cpu_init(void) { for (irq_hw_number_t i = 0; i < mpic_domain->hwirq_max; i++) writel(i, per_cpu_int_base + MPIC_INT_SET_MASK); if (!mpic_is_ipi_available()) return; /* Disable all IPIs */ writel(0, per_cpu_int_base + MPIC_IN_DRBEL_MASK); /* Clear pending IPIs */ writel(0, per_cpu_int_base + MPIC_IN_DRBEL_CAUSE); /* Unmask IPI interrupt */ writel(0, per_cpu_int_base + MPIC_INT_CLEAR_MASK); } static void mpic_reenable_percpu(void) { /* Re-enable per-CPU interrupts that were enabled before suspend */ for (irq_hw_number_t i = 0; i < MPIC_MAX_PER_CPU_IRQS; i++) { unsigned int virq = irq_linear_revmap(mpic_domain, i); struct irq_data *d; if (!virq || !irq_percpu_is_enabled(virq)) continue; d = irq_get_irq_data(virq); mpic_irq_unmask(d); } if (mpic_is_ipi_available()) mpic_ipi_resume(); mpic_msi_reenable_percpu(); } static int mpic_starting_cpu(unsigned int cpu) { mpic_perf_init(); mpic_smp_cpu_init(); mpic_reenable_percpu(); return 0; } static int mpic_cascaded_starting_cpu(unsigned int cpu) { mpic_perf_init(); mpic_reenable_percpu(); enable_percpu_irq(parent_irq, IRQ_TYPE_NONE); return 0; } #else static void mpic_smp_cpu_init(void) {} static void mpic_ipi_resume(void) {} #endif static struct irq_chip mpic_irq_chip = { .name = "MPIC", .irq_mask = mpic_irq_mask, .irq_mask_ack = mpic_irq_mask, .irq_unmask = mpic_irq_unmask, #ifdef CONFIG_SMP .irq_set_affinity = mpic_set_affinity, #endif .flags = IRQCHIP_SKIP_SET_WAKE | IRQCHIP_MASK_ON_SUSPEND, }; static int mpic_irq_map(struct irq_domain *h, unsigned int virq, irq_hw_number_t hwirq) { /* IRQs 0 and 1 cannot be mapped, they are handled internally */ if (hwirq <= 1) return -EINVAL; mpic_irq_mask(irq_get_irq_data(virq)); if (!mpic_is_percpu_irq(hwirq)) writel(hwirq, per_cpu_int_base + MPIC_INT_CLEAR_MASK); else writel(hwirq, main_int_base + MPIC_INT_SET_ENABLE); irq_set_status_flags(virq, IRQ_LEVEL); if (mpic_is_percpu_irq(hwirq)) { irq_set_percpu_devid(virq); irq_set_chip_and_handler(virq, &mpic_irq_chip, handle_percpu_devid_irq); } else { irq_set_chip_and_handler(virq, &mpic_irq_chip, handle_level_irq); irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq))); } irq_set_probe(virq); return 0; } static const struct irq_domain_ops mpic_irq_ops = { .map = mpic_irq_map, .xlate = irq_domain_xlate_onecell, }; #ifdef CONFIG_PCI_MSI static void mpic_handle_msi_irq(void) { unsigned long cause; unsigned int i; cause = readl_relaxed(per_cpu_int_base + MPIC_IN_DRBEL_CAUSE); cause &= msi_doorbell_mask(); writel(~cause, per_cpu_int_base + MPIC_IN_DRBEL_CAUSE); for_each_set_bit(i, &cause, BITS_PER_LONG) generic_handle_domain_irq(mpic_msi_inner_domain, i - msi_doorbell_start()); } #else static void mpic_handle_msi_irq(void) {} #endif #ifdef CONFIG_SMP static void mpic_handle_ipi_irq(void) { unsigned long cause; irq_hw_number_t i; cause = readl_relaxed(per_cpu_int_base + MPIC_IN_DRBEL_CAUSE); cause &= IPI_DOORBELL_MASK; for_each_set_bit(i, &cause, IPI_DOORBELL_END) generic_handle_domain_irq(mpic_ipi_domain, i); } #else static inline void mpic_handle_ipi_irq(void) {} #endif static void mpic_handle_cascade_irq(struct irq_desc *desc) { struct irq_chip *chip = irq_desc_get_chip(desc); unsigned long cause; u32 irqsrc, cpuid; irq_hw_number_t i; chained_irq_enter(chip, desc); cause = readl_relaxed(per_cpu_int_base + MPIC_PPI_CAUSE); cpuid = cpu_logical_map(smp_processor_id()); for_each_set_bit(i, &cause, BITS_PER_LONG) { irqsrc = readl_relaxed(main_int_base + MPIC_INT_SOURCE_CTL(i)); /* Check if the interrupt is not masked on current CPU. * Test IRQ (0-1) and FIQ (8-9) mask bits. */ if (!(irqsrc & MPIC_INT_IRQ_FIQ_MASK(cpuid))) continue; if (i == 0 || i == 1) { mpic_handle_msi_irq(); continue; } generic_handle_domain_irq(mpic_domain, i); } chained_irq_exit(chip, desc); } static void __exception_irq_entry mpic_handle_irq(struct pt_regs *regs) { irq_hw_number_t i; u32 irqstat; do { irqstat = readl_relaxed(per_cpu_int_base + MPIC_CPU_INTACK); i = FIELD_GET(MPIC_CPU_INTACK_IID_MASK, irqstat); if (i > 1022) break; if (i > 1) generic_handle_domain_irq(mpic_domain, i); /* MSI handling */ if (i == 1) mpic_handle_msi_irq(); /* IPI Handling */ if (i == 0) mpic_handle_ipi_irq(); } while (1); } static int mpic_suspend(void) { doorbell_mask_reg = readl(per_cpu_int_base + MPIC_IN_DRBEL_MASK); return 0; } static void mpic_resume(void) { bool src0, src1; /* Re-enable interrupts */ for (irq_hw_number_t i = 0; i < mpic_domain->hwirq_max; i++) { unsigned int virq = irq_linear_revmap(mpic_domain, i); struct irq_data *d; if (!virq) continue; d = irq_get_irq_data(virq); if (!mpic_is_percpu_irq(i)) { /* Non per-CPU interrupts */ writel(i, per_cpu_int_base + MPIC_INT_CLEAR_MASK); if (!irqd_irq_disabled(d)) mpic_irq_unmask(d); } else { /* Per-CPU interrupts */ writel(i, main_int_base + MPIC_INT_SET_ENABLE); /* * Re-enable on the current CPU, mpic_reenable_percpu() * will take care of secondary CPUs when they come up. */ if (irq_percpu_is_enabled(virq)) mpic_irq_unmask(d); } } /* Reconfigure doorbells for IPIs and MSIs */ writel(doorbell_mask_reg, per_cpu_int_base + MPIC_IN_DRBEL_MASK); if (mpic_is_ipi_available()) { src0 = doorbell_mask_reg & IPI_DOORBELL_MASK; src1 = doorbell_mask_reg & PCI_MSI_DOORBELL_MASK; } else { src0 = doorbell_mask_reg & PCI_MSI_FULL_DOORBELL_SRC0_MASK; src1 = doorbell_mask_reg & PCI_MSI_FULL_DOORBELL_SRC1_MASK; } if (src0) writel(0, per_cpu_int_base + MPIC_INT_CLEAR_MASK); if (src1) writel(1, per_cpu_int_base + MPIC_INT_CLEAR_MASK); if (mpic_is_ipi_available()) mpic_ipi_resume(); } static struct syscore_ops mpic_syscore_ops = { .suspend = mpic_suspend, .resume = mpic_resume, }; static int __init mpic_map_region(struct device_node *np, int index, void __iomem **base, phys_addr_t *phys_base) { struct resource res; int err; err = of_address_to_resource(np, index, &res); if (WARN_ON(err)) goto fail; if (WARN_ON(!request_mem_region(res.start, resource_size(&res), np->full_name))) { err = -EBUSY; goto fail; } *base = ioremap(res.start, resource_size(&res)); if (WARN_ON(!*base)) { err = -ENOMEM; goto fail; } if (phys_base) *phys_base = res.start; return 0; fail: pr_err("%pOF: Unable to map resource %d: %pE\n", np, index, ERR_PTR(err)); return err; } static int __init mpic_of_init(struct device_node *node, struct device_node *parent) { phys_addr_t phys_base; unsigned int nr_irqs; int err; err = mpic_map_region(node, 0, &main_int_base, &phys_base); if (err) return err; err = mpic_map_region(node, 1, &per_cpu_int_base, NULL); if (err) return err; nr_irqs = FIELD_GET(MPIC_INT_CONTROL_NUMINT_MASK, readl(main_int_base + MPIC_INT_CONTROL)); for (irq_hw_number_t i = 0; i < nr_irqs; i++) writel(i, main_int_base + MPIC_INT_CLEAR_ENABLE); mpic_domain = irq_domain_add_linear(node, nr_irqs, &mpic_irq_ops, NULL); if (!mpic_domain) { pr_err("%pOF: Unable to add IRQ domain\n", node); return -ENOMEM; } irq_domain_update_bus_token(mpic_domain, DOMAIN_BUS_WIRED); /* * Initialize parent_irq before calling any other functions, since it is * used to distinguish between IPI and non-IPI platforms. */ parent_irq = irq_of_parse_and_map(node, 0); /* Setup for the boot CPU */ mpic_perf_init(); mpic_smp_cpu_init(); err = mpic_msi_init(node, phys_base); if (err) { pr_err("%pOF: Unable to initialize MSI domain\n", node); return err; } if (parent_irq <= 0) { irq_set_default_host(mpic_domain); set_handle_irq(mpic_handle_irq); #ifdef CONFIG_SMP err = mpic_ipi_init(node); if (err) { pr_err("%pOF: Unable to initialize IPI domain\n", node); return err; } cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_ARMADA_XP_STARTING, "irqchip/armada/ipi:starting", mpic_starting_cpu, NULL); #endif } else { #ifdef CONFIG_SMP cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_ARMADA_XP_STARTING, "irqchip/armada/cascade:starting", mpic_cascaded_starting_cpu, NULL); #endif irq_set_chained_handler(parent_irq, mpic_handle_cascade_irq); } register_syscore_ops(&mpic_syscore_ops); return 0; } IRQCHIP_DECLARE(marvell_mpic, "marvell,mpic", mpic_of_init);