// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. * Copyright (C) 2018-2022 Linaro Ltd. */ #include #include #include #include #include #include #include "linux/soc/qcom/qcom_aoss.h" #include "ipa.h" #include "ipa_power.h" #include "ipa_endpoint.h" #include "ipa_modem.h" #include "ipa_data.h" /** * DOC: IPA Power Management * * The IPA hardware is enabled when the IPA core clock and all the * interconnects (buses) it depends on are enabled. Runtime power * management is used to determine whether the core clock and * interconnects are enabled, and if not in use to be suspended * automatically. * * The core clock currently runs at a fixed clock rate when enabled, * an all interconnects use a fixed average and peak bandwidth. */ #define IPA_AUTOSUSPEND_DELAY 500 /* milliseconds */ /** * enum ipa_power_flag - IPA power flags * @IPA_POWER_FLAG_RESUMED: Whether resume from suspend has been signaled * @IPA_POWER_FLAG_SYSTEM: Hardware is system (not runtime) suspended * @IPA_POWER_FLAG_COUNT: Number of defined power flags */ enum ipa_power_flag { IPA_POWER_FLAG_RESUMED, IPA_POWER_FLAG_SYSTEM, IPA_POWER_FLAG_COUNT, /* Last; not a flag */ }; /** * struct ipa_power - IPA power management information * @dev: IPA device pointer * @core: IPA core clock * @qmp: QMP handle for AOSS communication * @flags: Boolean state flags * @interconnect_count: Number of elements in interconnect[] * @interconnect: Interconnect array */ struct ipa_power { struct device *dev; struct clk *core; struct qmp *qmp; DECLARE_BITMAP(flags, IPA_POWER_FLAG_COUNT); u32 interconnect_count; struct icc_bulk_data interconnect[] __counted_by(interconnect_count); }; /* Initialize interconnects required for IPA operation */ static int ipa_interconnect_init(struct ipa_power *power, const struct ipa_interconnect_data *data) { struct icc_bulk_data *interconnect; int ret; u32 i; /* Initialize our interconnect data array for bulk operations */ interconnect = &power->interconnect[0]; for (i = 0; i < power->interconnect_count; i++) { /* interconnect->path is filled in by of_icc_bulk_get() */ interconnect->name = data->name; interconnect->avg_bw = data->average_bandwidth; interconnect->peak_bw = data->peak_bandwidth; data++; interconnect++; } ret = of_icc_bulk_get(power->dev, power->interconnect_count, power->interconnect); if (ret) return ret; /* All interconnects are initially disabled */ icc_bulk_disable(power->interconnect_count, power->interconnect); /* Set the bandwidth values to be used when enabled */ ret = icc_bulk_set_bw(power->interconnect_count, power->interconnect); if (ret) icc_bulk_put(power->interconnect_count, power->interconnect); return ret; } /* Inverse of ipa_interconnect_init() */ static void ipa_interconnect_exit(struct ipa_power *power) { icc_bulk_put(power->interconnect_count, power->interconnect); } /* Enable IPA power, enabling interconnects and the core clock */ static int ipa_power_enable(struct ipa *ipa) { struct ipa_power *power = ipa->power; int ret; ret = icc_bulk_enable(power->interconnect_count, power->interconnect); if (ret) return ret; ret = clk_prepare_enable(power->core); if (ret) { dev_err(power->dev, "error %d enabling core clock\n", ret); icc_bulk_disable(power->interconnect_count, power->interconnect); } return ret; } /* Inverse of ipa_power_enable() */ static void ipa_power_disable(struct ipa *ipa) { struct ipa_power *power = ipa->power; clk_disable_unprepare(power->core); icc_bulk_disable(power->interconnect_count, power->interconnect); } static int ipa_runtime_suspend(struct device *dev) { struct ipa *ipa = dev_get_drvdata(dev); /* Endpoints aren't usable until setup is complete */ if (ipa->setup_complete) { __clear_bit(IPA_POWER_FLAG_RESUMED, ipa->power->flags); ipa_endpoint_suspend(ipa); gsi_suspend(&ipa->gsi); } ipa_power_disable(ipa); return 0; } static int ipa_runtime_resume(struct device *dev) { struct ipa *ipa = dev_get_drvdata(dev); int ret; ret = ipa_power_enable(ipa); if (WARN_ON(ret < 0)) return ret; /* Endpoints aren't usable until setup is complete */ if (ipa->setup_complete) { gsi_resume(&ipa->gsi); ipa_endpoint_resume(ipa); } return 0; } static int ipa_suspend(struct device *dev) { struct ipa *ipa = dev_get_drvdata(dev); __set_bit(IPA_POWER_FLAG_SYSTEM, ipa->power->flags); /* Increment the disable depth to ensure that the IRQ won't * be re-enabled until the matching _enable call in * ipa_resume(). We do this to ensure that the interrupt * handler won't run whilst PM runtime is disabled. * * Note that disabling the IRQ is NOT the same as disabling * irq wake. If wakeup is enabled for the IPA then the IRQ * will still cause the system to wake up, see irq_set_irq_wake(). */ ipa_interrupt_irq_disable(ipa); return pm_runtime_force_suspend(dev); } static int ipa_resume(struct device *dev) { struct ipa *ipa = dev_get_drvdata(dev); int ret; ret = pm_runtime_force_resume(dev); __clear_bit(IPA_POWER_FLAG_SYSTEM, ipa->power->flags); /* Now that PM runtime is enabled again it's safe * to turn the IRQ back on and process any data * that was received during suspend. */ ipa_interrupt_irq_enable(ipa); return ret; } /* Return the current IPA core clock rate */ u32 ipa_core_clock_rate(struct ipa *ipa) { return ipa->power ? (u32)clk_get_rate(ipa->power->core) : 0; } void ipa_power_suspend_handler(struct ipa *ipa, enum ipa_irq_id irq_id) { /* To handle an IPA interrupt we will have resumed the hardware * just to handle the interrupt, so we're done. If we are in a * system suspend, trigger a system resume. */ if (!__test_and_set_bit(IPA_POWER_FLAG_RESUMED, ipa->power->flags)) if (test_bit(IPA_POWER_FLAG_SYSTEM, ipa->power->flags)) pm_wakeup_dev_event(&ipa->pdev->dev, 0, true); /* Acknowledge/clear the suspend interrupt on all endpoints */ ipa_interrupt_suspend_clear_all(ipa->interrupt); } /* The next two functions are used when stopping and starting the modem * network device transmit queue. * * Transmit can run concurrent with power resume. When transmitting, * we disable further transmits until we can determine whether power * is ACTIVE. If it is, future transmits are re-enabled and the buffer * gets sent (or dropped). If power is not ACTIVE, it will eventually * be, and transmits stay disabled until after it is. * * The first function starts the transmit queue and is used in the power * resume path after power has become ACTIVE. The second function also * enables transmits again, and is used by ipa_start_xmit() once it * knows power is active. */ void ipa_power_modem_queue_wake(struct ipa *ipa) { netif_wake_queue(ipa->modem_netdev); } void ipa_power_modem_queue_active(struct ipa *ipa) { netif_wake_queue(ipa->modem_netdev); } static int ipa_power_retention_init(struct ipa_power *power) { struct qmp *qmp = qmp_get(power->dev); if (IS_ERR(qmp)) { if (PTR_ERR(qmp) == -EPROBE_DEFER) return -EPROBE_DEFER; /* We assume any other error means it's not defined/needed */ qmp = NULL; } power->qmp = qmp; return 0; } static void ipa_power_retention_exit(struct ipa_power *power) { qmp_put(power->qmp); power->qmp = NULL; } /* Control register retention on power collapse */ void ipa_power_retention(struct ipa *ipa, bool enable) { static const char fmt[] = "{ class: bcm, res: ipa_pc, val: %c }"; struct ipa_power *power = ipa->power; int ret; if (!power->qmp) return; /* Not needed on this platform */ ret = qmp_send(power->qmp, fmt, enable ? '1' : '0'); if (ret) dev_err(power->dev, "error %d sending QMP %sable request\n", ret, enable ? "en" : "dis"); } int ipa_power_setup(struct ipa *ipa) { int ret; ipa_interrupt_enable(ipa, IPA_IRQ_TX_SUSPEND); ret = device_init_wakeup(&ipa->pdev->dev, true); if (ret) ipa_interrupt_disable(ipa, IPA_IRQ_TX_SUSPEND); return ret; } void ipa_power_teardown(struct ipa *ipa) { (void)device_init_wakeup(&ipa->pdev->dev, false); ipa_interrupt_disable(ipa, IPA_IRQ_TX_SUSPEND); } /* Initialize IPA power management */ struct ipa_power * ipa_power_init(struct device *dev, const struct ipa_power_data *data) { struct ipa_power *power; struct clk *clk; size_t size; int ret; clk = clk_get(dev, "core"); if (IS_ERR(clk)) { dev_err_probe(dev, PTR_ERR(clk), "error getting core clock\n"); return ERR_CAST(clk); } ret = clk_set_rate(clk, data->core_clock_rate); if (ret) { dev_err(dev, "error %d setting core clock rate to %u\n", ret, data->core_clock_rate); goto err_clk_put; } size = struct_size(power, interconnect, data->interconnect_count); power = kzalloc(size, GFP_KERNEL); if (!power) { ret = -ENOMEM; goto err_clk_put; } power->dev = dev; power->core = clk; power->interconnect_count = data->interconnect_count; ret = ipa_interconnect_init(power, data->interconnect_data); if (ret) goto err_kfree; ret = ipa_power_retention_init(power); if (ret) goto err_interconnect_exit; pm_runtime_set_autosuspend_delay(dev, IPA_AUTOSUSPEND_DELAY); pm_runtime_use_autosuspend(dev); pm_runtime_enable(dev); return power; err_interconnect_exit: ipa_interconnect_exit(power); err_kfree: kfree(power); err_clk_put: clk_put(clk); return ERR_PTR(ret); } /* Inverse of ipa_power_init() */ void ipa_power_exit(struct ipa_power *power) { struct device *dev = power->dev; struct clk *clk = power->core; pm_runtime_disable(dev); pm_runtime_dont_use_autosuspend(dev); ipa_power_retention_exit(power); ipa_interconnect_exit(power); kfree(power); clk_put(clk); } const struct dev_pm_ops ipa_pm_ops = { .suspend = ipa_suspend, .resume = ipa_resume, .runtime_suspend = ipa_runtime_suspend, .runtime_resume = ipa_runtime_resume, };