// SPDX-License-Identifier: GPL-2.0+ /* Copyright (C) 2009 - 2019 Broadcom */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../pci.h" /* BRCM_PCIE_CAP_REGS - Offset for the mandatory capability config regs */ #define BRCM_PCIE_CAP_REGS 0x00ac /* Broadcom STB PCIe Register Offsets */ #define PCIE_RC_CFG_VENDOR_VENDOR_SPECIFIC_REG1 0x0188 #define PCIE_RC_CFG_VENDOR_VENDOR_SPECIFIC_REG1_ENDIAN_MODE_BAR2_MASK 0xc #define PCIE_RC_CFG_VENDOR_SPCIFIC_REG1_LITTLE_ENDIAN 0x0 #define PCIE_RC_CFG_PRIV1_ID_VAL3 0x043c #define PCIE_RC_CFG_PRIV1_ID_VAL3_CLASS_CODE_MASK 0xffffff #define PCIE_RC_CFG_PRIV1_LINK_CAPABILITY 0x04dc #define PCIE_RC_CFG_PRIV1_LINK_CAPABILITY_ASPM_SUPPORT_MASK 0xc00 #define PCIE_RC_DL_MDIO_ADDR 0x1100 #define PCIE_RC_DL_MDIO_WR_DATA 0x1104 #define PCIE_RC_DL_MDIO_RD_DATA 0x1108 #define PCIE_MISC_MISC_CTRL 0x4008 #define PCIE_MISC_MISC_CTRL_SCB_ACCESS_EN_MASK 0x1000 #define PCIE_MISC_MISC_CTRL_CFG_READ_UR_MODE_MASK 0x2000 #define PCIE_MISC_MISC_CTRL_MAX_BURST_SIZE_MASK 0x300000 #define PCIE_MISC_MISC_CTRL_MAX_BURST_SIZE_128 0x0 #define PCIE_MISC_MISC_CTRL_SCB0_SIZE_MASK 0xf8000000 #define PCIE_MISC_CPU_2_PCIE_MEM_WIN0_LO 0x400c #define PCIE_MEM_WIN0_LO(win) \ PCIE_MISC_CPU_2_PCIE_MEM_WIN0_LO + ((win) * 8) #define PCIE_MISC_CPU_2_PCIE_MEM_WIN0_HI 0x4010 #define PCIE_MEM_WIN0_HI(win) \ PCIE_MISC_CPU_2_PCIE_MEM_WIN0_HI + ((win) * 8) #define PCIE_MISC_RC_BAR1_CONFIG_LO 0x402c #define PCIE_MISC_RC_BAR1_CONFIG_LO_SIZE_MASK 0x1f #define PCIE_MISC_RC_BAR2_CONFIG_LO 0x4034 #define PCIE_MISC_RC_BAR2_CONFIG_LO_SIZE_MASK 0x1f #define PCIE_MISC_RC_BAR2_CONFIG_HI 0x4038 #define PCIE_MISC_RC_BAR3_CONFIG_LO 0x403c #define PCIE_MISC_RC_BAR3_CONFIG_LO_SIZE_MASK 0x1f #define PCIE_MISC_MSI_BAR_CONFIG_LO 0x4044 #define PCIE_MISC_MSI_BAR_CONFIG_HI 0x4048 #define PCIE_MISC_MSI_DATA_CONFIG 0x404c #define PCIE_MISC_MSI_DATA_CONFIG_VAL 0xffe06540 #define PCIE_MISC_PCIE_CTRL 0x4064 #define PCIE_MISC_PCIE_CTRL_PCIE_L23_REQUEST_MASK 0x1 #define PCIE_MISC_PCIE_STATUS 0x4068 #define PCIE_MISC_PCIE_STATUS_PCIE_PORT_MASK 0x80 #define PCIE_MISC_PCIE_STATUS_PCIE_DL_ACTIVE_MASK 0x20 #define PCIE_MISC_PCIE_STATUS_PCIE_PHYLINKUP_MASK 0x10 #define PCIE_MISC_PCIE_STATUS_PCIE_LINK_IN_L23_MASK 0x40 #define PCIE_MISC_CPU_2_PCIE_MEM_WIN0_BASE_LIMIT 0x4070 #define PCIE_MISC_CPU_2_PCIE_MEM_WIN0_BASE_LIMIT_LIMIT_MASK 0xfff00000 #define PCIE_MISC_CPU_2_PCIE_MEM_WIN0_BASE_LIMIT_BASE_MASK 0xfff0 #define PCIE_MEM_WIN0_BASE_LIMIT(win) \ PCIE_MISC_CPU_2_PCIE_MEM_WIN0_BASE_LIMIT + ((win) * 4) #define PCIE_MISC_CPU_2_PCIE_MEM_WIN0_BASE_HI 0x4080 #define PCIE_MISC_CPU_2_PCIE_MEM_WIN0_BASE_HI_BASE_MASK 0xff #define PCIE_MEM_WIN0_BASE_HI(win) \ PCIE_MISC_CPU_2_PCIE_MEM_WIN0_BASE_HI + ((win) * 8) #define PCIE_MISC_CPU_2_PCIE_MEM_WIN0_LIMIT_HI 0x4084 #define PCIE_MISC_CPU_2_PCIE_MEM_WIN0_LIMIT_HI_LIMIT_MASK 0xff #define PCIE_MEM_WIN0_LIMIT_HI(win) \ PCIE_MISC_CPU_2_PCIE_MEM_WIN0_LIMIT_HI + ((win) * 8) #define PCIE_MISC_HARD_PCIE_HARD_DEBUG 0x4204 #define PCIE_MISC_HARD_PCIE_HARD_DEBUG_CLKREQ_DEBUG_ENABLE_MASK 0x2 #define PCIE_MISC_HARD_PCIE_HARD_DEBUG_SERDES_IDDQ_MASK 0x08000000 #define PCIE_MSI_INTR2_STATUS 0x4500 #define PCIE_MSI_INTR2_CLR 0x4508 #define PCIE_MSI_INTR2_MASK_SET 0x4510 #define PCIE_MSI_INTR2_MASK_CLR 0x4514 #define PCIE_EXT_CFG_DATA 0x8000 #define PCIE_EXT_CFG_INDEX 0x9000 #define PCIE_EXT_BUSNUM_SHIFT 20 #define PCIE_EXT_SLOT_SHIFT 15 #define PCIE_EXT_FUNC_SHIFT 12 #define PCIE_RGR1_SW_INIT_1 0x9210 #define PCIE_RGR1_SW_INIT_1_PERST_MASK 0x1 #define PCIE_RGR1_SW_INIT_1_INIT_MASK 0x2 /* PCIe parameters */ #define BRCM_NUM_PCIE_OUT_WINS 0x4 #define BRCM_INT_PCI_MSI_NR 32 /* MSI target adresses */ #define BRCM_MSI_TARGET_ADDR_LT_4GB 0x0fffffffcULL #define BRCM_MSI_TARGET_ADDR_GT_4GB 0xffffffffcULL /* MDIO registers */ #define MDIO_PORT0 0x0 #define MDIO_DATA_MASK 0x7fffffff #define MDIO_PORT_MASK 0xf0000 #define MDIO_REGAD_MASK 0xffff #define MDIO_CMD_MASK 0xfff00000 #define MDIO_CMD_READ 0x1 #define MDIO_CMD_WRITE 0x0 #define MDIO_DATA_DONE_MASK 0x80000000 #define MDIO_RD_DONE(x) (((x) & MDIO_DATA_DONE_MASK) ? 1 : 0) #define MDIO_WT_DONE(x) (((x) & MDIO_DATA_DONE_MASK) ? 0 : 1) #define SSC_REGS_ADDR 0x1100 #define SET_ADDR_OFFSET 0x1f #define SSC_CNTL_OFFSET 0x2 #define SSC_CNTL_OVRD_EN_MASK 0x8000 #define SSC_CNTL_OVRD_VAL_MASK 0x4000 #define SSC_STATUS_OFFSET 0x1 #define SSC_STATUS_SSC_MASK 0x400 #define SSC_STATUS_PLL_LOCK_MASK 0x800 struct brcm_msi { struct device *dev; void __iomem *base; struct device_node *np; struct irq_domain *msi_domain; struct irq_domain *inner_domain; struct mutex lock; /* guards the alloc/free operations */ u64 target_addr; int irq; /* used indicates which MSI interrupts have been alloc'd */ unsigned long used; }; /* Internal PCIe Host Controller Information.*/ struct brcm_pcie { struct device *dev; void __iomem *base; struct clk *clk; struct device_node *np; bool ssc; int gen; u64 msi_target_addr; struct brcm_msi *msi; }; /* * This is to convert the size of the inbound "BAR" region to the * non-linear values of PCIE_X_MISC_RC_BAR[123]_CONFIG_LO.SIZE */ static int brcm_pcie_encode_ibar_size(u64 size) { int log2_in = ilog2(size); if (log2_in >= 12 && log2_in <= 15) /* Covers 4KB to 32KB (inclusive) */ return (log2_in - 12) + 0x1c; else if (log2_in >= 16 && log2_in <= 35) /* Covers 64KB to 32GB, (inclusive) */ return log2_in - 15; /* Something is awry so disable */ return 0; } static u32 brcm_pcie_mdio_form_pkt(int port, int regad, int cmd) { u32 pkt = 0; pkt |= FIELD_PREP(MDIO_PORT_MASK, port); pkt |= FIELD_PREP(MDIO_REGAD_MASK, regad); pkt |= FIELD_PREP(MDIO_CMD_MASK, cmd); return pkt; } /* negative return value indicates error */ static int brcm_pcie_mdio_read(void __iomem *base, u8 port, u8 regad, u32 *val) { int tries; u32 data; writel(brcm_pcie_mdio_form_pkt(port, regad, MDIO_CMD_READ), base + PCIE_RC_DL_MDIO_ADDR); readl(base + PCIE_RC_DL_MDIO_ADDR); data = readl(base + PCIE_RC_DL_MDIO_RD_DATA); for (tries = 0; !MDIO_RD_DONE(data) && tries < 10; tries++) { udelay(10); data = readl(base + PCIE_RC_DL_MDIO_RD_DATA); } *val = FIELD_GET(MDIO_DATA_MASK, data); return MDIO_RD_DONE(data) ? 0 : -EIO; } /* negative return value indicates error */ static int brcm_pcie_mdio_write(void __iomem *base, u8 port, u8 regad, u16 wrdata) { int tries; u32 data; writel(brcm_pcie_mdio_form_pkt(port, regad, MDIO_CMD_WRITE), base + PCIE_RC_DL_MDIO_ADDR); readl(base + PCIE_RC_DL_MDIO_ADDR); writel(MDIO_DATA_DONE_MASK | wrdata, base + PCIE_RC_DL_MDIO_WR_DATA); data = readl(base + PCIE_RC_DL_MDIO_WR_DATA); for (tries = 0; !MDIO_WT_DONE(data) && tries < 10; tries++) { udelay(10); data = readl(base + PCIE_RC_DL_MDIO_WR_DATA); } return MDIO_WT_DONE(data) ? 0 : -EIO; } /* * Configures device for Spread Spectrum Clocking (SSC) mode; a negative * return value indicates error. */ static int brcm_pcie_set_ssc(struct brcm_pcie *pcie) { int pll, ssc; int ret; u32 tmp; ret = brcm_pcie_mdio_write(pcie->base, MDIO_PORT0, SET_ADDR_OFFSET, SSC_REGS_ADDR); if (ret < 0) return ret; ret = brcm_pcie_mdio_read(pcie->base, MDIO_PORT0, SSC_CNTL_OFFSET, &tmp); if (ret < 0) return ret; u32p_replace_bits(&tmp, 1, SSC_CNTL_OVRD_EN_MASK); u32p_replace_bits(&tmp, 1, SSC_CNTL_OVRD_VAL_MASK); ret = brcm_pcie_mdio_write(pcie->base, MDIO_PORT0, SSC_CNTL_OFFSET, tmp); if (ret < 0) return ret; usleep_range(1000, 2000); ret = brcm_pcie_mdio_read(pcie->base, MDIO_PORT0, SSC_STATUS_OFFSET, &tmp); if (ret < 0) return ret; ssc = FIELD_GET(SSC_STATUS_SSC_MASK, tmp); pll = FIELD_GET(SSC_STATUS_PLL_LOCK_MASK, tmp); return ssc && pll ? 0 : -EIO; } /* Limits operation to a specific generation (1, 2, or 3) */ static void brcm_pcie_set_gen(struct brcm_pcie *pcie, int gen) { u16 lnkctl2 = readw(pcie->base + BRCM_PCIE_CAP_REGS + PCI_EXP_LNKCTL2); u32 lnkcap = readl(pcie->base + BRCM_PCIE_CAP_REGS + PCI_EXP_LNKCAP); lnkcap = (lnkcap & ~PCI_EXP_LNKCAP_SLS) | gen; writel(lnkcap, pcie->base + BRCM_PCIE_CAP_REGS + PCI_EXP_LNKCAP); lnkctl2 = (lnkctl2 & ~0xf) | gen; writew(lnkctl2, pcie->base + BRCM_PCIE_CAP_REGS + PCI_EXP_LNKCTL2); } static void brcm_pcie_set_outbound_win(struct brcm_pcie *pcie, unsigned int win, u64 cpu_addr, u64 pcie_addr, u64 size) { u32 cpu_addr_mb_high, limit_addr_mb_high; phys_addr_t cpu_addr_mb, limit_addr_mb; int high_addr_shift; u32 tmp; /* Set the base of the pcie_addr window */ writel(lower_32_bits(pcie_addr), pcie->base + PCIE_MEM_WIN0_LO(win)); writel(upper_32_bits(pcie_addr), pcie->base + PCIE_MEM_WIN0_HI(win)); /* Write the addr base & limit lower bits (in MBs) */ cpu_addr_mb = cpu_addr / SZ_1M; limit_addr_mb = (cpu_addr + size - 1) / SZ_1M; tmp = readl(pcie->base + PCIE_MEM_WIN0_BASE_LIMIT(win)); u32p_replace_bits(&tmp, cpu_addr_mb, PCIE_MISC_CPU_2_PCIE_MEM_WIN0_BASE_LIMIT_BASE_MASK); u32p_replace_bits(&tmp, limit_addr_mb, PCIE_MISC_CPU_2_PCIE_MEM_WIN0_BASE_LIMIT_LIMIT_MASK); writel(tmp, pcie->base + PCIE_MEM_WIN0_BASE_LIMIT(win)); /* Write the cpu & limit addr upper bits */ high_addr_shift = HWEIGHT32(PCIE_MISC_CPU_2_PCIE_MEM_WIN0_BASE_LIMIT_BASE_MASK); cpu_addr_mb_high = cpu_addr_mb >> high_addr_shift; tmp = readl(pcie->base + PCIE_MEM_WIN0_BASE_HI(win)); u32p_replace_bits(&tmp, cpu_addr_mb_high, PCIE_MISC_CPU_2_PCIE_MEM_WIN0_BASE_HI_BASE_MASK); writel(tmp, pcie->base + PCIE_MEM_WIN0_BASE_HI(win)); limit_addr_mb_high = limit_addr_mb >> high_addr_shift; tmp = readl(pcie->base + PCIE_MEM_WIN0_LIMIT_HI(win)); u32p_replace_bits(&tmp, limit_addr_mb_high, PCIE_MISC_CPU_2_PCIE_MEM_WIN0_LIMIT_HI_LIMIT_MASK); writel(tmp, pcie->base + PCIE_MEM_WIN0_LIMIT_HI(win)); } static struct irq_chip brcm_msi_irq_chip = { .name = "BRCM STB PCIe MSI", .irq_ack = irq_chip_ack_parent, .irq_mask = pci_msi_mask_irq, .irq_unmask = pci_msi_unmask_irq, }; static struct msi_domain_info brcm_msi_domain_info = { /* Multi MSI is supported by the controller, but not by this driver */ .flags = (MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS), .chip = &brcm_msi_irq_chip, }; static void brcm_pcie_msi_isr(struct irq_desc *desc) { struct irq_chip *chip = irq_desc_get_chip(desc); unsigned long status, virq; struct brcm_msi *msi; struct device *dev; u32 bit; chained_irq_enter(chip, desc); msi = irq_desc_get_handler_data(desc); dev = msi->dev; status = readl(msi->base + PCIE_MSI_INTR2_STATUS); for_each_set_bit(bit, &status, BRCM_INT_PCI_MSI_NR) { virq = irq_find_mapping(msi->inner_domain, bit); if (virq) generic_handle_irq(virq); else dev_dbg(dev, "unexpected MSI\n"); } chained_irq_exit(chip, desc); } static void brcm_msi_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) { struct brcm_msi *msi = irq_data_get_irq_chip_data(data); msg->address_lo = lower_32_bits(msi->target_addr); msg->address_hi = upper_32_bits(msi->target_addr); msg->data = (0xffff & PCIE_MISC_MSI_DATA_CONFIG_VAL) | data->hwirq; } static int brcm_msi_set_affinity(struct irq_data *irq_data, const struct cpumask *mask, bool force) { return -EINVAL; } static void brcm_msi_ack_irq(struct irq_data *data) { struct brcm_msi *msi = irq_data_get_irq_chip_data(data); writel(1 << data->hwirq, msi->base + PCIE_MSI_INTR2_CLR); } static struct irq_chip brcm_msi_bottom_irq_chip = { .name = "BRCM STB MSI", .irq_compose_msi_msg = brcm_msi_compose_msi_msg, .irq_set_affinity = brcm_msi_set_affinity, .irq_ack = brcm_msi_ack_irq, }; static int brcm_msi_alloc(struct brcm_msi *msi) { int hwirq; mutex_lock(&msi->lock); hwirq = bitmap_find_free_region(&msi->used, BRCM_INT_PCI_MSI_NR, 0); mutex_unlock(&msi->lock); return hwirq; } static void brcm_msi_free(struct brcm_msi *msi, unsigned long hwirq) { mutex_lock(&msi->lock); bitmap_release_region(&msi->used, hwirq, 0); mutex_unlock(&msi->lock); } static int brcm_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs, void *args) { struct brcm_msi *msi = domain->host_data; int hwirq; hwirq = brcm_msi_alloc(msi); if (hwirq < 0) return hwirq; irq_domain_set_info(domain, virq, (irq_hw_number_t)hwirq, &brcm_msi_bottom_irq_chip, domain->host_data, handle_edge_irq, NULL, NULL); return 0; } static void brcm_irq_domain_free(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs) { struct irq_data *d = irq_domain_get_irq_data(domain, virq); struct brcm_msi *msi = irq_data_get_irq_chip_data(d); brcm_msi_free(msi, d->hwirq); } static const struct irq_domain_ops msi_domain_ops = { .alloc = brcm_irq_domain_alloc, .free = brcm_irq_domain_free, }; static int brcm_allocate_domains(struct brcm_msi *msi) { struct fwnode_handle *fwnode = of_node_to_fwnode(msi->np); struct device *dev = msi->dev; msi->inner_domain = irq_domain_add_linear(NULL, BRCM_INT_PCI_MSI_NR, &msi_domain_ops, msi); if (!msi->inner_domain) { dev_err(dev, "failed to create IRQ domain\n"); return -ENOMEM; } msi->msi_domain = pci_msi_create_irq_domain(fwnode, &brcm_msi_domain_info, msi->inner_domain); if (!msi->msi_domain) { dev_err(dev, "failed to create MSI domain\n"); irq_domain_remove(msi->inner_domain); return -ENOMEM; } return 0; } static void brcm_free_domains(struct brcm_msi *msi) { irq_domain_remove(msi->msi_domain); irq_domain_remove(msi->inner_domain); } static void brcm_msi_remove(struct brcm_pcie *pcie) { struct brcm_msi *msi = pcie->msi; if (!msi) return; irq_set_chained_handler(msi->irq, NULL); irq_set_handler_data(msi->irq, NULL); brcm_free_domains(msi); } static void brcm_msi_set_regs(struct brcm_msi *msi) { writel(0xffffffff, msi->base + PCIE_MSI_INTR2_MASK_CLR); /* * The 0 bit of PCIE_MISC_MSI_BAR_CONFIG_LO is repurposed to MSI * enable, which we set to 1. */ writel(lower_32_bits(msi->target_addr) | 0x1, msi->base + PCIE_MISC_MSI_BAR_CONFIG_LO); writel(upper_32_bits(msi->target_addr), msi->base + PCIE_MISC_MSI_BAR_CONFIG_HI); writel(PCIE_MISC_MSI_DATA_CONFIG_VAL, msi->base + PCIE_MISC_MSI_DATA_CONFIG); } static int brcm_pcie_enable_msi(struct brcm_pcie *pcie) { struct brcm_msi *msi; int irq, ret; struct device *dev = pcie->dev; irq = irq_of_parse_and_map(dev->of_node, 1); if (irq <= 0) { dev_err(dev, "cannot map MSI interrupt\n"); return -ENODEV; } msi = devm_kzalloc(dev, sizeof(struct brcm_msi), GFP_KERNEL); if (!msi) return -ENOMEM; mutex_init(&msi->lock); msi->dev = dev; msi->base = pcie->base; msi->np = pcie->np; msi->target_addr = pcie->msi_target_addr; msi->irq = irq; ret = brcm_allocate_domains(msi); if (ret) return ret; irq_set_chained_handler_and_data(msi->irq, brcm_pcie_msi_isr, msi); brcm_msi_set_regs(msi); pcie->msi = msi; return 0; } /* The controller is capable of serving in both RC and EP roles */ static bool brcm_pcie_rc_mode(struct brcm_pcie *pcie) { void __iomem *base = pcie->base; u32 val = readl(base + PCIE_MISC_PCIE_STATUS); return !!FIELD_GET(PCIE_MISC_PCIE_STATUS_PCIE_PORT_MASK, val); } static bool brcm_pcie_link_up(struct brcm_pcie *pcie) { u32 val = readl(pcie->base + PCIE_MISC_PCIE_STATUS); u32 dla = FIELD_GET(PCIE_MISC_PCIE_STATUS_PCIE_DL_ACTIVE_MASK, val); u32 plu = FIELD_GET(PCIE_MISC_PCIE_STATUS_PCIE_PHYLINKUP_MASK, val); return dla && plu; } /* Configuration space read/write support */ static inline int brcm_pcie_cfg_index(int busnr, int devfn, int reg) { return ((PCI_SLOT(devfn) & 0x1f) << PCIE_EXT_SLOT_SHIFT) | ((PCI_FUNC(devfn) & 0x07) << PCIE_EXT_FUNC_SHIFT) | (busnr << PCIE_EXT_BUSNUM_SHIFT) | (reg & ~3); } static void __iomem *brcm_pcie_map_conf(struct pci_bus *bus, unsigned int devfn, int where) { struct brcm_pcie *pcie = bus->sysdata; void __iomem *base = pcie->base; int idx; /* Accesses to the RC go right to the RC registers if slot==0 */ if (pci_is_root_bus(bus)) return PCI_SLOT(devfn) ? NULL : base + where; /* For devices, write to the config space index register */ idx = brcm_pcie_cfg_index(bus->number, devfn, 0); writel(idx, pcie->base + PCIE_EXT_CFG_INDEX); return base + PCIE_EXT_CFG_DATA + where; } static struct pci_ops brcm_pcie_ops = { .map_bus = brcm_pcie_map_conf, .read = pci_generic_config_read, .write = pci_generic_config_write, }; static inline void brcm_pcie_bridge_sw_init_set(struct brcm_pcie *pcie, u32 val) { u32 tmp; tmp = readl(pcie->base + PCIE_RGR1_SW_INIT_1); u32p_replace_bits(&tmp, val, PCIE_RGR1_SW_INIT_1_INIT_MASK); writel(tmp, pcie->base + PCIE_RGR1_SW_INIT_1); } static inline void brcm_pcie_perst_set(struct brcm_pcie *pcie, u32 val) { u32 tmp; tmp = readl(pcie->base + PCIE_RGR1_SW_INIT_1); u32p_replace_bits(&tmp, val, PCIE_RGR1_SW_INIT_1_PERST_MASK); writel(tmp, pcie->base + PCIE_RGR1_SW_INIT_1); } static inline int brcm_pcie_get_rc_bar2_size_and_offset(struct brcm_pcie *pcie, u64 *rc_bar2_size, u64 *rc_bar2_offset) { struct pci_host_bridge *bridge = pci_host_bridge_from_priv(pcie); struct device *dev = pcie->dev; struct resource_entry *entry; entry = resource_list_first_type(&bridge->dma_ranges, IORESOURCE_MEM); if (!entry) return -ENODEV; /* * The controller expects the inbound window offset to be calculated as * the difference between PCIe's address space and CPU's. The offset * provided by the firmware is calculated the opposite way, so we * negate it. */ *rc_bar2_offset = -entry->offset; *rc_bar2_size = 1ULL << fls64(entry->res->end - entry->res->start); /* * We validate the inbound memory view even though we should trust * whatever the device-tree provides. This is because of an HW issue on * early Raspberry Pi 4's revisions (bcm2711). It turns out its * firmware has to dynamically edit dma-ranges due to a bug on the * PCIe controller integration, which prohibits any access above the * lower 3GB of memory. Given this, we decided to keep the dma-ranges * in check, avoiding hard to debug device-tree related issues in the * future: * * The PCIe host controller by design must set the inbound viewport to * be a contiguous arrangement of all of the system's memory. In * addition, its size mut be a power of two. To further complicate * matters, the viewport must start on a pcie-address that is aligned * on a multiple of its size. If a portion of the viewport does not * represent system memory -- e.g. 3GB of memory requires a 4GB * viewport -- we can map the outbound memory in or after 3GB and even * though the viewport will overlap the outbound memory the controller * will know to send outbound memory downstream and everything else * upstream. * * For example: * * - The best-case scenario, memory up to 3GB, is to place the inbound * region in the first 4GB of pcie-space, as some legacy devices can * only address 32bits. We would also like to put the MSI under 4GB * as well, since some devices require a 32bit MSI target address. * * - If the system memory is 4GB or larger we cannot start the inbound * region at location 0 (since we have to allow some space for * outbound memory @ 3GB). So instead it will start at the 1x * multiple of its size */ if (!*rc_bar2_size || (*rc_bar2_offset & (*rc_bar2_size - 1)) || (*rc_bar2_offset < SZ_4G && *rc_bar2_offset > SZ_2G)) { dev_err(dev, "Invalid rc_bar2_offset/size: size 0x%llx, off 0x%llx\n", *rc_bar2_size, *rc_bar2_offset); return -EINVAL; } return 0; } static int brcm_pcie_setup(struct brcm_pcie *pcie) { struct pci_host_bridge *bridge = pci_host_bridge_from_priv(pcie); u64 rc_bar2_offset, rc_bar2_size; void __iomem *base = pcie->base; struct device *dev = pcie->dev; struct resource_entry *entry; unsigned int scb_size_val; bool ssc_good = false; struct resource *res; int num_out_wins = 0; u16 nlw, cls, lnksta; int i, ret; u32 tmp, aspm_support; /* Reset the bridge */ brcm_pcie_bridge_sw_init_set(pcie, 1); brcm_pcie_perst_set(pcie, 1); usleep_range(100, 200); /* Take the bridge out of reset */ brcm_pcie_bridge_sw_init_set(pcie, 0); tmp = readl(base + PCIE_MISC_HARD_PCIE_HARD_DEBUG); tmp &= ~PCIE_MISC_HARD_PCIE_HARD_DEBUG_SERDES_IDDQ_MASK; writel(tmp, base + PCIE_MISC_HARD_PCIE_HARD_DEBUG); /* Wait for SerDes to be stable */ usleep_range(100, 200); /* Set SCB_MAX_BURST_SIZE, CFG_READ_UR_MODE, SCB_ACCESS_EN */ u32p_replace_bits(&tmp, 1, PCIE_MISC_MISC_CTRL_SCB_ACCESS_EN_MASK); u32p_replace_bits(&tmp, 1, PCIE_MISC_MISC_CTRL_CFG_READ_UR_MODE_MASK); u32p_replace_bits(&tmp, PCIE_MISC_MISC_CTRL_MAX_BURST_SIZE_128, PCIE_MISC_MISC_CTRL_MAX_BURST_SIZE_MASK); writel(tmp, base + PCIE_MISC_MISC_CTRL); ret = brcm_pcie_get_rc_bar2_size_and_offset(pcie, &rc_bar2_size, &rc_bar2_offset); if (ret) return ret; tmp = lower_32_bits(rc_bar2_offset); u32p_replace_bits(&tmp, brcm_pcie_encode_ibar_size(rc_bar2_size), PCIE_MISC_RC_BAR2_CONFIG_LO_SIZE_MASK); writel(tmp, base + PCIE_MISC_RC_BAR2_CONFIG_LO); writel(upper_32_bits(rc_bar2_offset), base + PCIE_MISC_RC_BAR2_CONFIG_HI); scb_size_val = rc_bar2_size ? ilog2(rc_bar2_size) - 15 : 0xf; /* 0xf is 1GB */ tmp = readl(base + PCIE_MISC_MISC_CTRL); u32p_replace_bits(&tmp, scb_size_val, PCIE_MISC_MISC_CTRL_SCB0_SIZE_MASK); writel(tmp, base + PCIE_MISC_MISC_CTRL); /* * We ideally want the MSI target address to be located in the 32bit * addressable memory area. Some devices might depend on it. This is * possible either when the inbound window is located above the lower * 4GB or when the inbound area is smaller than 4GB (taking into * account the rounding-up we're forced to perform). */ if (rc_bar2_offset >= SZ_4G || (rc_bar2_size + rc_bar2_offset) < SZ_4G) pcie->msi_target_addr = BRCM_MSI_TARGET_ADDR_LT_4GB; else pcie->msi_target_addr = BRCM_MSI_TARGET_ADDR_GT_4GB; /* disable the PCIe->GISB memory window (RC_BAR1) */ tmp = readl(base + PCIE_MISC_RC_BAR1_CONFIG_LO); tmp &= ~PCIE_MISC_RC_BAR1_CONFIG_LO_SIZE_MASK; writel(tmp, base + PCIE_MISC_RC_BAR1_CONFIG_LO); /* disable the PCIe->SCB memory window (RC_BAR3) */ tmp = readl(base + PCIE_MISC_RC_BAR3_CONFIG_LO); tmp &= ~PCIE_MISC_RC_BAR3_CONFIG_LO_SIZE_MASK; writel(tmp, base + PCIE_MISC_RC_BAR3_CONFIG_LO); /* Mask all interrupts since we are not handling any yet */ writel(0xffffffff, pcie->base + PCIE_MSI_INTR2_MASK_SET); /* clear any interrupts we find on boot */ writel(0xffffffff, pcie->base + PCIE_MSI_INTR2_CLR); if (pcie->gen) brcm_pcie_set_gen(pcie, pcie->gen); /* Unassert the fundamental reset */ brcm_pcie_perst_set(pcie, 0); /* * Give the RC/EP time to wake up, before trying to configure RC. * Intermittently check status for link-up, up to a total of 100ms. */ for (i = 0; i < 100 && !brcm_pcie_link_up(pcie); i += 5) msleep(5); if (!brcm_pcie_link_up(pcie)) { dev_err(dev, "link down\n"); return -ENODEV; } if (!brcm_pcie_rc_mode(pcie)) { dev_err(dev, "PCIe misconfigured; is in EP mode\n"); return -EINVAL; } resource_list_for_each_entry(entry, &bridge->windows) { res = entry->res; if (resource_type(res) != IORESOURCE_MEM) continue; if (num_out_wins >= BRCM_NUM_PCIE_OUT_WINS) { dev_err(pcie->dev, "too many outbound wins\n"); return -EINVAL; } brcm_pcie_set_outbound_win(pcie, num_out_wins, res->start, res->start - entry->offset, resource_size(res)); num_out_wins++; } /* Don't advertise L0s capability if 'aspm-no-l0s' */ aspm_support = PCIE_LINK_STATE_L1; if (!of_property_read_bool(pcie->np, "aspm-no-l0s")) aspm_support |= PCIE_LINK_STATE_L0S; tmp = readl(base + PCIE_RC_CFG_PRIV1_LINK_CAPABILITY); u32p_replace_bits(&tmp, aspm_support, PCIE_RC_CFG_PRIV1_LINK_CAPABILITY_ASPM_SUPPORT_MASK); writel(tmp, base + PCIE_RC_CFG_PRIV1_LINK_CAPABILITY); /* * For config space accesses on the RC, show the right class for * a PCIe-PCIe bridge (the default setting is to be EP mode). */ tmp = readl(base + PCIE_RC_CFG_PRIV1_ID_VAL3); u32p_replace_bits(&tmp, 0x060400, PCIE_RC_CFG_PRIV1_ID_VAL3_CLASS_CODE_MASK); writel(tmp, base + PCIE_RC_CFG_PRIV1_ID_VAL3); if (pcie->ssc) { ret = brcm_pcie_set_ssc(pcie); if (ret == 0) ssc_good = true; else dev_err(dev, "failed attempt to enter ssc mode\n"); } lnksta = readw(base + BRCM_PCIE_CAP_REGS + PCI_EXP_LNKSTA); cls = FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta); nlw = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta); dev_info(dev, "link up, %s x%u %s\n", pci_speed_string(pcie_link_speed[cls]), nlw, ssc_good ? "(SSC)" : "(!SSC)"); /* PCIe->SCB endian mode for BAR */ tmp = readl(base + PCIE_RC_CFG_VENDOR_VENDOR_SPECIFIC_REG1); u32p_replace_bits(&tmp, PCIE_RC_CFG_VENDOR_SPCIFIC_REG1_LITTLE_ENDIAN, PCIE_RC_CFG_VENDOR_VENDOR_SPECIFIC_REG1_ENDIAN_MODE_BAR2_MASK); writel(tmp, base + PCIE_RC_CFG_VENDOR_VENDOR_SPECIFIC_REG1); /* * Refclk from RC should be gated with CLKREQ# input when ASPM L0s,L1 * is enabled => setting the CLKREQ_DEBUG_ENABLE field to 1. */ tmp = readl(base + PCIE_MISC_HARD_PCIE_HARD_DEBUG); tmp |= PCIE_MISC_HARD_PCIE_HARD_DEBUG_CLKREQ_DEBUG_ENABLE_MASK; writel(tmp, base + PCIE_MISC_HARD_PCIE_HARD_DEBUG); return 0; } /* L23 is a low-power PCIe link state */ static void brcm_pcie_enter_l23(struct brcm_pcie *pcie) { void __iomem *base = pcie->base; int l23, i; u32 tmp; /* Assert request for L23 */ tmp = readl(base + PCIE_MISC_PCIE_CTRL); u32p_replace_bits(&tmp, 1, PCIE_MISC_PCIE_CTRL_PCIE_L23_REQUEST_MASK); writel(tmp, base + PCIE_MISC_PCIE_CTRL); /* Wait up to 36 msec for L23 */ tmp = readl(base + PCIE_MISC_PCIE_STATUS); l23 = FIELD_GET(PCIE_MISC_PCIE_STATUS_PCIE_LINK_IN_L23_MASK, tmp); for (i = 0; i < 15 && !l23; i++) { usleep_range(2000, 2400); tmp = readl(base + PCIE_MISC_PCIE_STATUS); l23 = FIELD_GET(PCIE_MISC_PCIE_STATUS_PCIE_LINK_IN_L23_MASK, tmp); } if (!l23) dev_err(pcie->dev, "failed to enter low-power link state\n"); } static void brcm_pcie_turn_off(struct brcm_pcie *pcie) { void __iomem *base = pcie->base; int tmp; if (brcm_pcie_link_up(pcie)) brcm_pcie_enter_l23(pcie); /* Assert fundamental reset */ brcm_pcie_perst_set(pcie, 1); /* Deassert request for L23 in case it was asserted */ tmp = readl(base + PCIE_MISC_PCIE_CTRL); u32p_replace_bits(&tmp, 0, PCIE_MISC_PCIE_CTRL_PCIE_L23_REQUEST_MASK); writel(tmp, base + PCIE_MISC_PCIE_CTRL); /* Turn off SerDes */ tmp = readl(base + PCIE_MISC_HARD_PCIE_HARD_DEBUG); u32p_replace_bits(&tmp, 1, PCIE_MISC_HARD_PCIE_HARD_DEBUG_SERDES_IDDQ_MASK); writel(tmp, base + PCIE_MISC_HARD_PCIE_HARD_DEBUG); /* Shutdown PCIe bridge */ brcm_pcie_bridge_sw_init_set(pcie, 1); } static void __brcm_pcie_remove(struct brcm_pcie *pcie) { brcm_msi_remove(pcie); brcm_pcie_turn_off(pcie); clk_disable_unprepare(pcie->clk); } static int brcm_pcie_remove(struct platform_device *pdev) { struct brcm_pcie *pcie = platform_get_drvdata(pdev); struct pci_host_bridge *bridge = pci_host_bridge_from_priv(pcie); pci_stop_root_bus(bridge->bus); pci_remove_root_bus(bridge->bus); __brcm_pcie_remove(pcie); return 0; } static int brcm_pcie_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node, *msi_np; struct pci_host_bridge *bridge; struct device_node *fw_np; struct brcm_pcie *pcie; int ret; /* * We have to wait for Raspberry Pi's firmware interface to be up as a * PCI fixup, rpi_firmware_init_vl805(), depends on it. This driver's * probe can race with the firmware interface's (see * drivers/firmware/raspberrypi.c) and potentially break the PCI fixup. */ fw_np = of_find_compatible_node(NULL, NULL, "raspberrypi,bcm2835-firmware"); if (fw_np && !rpi_firmware_get(fw_np)) { of_node_put(fw_np); return -EPROBE_DEFER; } of_node_put(fw_np); bridge = devm_pci_alloc_host_bridge(&pdev->dev, sizeof(*pcie)); if (!bridge) return -ENOMEM; pcie = pci_host_bridge_priv(bridge); pcie->dev = &pdev->dev; pcie->np = np; pcie->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(pcie->base)) return PTR_ERR(pcie->base); pcie->clk = devm_clk_get_optional(&pdev->dev, "sw_pcie"); if (IS_ERR(pcie->clk)) return PTR_ERR(pcie->clk); ret = of_pci_get_max_link_speed(np); pcie->gen = (ret < 0) ? 0 : ret; pcie->ssc = of_property_read_bool(np, "brcm,enable-ssc"); ret = clk_prepare_enable(pcie->clk); if (ret) { dev_err(&pdev->dev, "could not enable clock\n"); return ret; } ret = brcm_pcie_setup(pcie); if (ret) goto fail; msi_np = of_parse_phandle(pcie->np, "msi-parent", 0); if (pci_msi_enabled() && msi_np == pcie->np) { ret = brcm_pcie_enable_msi(pcie); if (ret) { dev_err(pcie->dev, "probe of internal MSI failed"); goto fail; } } bridge->ops = &brcm_pcie_ops; bridge->sysdata = pcie; bridge->map_irq = of_irq_parse_and_map_pci; bridge->swizzle_irq = pci_common_swizzle; platform_set_drvdata(pdev, pcie); return pci_host_probe(bridge); fail: __brcm_pcie_remove(pcie); return ret; } static const struct of_device_id brcm_pcie_match[] = { { .compatible = "brcm,bcm2711-pcie" }, {}, }; MODULE_DEVICE_TABLE(of, brcm_pcie_match); static struct platform_driver brcm_pcie_driver = { .probe = brcm_pcie_probe, .remove = brcm_pcie_remove, .driver = { .name = "brcm-pcie", .of_match_table = brcm_pcie_match, }, }; module_platform_driver(brcm_pcie_driver); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Broadcom STB PCIe RC driver"); MODULE_AUTHOR("Broadcom");