/* * Driver for Microchip MRF24J40 802.15.4 Wireless-PAN Networking controller * * Copyright (C) 2012 Alan Ott * Signal 11 Software * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include /* MRF24J40 Short Address Registers */ #define REG_RXMCR 0x00 /* Receive MAC control */ #define REG_PANIDL 0x01 /* PAN ID (low) */ #define REG_PANIDH 0x02 /* PAN ID (high) */ #define REG_SADRL 0x03 /* Short address (low) */ #define REG_SADRH 0x04 /* Short address (high) */ #define REG_EADR0 0x05 /* Long address (low) (high is EADR7) */ #define REG_EADR1 0x06 #define REG_EADR2 0x07 #define REG_EADR3 0x08 #define REG_EADR4 0x09 #define REG_EADR5 0x0A #define REG_EADR6 0x0B #define REG_EADR7 0x0C #define REG_RXFLUSH 0x0D #define REG_ORDER 0x10 #define REG_TXMCR 0x11 /* Transmit MAC control */ #define REG_ACKTMOUT 0x12 #define REG_ESLOTG1 0x13 #define REG_SYMTICKL 0x14 #define REG_SYMTICKH 0x15 #define REG_PACON0 0x16 /* Power Amplifier Control */ #define REG_PACON1 0x17 /* Power Amplifier Control */ #define REG_PACON2 0x18 /* Power Amplifier Control */ #define REG_TXBCON0 0x1A #define REG_TXNCON 0x1B /* Transmit Normal FIFO Control */ #define REG_TXG1CON 0x1C #define REG_TXG2CON 0x1D #define REG_ESLOTG23 0x1E #define REG_ESLOTG45 0x1F #define REG_ESLOTG67 0x20 #define REG_TXPEND 0x21 #define REG_WAKECON 0x22 #define REG_FROMOFFSET 0x23 #define REG_TXSTAT 0x24 /* TX MAC Status Register */ #define REG_TXBCON1 0x25 #define REG_GATECLK 0x26 #define REG_TXTIME 0x27 #define REG_HSYMTMRL 0x28 #define REG_HSYMTMRH 0x29 #define REG_SOFTRST 0x2A /* Soft Reset */ #define REG_SECCON0 0x2C #define REG_SECCON1 0x2D #define REG_TXSTBL 0x2E /* TX Stabilization */ #define REG_RXSR 0x30 #define REG_INTSTAT 0x31 /* Interrupt Status */ #define REG_INTCON 0x32 /* Interrupt Control */ #define REG_GPIO 0x33 /* GPIO */ #define REG_TRISGPIO 0x34 /* GPIO direction */ #define REG_SLPACK 0x35 #define REG_RFCTL 0x36 /* RF Control Mode Register */ #define REG_SECCR2 0x37 #define REG_BBREG0 0x38 #define REG_BBREG1 0x39 /* Baseband Registers */ #define REG_BBREG2 0x3A /* */ #define REG_BBREG3 0x3B #define REG_BBREG4 0x3C #define REG_BBREG6 0x3E /* */ #define REG_CCAEDTH 0x3F /* Energy Detection Threshold */ /* MRF24J40 Long Address Registers */ #define REG_RFCON0 0x200 /* RF Control Registers */ #define REG_RFCON1 0x201 #define REG_RFCON2 0x202 #define REG_RFCON3 0x203 #define REG_RFCON5 0x205 #define REG_RFCON6 0x206 #define REG_RFCON7 0x207 #define REG_RFCON8 0x208 #define REG_SLPCAL0 0x209 #define REG_SLPCAL1 0x20A #define REG_SLPCAL2 0x20B #define REG_RFSTATE 0x20F #define REG_RSSI 0x210 #define REG_SLPCON0 0x211 /* Sleep Clock Control Registers */ #define REG_SLPCON1 0x220 #define REG_WAKETIMEL 0x222 /* Wake-up Time Match Value Low */ #define REG_WAKETIMEH 0x223 /* Wake-up Time Match Value High */ #define REG_REMCNTL 0x224 #define REG_REMCNTH 0x225 #define REG_MAINCNT0 0x226 #define REG_MAINCNT1 0x227 #define REG_MAINCNT2 0x228 #define REG_MAINCNT3 0x229 #define REG_TESTMODE 0x22F /* Test mode */ #define REG_ASSOEAR0 0x230 #define REG_ASSOEAR1 0x231 #define REG_ASSOEAR2 0x232 #define REG_ASSOEAR3 0x233 #define REG_ASSOEAR4 0x234 #define REG_ASSOEAR5 0x235 #define REG_ASSOEAR6 0x236 #define REG_ASSOEAR7 0x237 #define REG_ASSOSAR0 0x238 #define REG_ASSOSAR1 0x239 #define REG_UNONCE0 0x240 #define REG_UNONCE1 0x241 #define REG_UNONCE2 0x242 #define REG_UNONCE3 0x243 #define REG_UNONCE4 0x244 #define REG_UNONCE5 0x245 #define REG_UNONCE6 0x246 #define REG_UNONCE7 0x247 #define REG_UNONCE8 0x248 #define REG_UNONCE9 0x249 #define REG_UNONCE10 0x24A #define REG_UNONCE11 0x24B #define REG_UNONCE12 0x24C #define REG_RX_FIFO 0x300 /* Receive FIFO */ /* Device configuration: Only channels 11-26 on page 0 are supported. */ #define MRF24J40_CHAN_MIN 11 #define MRF24J40_CHAN_MAX 26 #define CHANNEL_MASK (((u32)1 << (MRF24J40_CHAN_MAX + 1)) \ - ((u32)1 << MRF24J40_CHAN_MIN)) #define TX_FIFO_SIZE 128 /* From datasheet */ #define RX_FIFO_SIZE 144 /* From datasheet */ #define SET_CHANNEL_DELAY_US 192 /* From datasheet */ enum mrf24j40_modules { MRF24J40, MRF24J40MA, MRF24J40MC }; /* Device Private Data */ struct mrf24j40 { struct spi_device *spi; struct ieee802154_hw *hw; struct regmap *regmap_short; struct regmap *regmap_long; /* for writing txfifo */ struct spi_message tx_msg; u8 tx_hdr_buf[2]; struct spi_transfer tx_hdr_trx; u8 tx_len_buf[2]; struct spi_transfer tx_len_trx; struct spi_transfer tx_buf_trx; struct sk_buff *tx_skb; /* post transmit message to send frame out */ struct spi_message tx_post_msg; u8 tx_post_buf[2]; struct spi_transfer tx_post_trx; /* for protect/unprotect/read length rxfifo */ struct spi_message rx_msg; u8 rx_buf[3]; struct spi_transfer rx_trx; /* receive handling */ struct spi_message rx_buf_msg; u8 rx_addr_buf[2]; struct spi_transfer rx_addr_trx; u8 rx_lqi_buf[2]; struct spi_transfer rx_lqi_trx; u8 rx_fifo_buf[RX_FIFO_SIZE]; struct spi_transfer rx_fifo_buf_trx; /* isr handling for reading intstat */ struct spi_message irq_msg; u8 irq_buf[2]; struct spi_transfer irq_trx; }; /* regmap information for short address register access */ #define MRF24J40_SHORT_WRITE 0x01 #define MRF24J40_SHORT_READ 0x00 #define MRF24J40_SHORT_NUMREGS 0x3F /* regmap information for long address register access */ #define MRF24J40_LONG_ACCESS 0x80 #define MRF24J40_LONG_NUMREGS 0x38F /* Read/Write SPI Commands for Short and Long Address registers. */ #define MRF24J40_READSHORT(reg) ((reg) << 1) #define MRF24J40_WRITESHORT(reg) ((reg) << 1 | 1) #define MRF24J40_READLONG(reg) (1 << 15 | (reg) << 5) #define MRF24J40_WRITELONG(reg) (1 << 15 | (reg) << 5 | 1 << 4) /* The datasheet indicates the theoretical maximum for SCK to be 10MHz */ #define MAX_SPI_SPEED_HZ 10000000 #define printdev(X) (&X->spi->dev) static bool mrf24j40_short_reg_writeable(struct device *dev, unsigned int reg) { switch (reg) { case REG_RXMCR: case REG_PANIDL: case REG_PANIDH: case REG_SADRL: case REG_SADRH: case REG_EADR0: case REG_EADR1: case REG_EADR2: case REG_EADR3: case REG_EADR4: case REG_EADR5: case REG_EADR6: case REG_EADR7: case REG_RXFLUSH: case REG_ORDER: case REG_TXMCR: case REG_ACKTMOUT: case REG_ESLOTG1: case REG_SYMTICKL: case REG_SYMTICKH: case REG_PACON0: case REG_PACON1: case REG_PACON2: case REG_TXBCON0: case REG_TXNCON: case REG_TXG1CON: case REG_TXG2CON: case REG_ESLOTG23: case REG_ESLOTG45: case REG_ESLOTG67: case REG_TXPEND: case REG_WAKECON: case REG_FROMOFFSET: case REG_TXBCON1: case REG_GATECLK: case REG_TXTIME: case REG_HSYMTMRL: case REG_HSYMTMRH: case REG_SOFTRST: case REG_SECCON0: case REG_SECCON1: case REG_TXSTBL: case REG_RXSR: case REG_INTCON: case REG_TRISGPIO: case REG_GPIO: case REG_RFCTL: case REG_SLPACK: case REG_BBREG0: case REG_BBREG1: case REG_BBREG2: case REG_BBREG3: case REG_BBREG4: case REG_BBREG6: case REG_CCAEDTH: return true; default: return false; } } static bool mrf24j40_short_reg_readable(struct device *dev, unsigned int reg) { bool rc; /* all writeable are also readable */ rc = mrf24j40_short_reg_writeable(dev, reg); if (rc) return rc; /* readonly regs */ switch (reg) { case REG_TXSTAT: case REG_INTSTAT: return true; default: return false; } } static bool mrf24j40_short_reg_volatile(struct device *dev, unsigned int reg) { /* can be changed during runtime */ switch (reg) { case REG_TXSTAT: case REG_INTSTAT: case REG_RXFLUSH: case REG_TXNCON: case REG_SOFTRST: case REG_RFCTL: case REG_TXBCON0: case REG_TXG1CON: case REG_TXG2CON: case REG_TXBCON1: case REG_SECCON0: case REG_RXSR: case REG_SLPACK: case REG_SECCR2: case REG_BBREG6: /* use them in spi_async and regmap so it's volatile */ case REG_BBREG1: return true; default: return false; } } static bool mrf24j40_short_reg_precious(struct device *dev, unsigned int reg) { /* don't clear irq line on read */ switch (reg) { case REG_INTSTAT: return true; default: return false; } } static const struct regmap_config mrf24j40_short_regmap = { .name = "mrf24j40_short", .reg_bits = 7, .val_bits = 8, .pad_bits = 1, .write_flag_mask = MRF24J40_SHORT_WRITE, .read_flag_mask = MRF24J40_SHORT_READ, .cache_type = REGCACHE_RBTREE, .max_register = MRF24J40_SHORT_NUMREGS, .writeable_reg = mrf24j40_short_reg_writeable, .readable_reg = mrf24j40_short_reg_readable, .volatile_reg = mrf24j40_short_reg_volatile, .precious_reg = mrf24j40_short_reg_precious, }; static bool mrf24j40_long_reg_writeable(struct device *dev, unsigned int reg) { switch (reg) { case REG_RFCON0: case REG_RFCON1: case REG_RFCON2: case REG_RFCON3: case REG_RFCON5: case REG_RFCON6: case REG_RFCON7: case REG_RFCON8: case REG_SLPCAL2: case REG_SLPCON0: case REG_SLPCON1: case REG_WAKETIMEL: case REG_WAKETIMEH: case REG_REMCNTL: case REG_REMCNTH: case REG_MAINCNT0: case REG_MAINCNT1: case REG_MAINCNT2: case REG_MAINCNT3: case REG_TESTMODE: case REG_ASSOEAR0: case REG_ASSOEAR1: case REG_ASSOEAR2: case REG_ASSOEAR3: case REG_ASSOEAR4: case REG_ASSOEAR5: case REG_ASSOEAR6: case REG_ASSOEAR7: case REG_ASSOSAR0: case REG_ASSOSAR1: case REG_UNONCE0: case REG_UNONCE1: case REG_UNONCE2: case REG_UNONCE3: case REG_UNONCE4: case REG_UNONCE5: case REG_UNONCE6: case REG_UNONCE7: case REG_UNONCE8: case REG_UNONCE9: case REG_UNONCE10: case REG_UNONCE11: case REG_UNONCE12: return true; default: return false; } } static bool mrf24j40_long_reg_readable(struct device *dev, unsigned int reg) { bool rc; /* all writeable are also readable */ rc = mrf24j40_long_reg_writeable(dev, reg); if (rc) return rc; /* readonly regs */ switch (reg) { case REG_SLPCAL0: case REG_SLPCAL1: case REG_RFSTATE: case REG_RSSI: return true; default: return false; } } static bool mrf24j40_long_reg_volatile(struct device *dev, unsigned int reg) { /* can be changed during runtime */ switch (reg) { case REG_SLPCAL0: case REG_SLPCAL1: case REG_SLPCAL2: case REG_RFSTATE: case REG_RSSI: case REG_MAINCNT3: return true; default: return false; } } static const struct regmap_config mrf24j40_long_regmap = { .name = "mrf24j40_long", .reg_bits = 11, .val_bits = 8, .pad_bits = 5, .write_flag_mask = MRF24J40_LONG_ACCESS, .read_flag_mask = MRF24J40_LONG_ACCESS, .cache_type = REGCACHE_RBTREE, .max_register = MRF24J40_LONG_NUMREGS, .writeable_reg = mrf24j40_long_reg_writeable, .readable_reg = mrf24j40_long_reg_readable, .volatile_reg = mrf24j40_long_reg_volatile, }; static int mrf24j40_long_regmap_write(void *context, const void *data, size_t count) { struct spi_device *spi = context; u8 buf[3]; if (count > 3) return -EINVAL; /* regmap supports read/write mask only in frist byte * long write access need to set the 12th bit, so we * make special handling for write. */ memcpy(buf, data, count); buf[1] |= (1 << 4); return spi_write(spi, buf, count); } static int mrf24j40_long_regmap_read(void *context, const void *reg, size_t reg_size, void *val, size_t val_size) { struct spi_device *spi = context; return spi_write_then_read(spi, reg, reg_size, val, val_size); } static const struct regmap_bus mrf24j40_long_regmap_bus = { .write = mrf24j40_long_regmap_write, .read = mrf24j40_long_regmap_read, .reg_format_endian_default = REGMAP_ENDIAN_BIG, .val_format_endian_default = REGMAP_ENDIAN_BIG, }; static void write_tx_buf_complete(void *context) { struct mrf24j40 *devrec = context; __le16 fc = ieee802154_get_fc_from_skb(devrec->tx_skb); u8 val = 0x01; int ret; if (ieee802154_is_ackreq(fc)) val |= 0x04; devrec->tx_post_msg.complete = NULL; devrec->tx_post_buf[0] = MRF24J40_WRITESHORT(REG_TXNCON); devrec->tx_post_buf[1] = val; ret = spi_async(devrec->spi, &devrec->tx_post_msg); if (ret) dev_err(printdev(devrec), "SPI write Failed for transmit buf\n"); } /* This function relies on an undocumented write method. Once a write command and address is set, as many bytes of data as desired can be clocked into the device. The datasheet only shows setting one byte at a time. */ static int write_tx_buf(struct mrf24j40 *devrec, u16 reg, const u8 *data, size_t length) { u16 cmd; int ret; /* Range check the length. 2 bytes are used for the length fields.*/ if (length > TX_FIFO_SIZE-2) { dev_err(printdev(devrec), "write_tx_buf() was passed too large a buffer. Performing short write.\n"); length = TX_FIFO_SIZE-2; } cmd = MRF24J40_WRITELONG(reg); devrec->tx_hdr_buf[0] = cmd >> 8 & 0xff; devrec->tx_hdr_buf[1] = cmd & 0xff; devrec->tx_len_buf[0] = 0x0; /* Header Length. Set to 0 for now. TODO */ devrec->tx_len_buf[1] = length; /* Total length */ devrec->tx_buf_trx.tx_buf = data; devrec->tx_buf_trx.len = length; ret = spi_async(devrec->spi, &devrec->tx_msg); if (ret) dev_err(printdev(devrec), "SPI write Failed for TX buf\n"); return ret; } static int mrf24j40_tx(struct ieee802154_hw *hw, struct sk_buff *skb) { struct mrf24j40 *devrec = hw->priv; dev_dbg(printdev(devrec), "tx packet of %d bytes\n", skb->len); devrec->tx_skb = skb; return write_tx_buf(devrec, 0x000, skb->data, skb->len); } static int mrf24j40_ed(struct ieee802154_hw *hw, u8 *level) { /* TODO: */ pr_warn("mrf24j40: ed not implemented\n"); *level = 0; return 0; } static int mrf24j40_start(struct ieee802154_hw *hw) { struct mrf24j40 *devrec = hw->priv; dev_dbg(printdev(devrec), "start\n"); /* Clear TXNIE and RXIE. Enable interrupts */ return regmap_update_bits(devrec->regmap_short, REG_INTCON, 0x01 | 0x08, 0x00); } static void mrf24j40_stop(struct ieee802154_hw *hw) { struct mrf24j40 *devrec = hw->priv; dev_dbg(printdev(devrec), "stop\n"); /* Set TXNIE and RXIE. Disable Interrupts */ regmap_update_bits(devrec->regmap_short, REG_INTCON, 0x01 | 0x08, 0x01 | 0x08); } static int mrf24j40_set_channel(struct ieee802154_hw *hw, u8 page, u8 channel) { struct mrf24j40 *devrec = hw->priv; u8 val; int ret; dev_dbg(printdev(devrec), "Set Channel %d\n", channel); WARN_ON(page != 0); WARN_ON(channel < MRF24J40_CHAN_MIN); WARN_ON(channel > MRF24J40_CHAN_MAX); /* Set Channel TODO */ val = (channel-11) << 4 | 0x03; ret = regmap_update_bits(devrec->regmap_long, REG_RFCON0, 0xf0, val); if (ret) return ret; /* RF Reset */ ret = regmap_update_bits(devrec->regmap_short, REG_RFCTL, 0x04, 0x04); if (ret) return ret; ret = regmap_update_bits(devrec->regmap_short, REG_RFCTL, 0x04, 0x00); if (!ret) udelay(SET_CHANNEL_DELAY_US); /* per datasheet */ return ret; } static int mrf24j40_filter(struct ieee802154_hw *hw, struct ieee802154_hw_addr_filt *filt, unsigned long changed) { struct mrf24j40 *devrec = hw->priv; dev_dbg(printdev(devrec), "filter\n"); if (changed & IEEE802154_AFILT_SADDR_CHANGED) { /* Short Addr */ u8 addrh, addrl; addrh = le16_to_cpu(filt->short_addr) >> 8 & 0xff; addrl = le16_to_cpu(filt->short_addr) & 0xff; regmap_write(devrec->regmap_short, REG_SADRH, addrh); regmap_write(devrec->regmap_short, REG_SADRL, addrl); dev_dbg(printdev(devrec), "Set short addr to %04hx\n", filt->short_addr); } if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) { /* Device Address */ u8 i, addr[8]; memcpy(addr, &filt->ieee_addr, 8); for (i = 0; i < 8; i++) regmap_write(devrec->regmap_short, REG_EADR0 + i, addr[i]); #ifdef DEBUG pr_debug("Set long addr to: "); for (i = 0; i < 8; i++) pr_debug("%02hhx ", addr[7 - i]); pr_debug("\n"); #endif } if (changed & IEEE802154_AFILT_PANID_CHANGED) { /* PAN ID */ u8 panidl, panidh; panidh = le16_to_cpu(filt->pan_id) >> 8 & 0xff; panidl = le16_to_cpu(filt->pan_id) & 0xff; regmap_write(devrec->regmap_short, REG_PANIDH, panidh); regmap_write(devrec->regmap_short, REG_PANIDL, panidl); dev_dbg(printdev(devrec), "Set PANID to %04hx\n", filt->pan_id); } if (changed & IEEE802154_AFILT_PANC_CHANGED) { /* Pan Coordinator */ u8 val; int ret; if (filt->pan_coord) val = 0x8; else val = 0x0; ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR, 0x8, val); if (ret) return ret; /* REG_SLOTTED is maintained as default (unslotted/CSMA-CA). * REG_ORDER is maintained as default (no beacon/superframe). */ dev_dbg(printdev(devrec), "Set Pan Coord to %s\n", filt->pan_coord ? "on" : "off"); } return 0; } static void mrf24j40_handle_rx_read_buf_unlock(struct mrf24j40 *devrec) { int ret; /* Turn back on reception of packets off the air. */ devrec->rx_msg.complete = NULL; devrec->rx_buf[0] = MRF24J40_WRITESHORT(REG_BBREG1); devrec->rx_buf[1] = 0x00; /* CLR RXDECINV */ ret = spi_async(devrec->spi, &devrec->rx_msg); if (ret) dev_err(printdev(devrec), "failed to unlock rx buffer\n"); } static void mrf24j40_handle_rx_read_buf_complete(void *context) { struct mrf24j40 *devrec = context; u8 len = devrec->rx_buf[2]; u8 rx_local_buf[RX_FIFO_SIZE]; struct sk_buff *skb; memcpy(rx_local_buf, devrec->rx_fifo_buf, len); mrf24j40_handle_rx_read_buf_unlock(devrec); skb = dev_alloc_skb(IEEE802154_MTU); if (!skb) { dev_err(printdev(devrec), "failed to allocate skb\n"); return; } memcpy(skb_put(skb, len), rx_local_buf, len); ieee802154_rx_irqsafe(devrec->hw, skb, 0); #ifdef DEBUG print_hex_dump(KERN_DEBUG, "mrf24j40 rx: ", DUMP_PREFIX_OFFSET, 16, 1, rx_local_buf, len, 0); pr_debug("mrf24j40 rx: lqi: %02hhx rssi: %02hhx\n", devrec->rx_lqi_buf[0], devrec->rx_lqi_buf[1]); #endif } static void mrf24j40_handle_rx_read_buf(void *context) { struct mrf24j40 *devrec = context; u16 cmd; int ret; /* if length is invalid read the full MTU */ if (!ieee802154_is_valid_psdu_len(devrec->rx_buf[2])) devrec->rx_buf[2] = IEEE802154_MTU; cmd = MRF24J40_READLONG(REG_RX_FIFO + 1); devrec->rx_addr_buf[0] = cmd >> 8 & 0xff; devrec->rx_addr_buf[1] = cmd & 0xff; devrec->rx_fifo_buf_trx.len = devrec->rx_buf[2]; ret = spi_async(devrec->spi, &devrec->rx_buf_msg); if (ret) { dev_err(printdev(devrec), "failed to read rx buffer\n"); mrf24j40_handle_rx_read_buf_unlock(devrec); } } static void mrf24j40_handle_rx_read_len(void *context) { struct mrf24j40 *devrec = context; u16 cmd; int ret; /* read the length of received frame */ devrec->rx_msg.complete = mrf24j40_handle_rx_read_buf; devrec->rx_trx.len = 3; cmd = MRF24J40_READLONG(REG_RX_FIFO); devrec->rx_buf[0] = cmd >> 8 & 0xff; devrec->rx_buf[1] = cmd & 0xff; ret = spi_async(devrec->spi, &devrec->rx_msg); if (ret) { dev_err(printdev(devrec), "failed to read rx buffer length\n"); mrf24j40_handle_rx_read_buf_unlock(devrec); } } static int mrf24j40_handle_rx(struct mrf24j40 *devrec) { /* Turn off reception of packets off the air. This prevents the * device from overwriting the buffer while we're reading it. */ devrec->rx_msg.complete = mrf24j40_handle_rx_read_len; devrec->rx_trx.len = 2; devrec->rx_buf[0] = MRF24J40_WRITESHORT(REG_BBREG1); devrec->rx_buf[1] = 0x04; /* SET RXDECINV */ return spi_async(devrec->spi, &devrec->rx_msg); } static int mrf24j40_csma_params(struct ieee802154_hw *hw, u8 min_be, u8 max_be, u8 retries) { struct mrf24j40 *devrec = hw->priv; u8 val; /* min_be */ val = min_be << 3; /* csma backoffs */ val |= retries; return regmap_update_bits(devrec->regmap_short, REG_TXMCR, 0x1f, val); } static const struct ieee802154_ops mrf24j40_ops = { .owner = THIS_MODULE, .xmit_async = mrf24j40_tx, .ed = mrf24j40_ed, .start = mrf24j40_start, .stop = mrf24j40_stop, .set_channel = mrf24j40_set_channel, .set_hw_addr_filt = mrf24j40_filter, .set_csma_params = mrf24j40_csma_params, }; static void mrf24j40_intstat_complete(void *context) { struct mrf24j40 *devrec = context; u8 intstat = devrec->irq_buf[1]; enable_irq(devrec->spi->irq); /* Check for TX complete */ if (intstat & 0x1) ieee802154_xmit_complete(devrec->hw, devrec->tx_skb, false); /* Check for Rx */ if (intstat & 0x8) mrf24j40_handle_rx(devrec); } static irqreturn_t mrf24j40_isr(int irq, void *data) { struct mrf24j40 *devrec = data; int ret; disable_irq_nosync(irq); devrec->irq_buf[0] = MRF24J40_READSHORT(REG_INTSTAT); /* Read the interrupt status */ ret = spi_async(devrec->spi, &devrec->irq_msg); if (ret) { enable_irq(irq); return IRQ_NONE; } return IRQ_HANDLED; } static int mrf24j40_hw_init(struct mrf24j40 *devrec) { int ret; /* Initialize the device. From datasheet section 3.2: Initialization. */ ret = regmap_write(devrec->regmap_short, REG_SOFTRST, 0x07); if (ret) goto err_ret; ret = regmap_write(devrec->regmap_short, REG_PACON2, 0x98); if (ret) goto err_ret; ret = regmap_write(devrec->regmap_short, REG_TXSTBL, 0x95); if (ret) goto err_ret; ret = regmap_write(devrec->regmap_long, REG_RFCON0, 0x03); if (ret) goto err_ret; ret = regmap_write(devrec->regmap_long, REG_RFCON1, 0x01); if (ret) goto err_ret; ret = regmap_write(devrec->regmap_long, REG_RFCON2, 0x80); if (ret) goto err_ret; ret = regmap_write(devrec->regmap_long, REG_RFCON6, 0x90); if (ret) goto err_ret; ret = regmap_write(devrec->regmap_long, REG_RFCON7, 0x80); if (ret) goto err_ret; ret = regmap_write(devrec->regmap_long, REG_RFCON8, 0x10); if (ret) goto err_ret; ret = regmap_write(devrec->regmap_long, REG_SLPCON1, 0x21); if (ret) goto err_ret; ret = regmap_write(devrec->regmap_short, REG_BBREG2, 0x80); if (ret) goto err_ret; ret = regmap_write(devrec->regmap_short, REG_CCAEDTH, 0x60); if (ret) goto err_ret; ret = regmap_write(devrec->regmap_short, REG_BBREG6, 0x40); if (ret) goto err_ret; ret = regmap_write(devrec->regmap_short, REG_RFCTL, 0x04); if (ret) goto err_ret; ret = regmap_write(devrec->regmap_short, REG_RFCTL, 0x0); if (ret) goto err_ret; udelay(192); /* Set RX Mode. RXMCR<1:0>: 0x0 normal, 0x1 promisc, 0x2 error */ ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR, 0x03, 0x00); if (ret) goto err_ret; if (spi_get_device_id(devrec->spi)->driver_data == MRF24J40MC) { /* Enable external amplifier. * From MRF24J40MC datasheet section 1.3: Operation. */ regmap_update_bits(devrec->regmap_long, REG_TESTMODE, 0x07, 0x07); /* Set GPIO3 as output. */ regmap_update_bits(devrec->regmap_short, REG_TRISGPIO, 0x08, 0x08); /* Set GPIO3 HIGH to enable U5 voltage regulator */ regmap_update_bits(devrec->regmap_short, REG_GPIO, 0x08, 0x08); /* Reduce TX pwr to meet FCC requirements. * From MRF24J40MC datasheet section 3.1.1 */ regmap_write(devrec->regmap_long, REG_RFCON3, 0x28); } return 0; err_ret: return ret; } static void mrf24j40_setup_tx_spi_messages(struct mrf24j40 *devrec) { spi_message_init(&devrec->tx_msg); devrec->tx_msg.context = devrec; devrec->tx_msg.complete = write_tx_buf_complete; devrec->tx_hdr_trx.len = 2; devrec->tx_hdr_trx.tx_buf = devrec->tx_hdr_buf; spi_message_add_tail(&devrec->tx_hdr_trx, &devrec->tx_msg); devrec->tx_len_trx.len = 2; devrec->tx_len_trx.tx_buf = devrec->tx_len_buf; spi_message_add_tail(&devrec->tx_len_trx, &devrec->tx_msg); spi_message_add_tail(&devrec->tx_buf_trx, &devrec->tx_msg); spi_message_init(&devrec->tx_post_msg); devrec->tx_post_msg.context = devrec; devrec->tx_post_trx.len = 2; devrec->tx_post_trx.tx_buf = devrec->tx_post_buf; spi_message_add_tail(&devrec->tx_post_trx, &devrec->tx_post_msg); } static void mrf24j40_setup_rx_spi_messages(struct mrf24j40 *devrec) { spi_message_init(&devrec->rx_msg); devrec->rx_msg.context = devrec; devrec->rx_trx.len = 2; devrec->rx_trx.tx_buf = devrec->rx_buf; devrec->rx_trx.rx_buf = devrec->rx_buf; spi_message_add_tail(&devrec->rx_trx, &devrec->rx_msg); spi_message_init(&devrec->rx_buf_msg); devrec->rx_buf_msg.context = devrec; devrec->rx_buf_msg.complete = mrf24j40_handle_rx_read_buf_complete; devrec->rx_addr_trx.len = 2; devrec->rx_addr_trx.tx_buf = devrec->rx_addr_buf; spi_message_add_tail(&devrec->rx_addr_trx, &devrec->rx_buf_msg); devrec->rx_fifo_buf_trx.rx_buf = devrec->rx_fifo_buf; spi_message_add_tail(&devrec->rx_fifo_buf_trx, &devrec->rx_buf_msg); devrec->rx_lqi_trx.len = 2; devrec->rx_lqi_trx.rx_buf = devrec->rx_lqi_buf; spi_message_add_tail(&devrec->rx_lqi_trx, &devrec->rx_buf_msg); } static void mrf24j40_setup_irq_spi_messages(struct mrf24j40 *devrec) { spi_message_init(&devrec->irq_msg); devrec->irq_msg.context = devrec; devrec->irq_msg.complete = mrf24j40_intstat_complete; devrec->irq_trx.len = 2; devrec->irq_trx.tx_buf = devrec->irq_buf; devrec->irq_trx.rx_buf = devrec->irq_buf; spi_message_add_tail(&devrec->irq_trx, &devrec->irq_msg); } static void mrf24j40_phy_setup(struct mrf24j40 *devrec) { ieee802154_random_extended_addr(&devrec->hw->phy->perm_extended_addr); devrec->hw->phy->current_channel = 11; /* mrf24j40 supports max_minbe 0 - 3 */ devrec->hw->phy->supported.max_minbe = 3; /* datasheet doesn't say anything about max_be, but we have min_be * So we assume the max_be default. */ devrec->hw->phy->supported.min_maxbe = 5; devrec->hw->phy->supported.max_maxbe = 5; } static int mrf24j40_probe(struct spi_device *spi) { int ret = -ENOMEM; struct ieee802154_hw *hw; struct mrf24j40 *devrec; dev_info(&spi->dev, "probe(). IRQ: %d\n", spi->irq); /* Register with the 802154 subsystem */ hw = ieee802154_alloc_hw(sizeof(*devrec), &mrf24j40_ops); if (!hw) goto err_ret; devrec = hw->priv; devrec->spi = spi; spi_set_drvdata(spi, devrec); devrec->hw = hw; devrec->hw->parent = &spi->dev; devrec->hw->phy->supported.channels[0] = CHANNEL_MASK; devrec->hw->flags = IEEE802154_HW_TX_OMIT_CKSUM | IEEE802154_HW_AFILT | IEEE802154_HW_CSMA_PARAMS; mrf24j40_setup_tx_spi_messages(devrec); mrf24j40_setup_rx_spi_messages(devrec); mrf24j40_setup_irq_spi_messages(devrec); devrec->regmap_short = devm_regmap_init_spi(spi, &mrf24j40_short_regmap); if (IS_ERR(devrec->regmap_short)) { ret = PTR_ERR(devrec->regmap_short); dev_err(&spi->dev, "Failed to allocate short register map: %d\n", ret); goto err_register_device; } devrec->regmap_long = devm_regmap_init(&spi->dev, &mrf24j40_long_regmap_bus, spi, &mrf24j40_long_regmap); if (IS_ERR(devrec->regmap_long)) { ret = PTR_ERR(devrec->regmap_long); dev_err(&spi->dev, "Failed to allocate long register map: %d\n", ret); goto err_register_device; } if (spi->max_speed_hz > MAX_SPI_SPEED_HZ) { dev_warn(&spi->dev, "spi clock above possible maximum: %d", MAX_SPI_SPEED_HZ); return -EINVAL; } ret = mrf24j40_hw_init(devrec); if (ret) goto err_register_device; mrf24j40_phy_setup(devrec); ret = devm_request_irq(&spi->dev, spi->irq, mrf24j40_isr, IRQF_TRIGGER_LOW, dev_name(&spi->dev), devrec); if (ret) { dev_err(printdev(devrec), "Unable to get IRQ"); goto err_register_device; } dev_dbg(printdev(devrec), "registered mrf24j40\n"); ret = ieee802154_register_hw(devrec->hw); if (ret) goto err_register_device; return 0; err_register_device: ieee802154_free_hw(devrec->hw); err_ret: return ret; } static int mrf24j40_remove(struct spi_device *spi) { struct mrf24j40 *devrec = spi_get_drvdata(spi); dev_dbg(printdev(devrec), "remove\n"); ieee802154_unregister_hw(devrec->hw); ieee802154_free_hw(devrec->hw); /* TODO: Will ieee802154_free_device() wait until ->xmit() is * complete? */ return 0; } static const struct of_device_id mrf24j40_of_match[] = { { .compatible = "microchip,mrf24j40", .data = (void *)MRF24J40 }, { .compatible = "microchip,mrf24j40ma", .data = (void *)MRF24J40MA }, { .compatible = "microchip,mrf24j40mc", .data = (void *)MRF24J40MC }, { }, }; MODULE_DEVICE_TABLE(of, mrf24j40_of_match); static const struct spi_device_id mrf24j40_ids[] = { { "mrf24j40", MRF24J40 }, { "mrf24j40ma", MRF24J40MA }, { "mrf24j40mc", MRF24J40MC }, { }, }; MODULE_DEVICE_TABLE(spi, mrf24j40_ids); static struct spi_driver mrf24j40_driver = { .driver = { .of_match_table = of_match_ptr(mrf24j40_of_match), .name = "mrf24j40", .owner = THIS_MODULE, }, .id_table = mrf24j40_ids, .probe = mrf24j40_probe, .remove = mrf24j40_remove, }; module_spi_driver(mrf24j40_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Alan Ott"); MODULE_DESCRIPTION("MRF24J40 SPI 802.15.4 Controller Driver");