// SPDX-License-Identifier: GPL-2.0-only /* * ARMv8 PMUv3 Performance Events handling code. * * Copyright (C) 2012 ARM Limited * Author: Will Deacon * * This code is based heavily on the ARMv7 perf event code. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* ARMv8 Cortex-A53 specific event types. */ #define ARMV8_A53_PERFCTR_PREF_LINEFILL 0xC2 /* ARMv8 Cavium ThunderX specific event types. */ #define ARMV8_THUNDER_PERFCTR_L1D_CACHE_MISS_ST 0xE9 #define ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_ACCESS 0xEA #define ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_MISS 0xEB #define ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_ACCESS 0xEC #define ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_MISS 0xED /* * ARMv8 Architectural defined events, not all of these may * be supported on any given implementation. Unsupported events will * be disabled at run-time based on the PMCEID registers. */ static const unsigned armv8_pmuv3_perf_map[PERF_COUNT_HW_MAX] = { PERF_MAP_ALL_UNSUPPORTED, [PERF_COUNT_HW_CPU_CYCLES] = ARMV8_PMUV3_PERFCTR_CPU_CYCLES, [PERF_COUNT_HW_INSTRUCTIONS] = ARMV8_PMUV3_PERFCTR_INST_RETIRED, [PERF_COUNT_HW_CACHE_REFERENCES] = ARMV8_PMUV3_PERFCTR_L1D_CACHE, [PERF_COUNT_HW_CACHE_MISSES] = ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL, [PERF_COUNT_HW_BRANCH_MISSES] = ARMV8_PMUV3_PERFCTR_BR_MIS_PRED, [PERF_COUNT_HW_BUS_CYCLES] = ARMV8_PMUV3_PERFCTR_BUS_CYCLES, [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = ARMV8_PMUV3_PERFCTR_STALL_FRONTEND, [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = ARMV8_PMUV3_PERFCTR_STALL_BACKEND, }; static const unsigned armv8_pmuv3_perf_cache_map[PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { PERF_CACHE_MAP_ALL_UNSUPPORTED, [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1D_CACHE, [C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL, [C(L1I)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1I_CACHE, [C(L1I)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1I_CACHE_REFILL, [C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1D_TLB_REFILL, [C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1D_TLB, [C(ITLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1I_TLB_REFILL, [C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1I_TLB, [C(LL)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS_RD, [C(LL)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_LL_CACHE_RD, [C(BPU)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_BR_PRED, [C(BPU)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_BR_MIS_PRED, }; static const unsigned armv8_a53_perf_cache_map[PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { PERF_CACHE_MAP_ALL_UNSUPPORTED, [C(L1D)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_A53_PERFCTR_PREF_LINEFILL, [C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD, [C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR, }; static const unsigned armv8_a57_perf_cache_map[PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { PERF_CACHE_MAP_ALL_UNSUPPORTED, [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD, [C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD, [C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR, [C(L1D)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_WR, [C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD, [C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR, [C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD, [C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR, }; static const unsigned armv8_a73_perf_cache_map[PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { PERF_CACHE_MAP_ALL_UNSUPPORTED, [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD, [C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR, }; static const unsigned armv8_thunder_perf_cache_map[PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { PERF_CACHE_MAP_ALL_UNSUPPORTED, [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD, [C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD, [C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR, [C(L1D)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_THUNDER_PERFCTR_L1D_CACHE_MISS_ST, [C(L1D)][C(OP_PREFETCH)][C(RESULT_ACCESS)] = ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_ACCESS, [C(L1D)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_MISS, [C(L1I)][C(OP_PREFETCH)][C(RESULT_ACCESS)] = ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_ACCESS, [C(L1I)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_MISS, [C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_RD, [C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD, [C(DTLB)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_WR, [C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR, }; static const unsigned armv8_vulcan_perf_cache_map[PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { PERF_CACHE_MAP_ALL_UNSUPPORTED, [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD, [C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD, [C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR, [C(L1D)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_WR, [C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_RD, [C(DTLB)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_WR, [C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD, [C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR, [C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD, [C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR, }; static ssize_t armv8pmu_events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page) { struct perf_pmu_events_attr *pmu_attr; pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr); return sprintf(page, "event=0x%04llx\n", pmu_attr->id); } #define ARMV8_EVENT_ATTR(name, config) \ PMU_EVENT_ATTR_ID(name, armv8pmu_events_sysfs_show, config) static struct attribute *armv8_pmuv3_event_attrs[] = { /* * Don't expose the sw_incr event in /sys. It's not usable as writes to * PMSWINC_EL0 will trap as PMUSERENR.{SW,EN}=={0,0} and event rotation * means we don't have a fixed event<->counter relationship regardless. */ ARMV8_EVENT_ATTR(l1i_cache_refill, ARMV8_PMUV3_PERFCTR_L1I_CACHE_REFILL), ARMV8_EVENT_ATTR(l1i_tlb_refill, ARMV8_PMUV3_PERFCTR_L1I_TLB_REFILL), ARMV8_EVENT_ATTR(l1d_cache_refill, ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL), ARMV8_EVENT_ATTR(l1d_cache, ARMV8_PMUV3_PERFCTR_L1D_CACHE), ARMV8_EVENT_ATTR(l1d_tlb_refill, ARMV8_PMUV3_PERFCTR_L1D_TLB_REFILL), ARMV8_EVENT_ATTR(ld_retired, ARMV8_PMUV3_PERFCTR_LD_RETIRED), ARMV8_EVENT_ATTR(st_retired, ARMV8_PMUV3_PERFCTR_ST_RETIRED), ARMV8_EVENT_ATTR(inst_retired, ARMV8_PMUV3_PERFCTR_INST_RETIRED), ARMV8_EVENT_ATTR(exc_taken, ARMV8_PMUV3_PERFCTR_EXC_TAKEN), ARMV8_EVENT_ATTR(exc_return, ARMV8_PMUV3_PERFCTR_EXC_RETURN), ARMV8_EVENT_ATTR(cid_write_retired, ARMV8_PMUV3_PERFCTR_CID_WRITE_RETIRED), ARMV8_EVENT_ATTR(pc_write_retired, ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED), ARMV8_EVENT_ATTR(br_immed_retired, ARMV8_PMUV3_PERFCTR_BR_IMMED_RETIRED), ARMV8_EVENT_ATTR(br_return_retired, ARMV8_PMUV3_PERFCTR_BR_RETURN_RETIRED), ARMV8_EVENT_ATTR(unaligned_ldst_retired, ARMV8_PMUV3_PERFCTR_UNALIGNED_LDST_RETIRED), ARMV8_EVENT_ATTR(br_mis_pred, ARMV8_PMUV3_PERFCTR_BR_MIS_PRED), ARMV8_EVENT_ATTR(cpu_cycles, ARMV8_PMUV3_PERFCTR_CPU_CYCLES), ARMV8_EVENT_ATTR(br_pred, ARMV8_PMUV3_PERFCTR_BR_PRED), ARMV8_EVENT_ATTR(mem_access, ARMV8_PMUV3_PERFCTR_MEM_ACCESS), ARMV8_EVENT_ATTR(l1i_cache, ARMV8_PMUV3_PERFCTR_L1I_CACHE), ARMV8_EVENT_ATTR(l1d_cache_wb, ARMV8_PMUV3_PERFCTR_L1D_CACHE_WB), ARMV8_EVENT_ATTR(l2d_cache, ARMV8_PMUV3_PERFCTR_L2D_CACHE), ARMV8_EVENT_ATTR(l2d_cache_refill, ARMV8_PMUV3_PERFCTR_L2D_CACHE_REFILL), ARMV8_EVENT_ATTR(l2d_cache_wb, ARMV8_PMUV3_PERFCTR_L2D_CACHE_WB), ARMV8_EVENT_ATTR(bus_access, ARMV8_PMUV3_PERFCTR_BUS_ACCESS), ARMV8_EVENT_ATTR(memory_error, ARMV8_PMUV3_PERFCTR_MEMORY_ERROR), ARMV8_EVENT_ATTR(inst_spec, ARMV8_PMUV3_PERFCTR_INST_SPEC), ARMV8_EVENT_ATTR(ttbr_write_retired, ARMV8_PMUV3_PERFCTR_TTBR_WRITE_RETIRED), ARMV8_EVENT_ATTR(bus_cycles, ARMV8_PMUV3_PERFCTR_BUS_CYCLES), /* Don't expose the chain event in /sys, since it's useless in isolation */ ARMV8_EVENT_ATTR(l1d_cache_allocate, ARMV8_PMUV3_PERFCTR_L1D_CACHE_ALLOCATE), ARMV8_EVENT_ATTR(l2d_cache_allocate, ARMV8_PMUV3_PERFCTR_L2D_CACHE_ALLOCATE), ARMV8_EVENT_ATTR(br_retired, ARMV8_PMUV3_PERFCTR_BR_RETIRED), ARMV8_EVENT_ATTR(br_mis_pred_retired, ARMV8_PMUV3_PERFCTR_BR_MIS_PRED_RETIRED), ARMV8_EVENT_ATTR(stall_frontend, ARMV8_PMUV3_PERFCTR_STALL_FRONTEND), ARMV8_EVENT_ATTR(stall_backend, ARMV8_PMUV3_PERFCTR_STALL_BACKEND), ARMV8_EVENT_ATTR(l1d_tlb, ARMV8_PMUV3_PERFCTR_L1D_TLB), ARMV8_EVENT_ATTR(l1i_tlb, ARMV8_PMUV3_PERFCTR_L1I_TLB), ARMV8_EVENT_ATTR(l2i_cache, ARMV8_PMUV3_PERFCTR_L2I_CACHE), ARMV8_EVENT_ATTR(l2i_cache_refill, ARMV8_PMUV3_PERFCTR_L2I_CACHE_REFILL), ARMV8_EVENT_ATTR(l3d_cache_allocate, ARMV8_PMUV3_PERFCTR_L3D_CACHE_ALLOCATE), ARMV8_EVENT_ATTR(l3d_cache_refill, ARMV8_PMUV3_PERFCTR_L3D_CACHE_REFILL), ARMV8_EVENT_ATTR(l3d_cache, ARMV8_PMUV3_PERFCTR_L3D_CACHE), ARMV8_EVENT_ATTR(l3d_cache_wb, ARMV8_PMUV3_PERFCTR_L3D_CACHE_WB), ARMV8_EVENT_ATTR(l2d_tlb_refill, ARMV8_PMUV3_PERFCTR_L2D_TLB_REFILL), ARMV8_EVENT_ATTR(l2i_tlb_refill, ARMV8_PMUV3_PERFCTR_L2I_TLB_REFILL), ARMV8_EVENT_ATTR(l2d_tlb, ARMV8_PMUV3_PERFCTR_L2D_TLB), ARMV8_EVENT_ATTR(l2i_tlb, ARMV8_PMUV3_PERFCTR_L2I_TLB), ARMV8_EVENT_ATTR(remote_access, ARMV8_PMUV3_PERFCTR_REMOTE_ACCESS), ARMV8_EVENT_ATTR(ll_cache, ARMV8_PMUV3_PERFCTR_LL_CACHE), ARMV8_EVENT_ATTR(ll_cache_miss, ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS), ARMV8_EVENT_ATTR(dtlb_walk, ARMV8_PMUV3_PERFCTR_DTLB_WALK), ARMV8_EVENT_ATTR(itlb_walk, ARMV8_PMUV3_PERFCTR_ITLB_WALK), ARMV8_EVENT_ATTR(ll_cache_rd, ARMV8_PMUV3_PERFCTR_LL_CACHE_RD), ARMV8_EVENT_ATTR(ll_cache_miss_rd, ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS_RD), ARMV8_EVENT_ATTR(remote_access_rd, ARMV8_PMUV3_PERFCTR_REMOTE_ACCESS_RD), ARMV8_EVENT_ATTR(l1d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L1D_CACHE_LMISS_RD), ARMV8_EVENT_ATTR(op_retired, ARMV8_PMUV3_PERFCTR_OP_RETIRED), ARMV8_EVENT_ATTR(op_spec, ARMV8_PMUV3_PERFCTR_OP_SPEC), ARMV8_EVENT_ATTR(stall, ARMV8_PMUV3_PERFCTR_STALL), ARMV8_EVENT_ATTR(stall_slot_backend, ARMV8_PMUV3_PERFCTR_STALL_SLOT_BACKEND), ARMV8_EVENT_ATTR(stall_slot_frontend, ARMV8_PMUV3_PERFCTR_STALL_SLOT_FRONTEND), ARMV8_EVENT_ATTR(stall_slot, ARMV8_PMUV3_PERFCTR_STALL_SLOT), ARMV8_EVENT_ATTR(sample_pop, ARMV8_SPE_PERFCTR_SAMPLE_POP), ARMV8_EVENT_ATTR(sample_feed, ARMV8_SPE_PERFCTR_SAMPLE_FEED), ARMV8_EVENT_ATTR(sample_filtrate, ARMV8_SPE_PERFCTR_SAMPLE_FILTRATE), ARMV8_EVENT_ATTR(sample_collision, ARMV8_SPE_PERFCTR_SAMPLE_COLLISION), ARMV8_EVENT_ATTR(cnt_cycles, ARMV8_AMU_PERFCTR_CNT_CYCLES), ARMV8_EVENT_ATTR(stall_backend_mem, ARMV8_AMU_PERFCTR_STALL_BACKEND_MEM), ARMV8_EVENT_ATTR(l1i_cache_lmiss, ARMV8_PMUV3_PERFCTR_L1I_CACHE_LMISS), ARMV8_EVENT_ATTR(l2d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L2D_CACHE_LMISS_RD), ARMV8_EVENT_ATTR(l2i_cache_lmiss, ARMV8_PMUV3_PERFCTR_L2I_CACHE_LMISS), ARMV8_EVENT_ATTR(l3d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L3D_CACHE_LMISS_RD), ARMV8_EVENT_ATTR(trb_wrap, ARMV8_PMUV3_PERFCTR_TRB_WRAP), ARMV8_EVENT_ATTR(trb_trig, ARMV8_PMUV3_PERFCTR_TRB_TRIG), ARMV8_EVENT_ATTR(trcextout0, ARMV8_PMUV3_PERFCTR_TRCEXTOUT0), ARMV8_EVENT_ATTR(trcextout1, ARMV8_PMUV3_PERFCTR_TRCEXTOUT1), ARMV8_EVENT_ATTR(trcextout2, ARMV8_PMUV3_PERFCTR_TRCEXTOUT2), ARMV8_EVENT_ATTR(trcextout3, ARMV8_PMUV3_PERFCTR_TRCEXTOUT3), ARMV8_EVENT_ATTR(cti_trigout4, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT4), ARMV8_EVENT_ATTR(cti_trigout5, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT5), ARMV8_EVENT_ATTR(cti_trigout6, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT6), ARMV8_EVENT_ATTR(cti_trigout7, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT7), ARMV8_EVENT_ATTR(ldst_align_lat, ARMV8_PMUV3_PERFCTR_LDST_ALIGN_LAT), ARMV8_EVENT_ATTR(ld_align_lat, ARMV8_PMUV3_PERFCTR_LD_ALIGN_LAT), ARMV8_EVENT_ATTR(st_align_lat, ARMV8_PMUV3_PERFCTR_ST_ALIGN_LAT), ARMV8_EVENT_ATTR(mem_access_checked, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED), ARMV8_EVENT_ATTR(mem_access_checked_rd, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED_RD), ARMV8_EVENT_ATTR(mem_access_checked_wr, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED_WR), NULL, }; static umode_t armv8pmu_event_attr_is_visible(struct kobject *kobj, struct attribute *attr, int unused) { struct device *dev = kobj_to_dev(kobj); struct pmu *pmu = dev_get_drvdata(dev); struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu); struct perf_pmu_events_attr *pmu_attr; pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr); if (pmu_attr->id < ARMV8_PMUV3_MAX_COMMON_EVENTS && test_bit(pmu_attr->id, cpu_pmu->pmceid_bitmap)) return attr->mode; if (pmu_attr->id >= ARMV8_PMUV3_EXT_COMMON_EVENT_BASE) { u64 id = pmu_attr->id - ARMV8_PMUV3_EXT_COMMON_EVENT_BASE; if (id < ARMV8_PMUV3_MAX_COMMON_EVENTS && test_bit(id, cpu_pmu->pmceid_ext_bitmap)) return attr->mode; } return 0; } static const struct attribute_group armv8_pmuv3_events_attr_group = { .name = "events", .attrs = armv8_pmuv3_event_attrs, .is_visible = armv8pmu_event_attr_is_visible, }; /* User ABI */ #define ATTR_CFG_FLD_event_CFG config #define ATTR_CFG_FLD_event_LO 0 #define ATTR_CFG_FLD_event_HI 15 #define ATTR_CFG_FLD_long_CFG config1 #define ATTR_CFG_FLD_long_LO 0 #define ATTR_CFG_FLD_long_HI 0 #define ATTR_CFG_FLD_rdpmc_CFG config1 #define ATTR_CFG_FLD_rdpmc_LO 1 #define ATTR_CFG_FLD_rdpmc_HI 1 #define ATTR_CFG_FLD_threshold_count_CFG config1 /* PMEVTYPER.TC[0] */ #define ATTR_CFG_FLD_threshold_count_LO 2 #define ATTR_CFG_FLD_threshold_count_HI 2 #define ATTR_CFG_FLD_threshold_compare_CFG config1 /* PMEVTYPER.TC[2:1] */ #define ATTR_CFG_FLD_threshold_compare_LO 3 #define ATTR_CFG_FLD_threshold_compare_HI 4 #define ATTR_CFG_FLD_threshold_CFG config1 /* PMEVTYPER.TH */ #define ATTR_CFG_FLD_threshold_LO 5 #define ATTR_CFG_FLD_threshold_HI 16 GEN_PMU_FORMAT_ATTR(event); GEN_PMU_FORMAT_ATTR(long); GEN_PMU_FORMAT_ATTR(rdpmc); GEN_PMU_FORMAT_ATTR(threshold_count); GEN_PMU_FORMAT_ATTR(threshold_compare); GEN_PMU_FORMAT_ATTR(threshold); static int sysctl_perf_user_access __read_mostly; static bool armv8pmu_event_is_64bit(struct perf_event *event) { return ATTR_CFG_GET_FLD(&event->attr, long); } static bool armv8pmu_event_want_user_access(struct perf_event *event) { return ATTR_CFG_GET_FLD(&event->attr, rdpmc); } static u32 armv8pmu_event_get_threshold(struct perf_event_attr *attr) { return ATTR_CFG_GET_FLD(attr, threshold); } static u8 armv8pmu_event_threshold_control(struct perf_event_attr *attr) { u8 th_compare = ATTR_CFG_GET_FLD(attr, threshold_compare); u8 th_count = ATTR_CFG_GET_FLD(attr, threshold_count); /* * The count bit is always the bottom bit of the full control field, and * the comparison is the upper two bits, but it's not explicitly * labelled in the Arm ARM. For the Perf interface we split it into two * fields, so reconstruct it here. */ return (th_compare << 1) | th_count; } static struct attribute *armv8_pmuv3_format_attrs[] = { &format_attr_event.attr, &format_attr_long.attr, &format_attr_rdpmc.attr, &format_attr_threshold.attr, &format_attr_threshold_compare.attr, &format_attr_threshold_count.attr, NULL, }; static const struct attribute_group armv8_pmuv3_format_attr_group = { .name = "format", .attrs = armv8_pmuv3_format_attrs, }; static ssize_t slots_show(struct device *dev, struct device_attribute *attr, char *page) { struct pmu *pmu = dev_get_drvdata(dev); struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu); u32 slots = FIELD_GET(ARMV8_PMU_SLOTS, cpu_pmu->reg_pmmir); return sysfs_emit(page, "0x%08x\n", slots); } static DEVICE_ATTR_RO(slots); static ssize_t bus_slots_show(struct device *dev, struct device_attribute *attr, char *page) { struct pmu *pmu = dev_get_drvdata(dev); struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu); u32 bus_slots = FIELD_GET(ARMV8_PMU_BUS_SLOTS, cpu_pmu->reg_pmmir); return sysfs_emit(page, "0x%08x\n", bus_slots); } static DEVICE_ATTR_RO(bus_slots); static ssize_t bus_width_show(struct device *dev, struct device_attribute *attr, char *page) { struct pmu *pmu = dev_get_drvdata(dev); struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu); u32 bus_width = FIELD_GET(ARMV8_PMU_BUS_WIDTH, cpu_pmu->reg_pmmir); u32 val = 0; /* Encoded as Log2(number of bytes), plus one */ if (bus_width > 2 && bus_width < 13) val = 1 << (bus_width - 1); return sysfs_emit(page, "0x%08x\n", val); } static DEVICE_ATTR_RO(bus_width); static u32 threshold_max(struct arm_pmu *cpu_pmu) { /* * PMMIR.THWIDTH is readable and non-zero on aarch32, but it would be * impossible to write the threshold in the upper 32 bits of PMEVTYPER. */ if (IS_ENABLED(CONFIG_ARM)) return 0; /* * The largest value that can be written to PMEVTYPER_EL0.TH is * (2 ^ PMMIR.THWIDTH) - 1. */ return (1 << FIELD_GET(ARMV8_PMU_THWIDTH, cpu_pmu->reg_pmmir)) - 1; } static ssize_t threshold_max_show(struct device *dev, struct device_attribute *attr, char *page) { struct pmu *pmu = dev_get_drvdata(dev); struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu); return sysfs_emit(page, "0x%08x\n", threshold_max(cpu_pmu)); } static DEVICE_ATTR_RO(threshold_max); static struct attribute *armv8_pmuv3_caps_attrs[] = { &dev_attr_slots.attr, &dev_attr_bus_slots.attr, &dev_attr_bus_width.attr, &dev_attr_threshold_max.attr, NULL, }; static const struct attribute_group armv8_pmuv3_caps_attr_group = { .name = "caps", .attrs = armv8_pmuv3_caps_attrs, }; /* * Perf Events' indices */ #define ARMV8_IDX_CYCLE_COUNTER 0 #define ARMV8_IDX_COUNTER0 1 #define ARMV8_IDX_CYCLE_COUNTER_USER 32 /* * We unconditionally enable ARMv8.5-PMU long event counter support * (64-bit events) where supported. Indicate if this arm_pmu has long * event counter support. * * On AArch32, long counters make no sense (you can't access the top * bits), so we only enable this on AArch64. */ static bool armv8pmu_has_long_event(struct arm_pmu *cpu_pmu) { return (IS_ENABLED(CONFIG_ARM64) && is_pmuv3p5(cpu_pmu->pmuver)); } static bool armv8pmu_event_has_user_read(struct perf_event *event) { return event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT; } /* * We must chain two programmable counters for 64 bit events, * except when we have allocated the 64bit cycle counter (for CPU * cycles event) or when user space counter access is enabled. */ static bool armv8pmu_event_is_chained(struct perf_event *event) { int idx = event->hw.idx; struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu); return !armv8pmu_event_has_user_read(event) && armv8pmu_event_is_64bit(event) && !armv8pmu_has_long_event(cpu_pmu) && (idx != ARMV8_IDX_CYCLE_COUNTER); } /* * ARMv8 low level PMU access */ /* * Perf Event to low level counters mapping */ #define ARMV8_IDX_TO_COUNTER(x) \ (((x) - ARMV8_IDX_COUNTER0) & ARMV8_PMU_COUNTER_MASK) static u64 armv8pmu_pmcr_read(void) { return read_pmcr(); } static void armv8pmu_pmcr_write(u64 val) { val &= ARMV8_PMU_PMCR_MASK; isb(); write_pmcr(val); } static int armv8pmu_has_overflowed(u32 pmovsr) { return pmovsr & ARMV8_PMU_OVERFLOWED_MASK; } static int armv8pmu_counter_has_overflowed(u32 pmnc, int idx) { return pmnc & BIT(ARMV8_IDX_TO_COUNTER(idx)); } static u64 armv8pmu_read_evcntr(int idx) { u32 counter = ARMV8_IDX_TO_COUNTER(idx); return read_pmevcntrn(counter); } static u64 armv8pmu_read_hw_counter(struct perf_event *event) { int idx = event->hw.idx; u64 val = armv8pmu_read_evcntr(idx); if (armv8pmu_event_is_chained(event)) val = (val << 32) | armv8pmu_read_evcntr(idx - 1); return val; } /* * The cycle counter is always a 64-bit counter. When ARMV8_PMU_PMCR_LP * is set the event counters also become 64-bit counters. Unless the * user has requested a long counter (attr.config1) then we want to * interrupt upon 32-bit overflow - we achieve this by applying a bias. */ static bool armv8pmu_event_needs_bias(struct perf_event *event) { struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; int idx = hwc->idx; if (armv8pmu_event_is_64bit(event)) return false; if (armv8pmu_has_long_event(cpu_pmu) || idx == ARMV8_IDX_CYCLE_COUNTER) return true; return false; } static u64 armv8pmu_bias_long_counter(struct perf_event *event, u64 value) { if (armv8pmu_event_needs_bias(event)) value |= GENMASK_ULL(63, 32); return value; } static u64 armv8pmu_unbias_long_counter(struct perf_event *event, u64 value) { if (armv8pmu_event_needs_bias(event)) value &= ~GENMASK_ULL(63, 32); return value; } static u64 armv8pmu_read_counter(struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; int idx = hwc->idx; u64 value; if (idx == ARMV8_IDX_CYCLE_COUNTER) value = read_pmccntr(); else value = armv8pmu_read_hw_counter(event); return armv8pmu_unbias_long_counter(event, value); } static void armv8pmu_write_evcntr(int idx, u64 value) { u32 counter = ARMV8_IDX_TO_COUNTER(idx); write_pmevcntrn(counter, value); } static void armv8pmu_write_hw_counter(struct perf_event *event, u64 value) { int idx = event->hw.idx; if (armv8pmu_event_is_chained(event)) { armv8pmu_write_evcntr(idx, upper_32_bits(value)); armv8pmu_write_evcntr(idx - 1, lower_32_bits(value)); } else { armv8pmu_write_evcntr(idx, value); } } static void armv8pmu_write_counter(struct perf_event *event, u64 value) { struct hw_perf_event *hwc = &event->hw; int idx = hwc->idx; value = armv8pmu_bias_long_counter(event, value); if (idx == ARMV8_IDX_CYCLE_COUNTER) write_pmccntr(value); else armv8pmu_write_hw_counter(event, value); } static void armv8pmu_write_evtype(int idx, unsigned long val) { u32 counter = ARMV8_IDX_TO_COUNTER(idx); unsigned long mask = ARMV8_PMU_EVTYPE_EVENT | ARMV8_PMU_INCLUDE_EL2 | ARMV8_PMU_EXCLUDE_EL0 | ARMV8_PMU_EXCLUDE_EL1; if (IS_ENABLED(CONFIG_ARM64)) mask |= ARMV8_PMU_EVTYPE_TC | ARMV8_PMU_EVTYPE_TH; val &= mask; write_pmevtypern(counter, val); } static void armv8pmu_write_event_type(struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; int idx = hwc->idx; /* * For chained events, the low counter is programmed to count * the event of interest and the high counter is programmed * with CHAIN event code with filters set to count at all ELs. */ if (armv8pmu_event_is_chained(event)) { u32 chain_evt = ARMV8_PMUV3_PERFCTR_CHAIN | ARMV8_PMU_INCLUDE_EL2; armv8pmu_write_evtype(idx - 1, hwc->config_base); armv8pmu_write_evtype(idx, chain_evt); } else { if (idx == ARMV8_IDX_CYCLE_COUNTER) write_pmccfiltr(hwc->config_base); else armv8pmu_write_evtype(idx, hwc->config_base); } } static u32 armv8pmu_event_cnten_mask(struct perf_event *event) { int counter = ARMV8_IDX_TO_COUNTER(event->hw.idx); u32 mask = BIT(counter); if (armv8pmu_event_is_chained(event)) mask |= BIT(counter - 1); return mask; } static void armv8pmu_enable_counter(u32 mask) { /* * Make sure event configuration register writes are visible before we * enable the counter. * */ isb(); write_pmcntenset(mask); } static void armv8pmu_enable_event_counter(struct perf_event *event) { struct perf_event_attr *attr = &event->attr; u32 mask = armv8pmu_event_cnten_mask(event); kvm_set_pmu_events(mask, attr); /* We rely on the hypervisor switch code to enable guest counters */ if (!kvm_pmu_counter_deferred(attr)) armv8pmu_enable_counter(mask); } static void armv8pmu_disable_counter(u32 mask) { write_pmcntenclr(mask); /* * Make sure the effects of disabling the counter are visible before we * start configuring the event. */ isb(); } static void armv8pmu_disable_event_counter(struct perf_event *event) { struct perf_event_attr *attr = &event->attr; u32 mask = armv8pmu_event_cnten_mask(event); kvm_clr_pmu_events(mask); /* We rely on the hypervisor switch code to disable guest counters */ if (!kvm_pmu_counter_deferred(attr)) armv8pmu_disable_counter(mask); } static void armv8pmu_enable_intens(u32 mask) { write_pmintenset(mask); } static void armv8pmu_enable_event_irq(struct perf_event *event) { u32 counter = ARMV8_IDX_TO_COUNTER(event->hw.idx); armv8pmu_enable_intens(BIT(counter)); } static void armv8pmu_disable_intens(u32 mask) { write_pmintenclr(mask); isb(); /* Clear the overflow flag in case an interrupt is pending. */ write_pmovsclr(mask); isb(); } static void armv8pmu_disable_event_irq(struct perf_event *event) { u32 counter = ARMV8_IDX_TO_COUNTER(event->hw.idx); armv8pmu_disable_intens(BIT(counter)); } static u32 armv8pmu_getreset_flags(void) { u32 value; /* Read */ value = read_pmovsclr(); /* Write to clear flags */ value &= ARMV8_PMU_OVERFLOWED_MASK; write_pmovsclr(value); return value; } static void update_pmuserenr(u64 val) { lockdep_assert_irqs_disabled(); /* * The current PMUSERENR_EL0 value might be the value for the guest. * If that's the case, have KVM keep tracking of the register value * for the host EL0 so that KVM can restore it before returning to * the host EL0. Otherwise, update the register now. */ if (kvm_set_pmuserenr(val)) return; write_pmuserenr(val); } static void armv8pmu_disable_user_access(void) { update_pmuserenr(0); } static void armv8pmu_enable_user_access(struct arm_pmu *cpu_pmu) { int i; struct pmu_hw_events *cpuc = this_cpu_ptr(cpu_pmu->hw_events); /* Clear any unused counters to avoid leaking their contents */ for_each_clear_bit(i, cpuc->used_mask, cpu_pmu->num_events) { if (i == ARMV8_IDX_CYCLE_COUNTER) write_pmccntr(0); else armv8pmu_write_evcntr(i, 0); } update_pmuserenr(ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_CR); } static void armv8pmu_enable_event(struct perf_event *event) { /* * Enable counter and interrupt, and set the counter to count * the event that we're interested in. */ armv8pmu_disable_event_counter(event); armv8pmu_write_event_type(event); armv8pmu_enable_event_irq(event); armv8pmu_enable_event_counter(event); } static void armv8pmu_disable_event(struct perf_event *event) { armv8pmu_disable_event_counter(event); armv8pmu_disable_event_irq(event); } static void armv8pmu_start(struct arm_pmu *cpu_pmu) { struct perf_event_context *ctx; int nr_user = 0; ctx = perf_cpu_task_ctx(); if (ctx) nr_user = ctx->nr_user; if (sysctl_perf_user_access && nr_user) armv8pmu_enable_user_access(cpu_pmu); else armv8pmu_disable_user_access(); /* Enable all counters */ armv8pmu_pmcr_write(armv8pmu_pmcr_read() | ARMV8_PMU_PMCR_E); kvm_vcpu_pmu_resync_el0(); } static void armv8pmu_stop(struct arm_pmu *cpu_pmu) { /* Disable all counters */ armv8pmu_pmcr_write(armv8pmu_pmcr_read() & ~ARMV8_PMU_PMCR_E); } static irqreturn_t armv8pmu_handle_irq(struct arm_pmu *cpu_pmu) { u32 pmovsr; struct perf_sample_data data; struct pmu_hw_events *cpuc = this_cpu_ptr(cpu_pmu->hw_events); struct pt_regs *regs; int idx; /* * Get and reset the IRQ flags */ pmovsr = armv8pmu_getreset_flags(); /* * Did an overflow occur? */ if (!armv8pmu_has_overflowed(pmovsr)) return IRQ_NONE; /* * Handle the counter(s) overflow(s) */ regs = get_irq_regs(); /* * Stop the PMU while processing the counter overflows * to prevent skews in group events. */ armv8pmu_stop(cpu_pmu); for (idx = 0; idx < cpu_pmu->num_events; ++idx) { struct perf_event *event = cpuc->events[idx]; struct hw_perf_event *hwc; /* Ignore if we don't have an event. */ if (!event) continue; /* * We have a single interrupt for all counters. Check that * each counter has overflowed before we process it. */ if (!armv8pmu_counter_has_overflowed(pmovsr, idx)) continue; hwc = &event->hw; armpmu_event_update(event); perf_sample_data_init(&data, 0, hwc->last_period); if (!armpmu_event_set_period(event)) continue; /* * Perf event overflow will queue the processing of the event as * an irq_work which will be taken care of in the handling of * IPI_IRQ_WORK. */ if (perf_event_overflow(event, &data, regs)) cpu_pmu->disable(event); } armv8pmu_start(cpu_pmu); return IRQ_HANDLED; } static int armv8pmu_get_single_idx(struct pmu_hw_events *cpuc, struct arm_pmu *cpu_pmu) { int idx; for (idx = ARMV8_IDX_COUNTER0; idx < cpu_pmu->num_events; idx++) { if (!test_and_set_bit(idx, cpuc->used_mask)) return idx; } return -EAGAIN; } static int armv8pmu_get_chain_idx(struct pmu_hw_events *cpuc, struct arm_pmu *cpu_pmu) { int idx; /* * Chaining requires two consecutive event counters, where * the lower idx must be even. */ for (idx = ARMV8_IDX_COUNTER0 + 1; idx < cpu_pmu->num_events; idx += 2) { if (!test_and_set_bit(idx, cpuc->used_mask)) { /* Check if the preceding even counter is available */ if (!test_and_set_bit(idx - 1, cpuc->used_mask)) return idx; /* Release the Odd counter */ clear_bit(idx, cpuc->used_mask); } } return -EAGAIN; } static int armv8pmu_get_event_idx(struct pmu_hw_events *cpuc, struct perf_event *event) { struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; unsigned long evtype = hwc->config_base & ARMV8_PMU_EVTYPE_EVENT; /* Always prefer to place a cycle counter into the cycle counter. */ if ((evtype == ARMV8_PMUV3_PERFCTR_CPU_CYCLES) && !armv8pmu_event_get_threshold(&event->attr)) { if (!test_and_set_bit(ARMV8_IDX_CYCLE_COUNTER, cpuc->used_mask)) return ARMV8_IDX_CYCLE_COUNTER; else if (armv8pmu_event_is_64bit(event) && armv8pmu_event_want_user_access(event) && !armv8pmu_has_long_event(cpu_pmu)) return -EAGAIN; } /* * Otherwise use events counters */ if (armv8pmu_event_is_chained(event)) return armv8pmu_get_chain_idx(cpuc, cpu_pmu); else return armv8pmu_get_single_idx(cpuc, cpu_pmu); } static void armv8pmu_clear_event_idx(struct pmu_hw_events *cpuc, struct perf_event *event) { int idx = event->hw.idx; clear_bit(idx, cpuc->used_mask); if (armv8pmu_event_is_chained(event)) clear_bit(idx - 1, cpuc->used_mask); } static int armv8pmu_user_event_idx(struct perf_event *event) { if (!sysctl_perf_user_access || !armv8pmu_event_has_user_read(event)) return 0; /* * We remap the cycle counter index to 32 to * match the offset applied to the rest of * the counter indices. */ if (event->hw.idx == ARMV8_IDX_CYCLE_COUNTER) return ARMV8_IDX_CYCLE_COUNTER_USER; return event->hw.idx; } /* * Add an event filter to a given event. */ static int armv8pmu_set_event_filter(struct hw_perf_event *event, struct perf_event_attr *attr) { unsigned long config_base = 0; struct perf_event *perf_event = container_of(attr, struct perf_event, attr); struct arm_pmu *cpu_pmu = to_arm_pmu(perf_event->pmu); u32 th; if (attr->exclude_idle) { pr_debug("ARM performance counters do not support mode exclusion\n"); return -EOPNOTSUPP; } /* * If we're running in hyp mode, then we *are* the hypervisor. * Therefore we ignore exclude_hv in this configuration, since * there's no hypervisor to sample anyway. This is consistent * with other architectures (x86 and Power). */ if (is_kernel_in_hyp_mode()) { if (!attr->exclude_kernel && !attr->exclude_host) config_base |= ARMV8_PMU_INCLUDE_EL2; if (attr->exclude_guest) config_base |= ARMV8_PMU_EXCLUDE_EL1; if (attr->exclude_host) config_base |= ARMV8_PMU_EXCLUDE_EL0; } else { if (!attr->exclude_hv && !attr->exclude_host) config_base |= ARMV8_PMU_INCLUDE_EL2; } /* * Filter out !VHE kernels and guest kernels */ if (attr->exclude_kernel) config_base |= ARMV8_PMU_EXCLUDE_EL1; if (attr->exclude_user) config_base |= ARMV8_PMU_EXCLUDE_EL0; /* * If FEAT_PMUv3_TH isn't implemented, then THWIDTH (threshold_max) will * be 0 and will also trigger this check, preventing it from being used. */ th = armv8pmu_event_get_threshold(attr); if (th > threshold_max(cpu_pmu)) { pr_debug("PMU event threshold exceeds max value\n"); return -EINVAL; } if (th) { config_base |= FIELD_PREP(ARMV8_PMU_EVTYPE_TH, th); config_base |= FIELD_PREP(ARMV8_PMU_EVTYPE_TC, armv8pmu_event_threshold_control(attr)); } /* * Install the filter into config_base as this is used to * construct the event type. */ event->config_base = config_base; return 0; } static void armv8pmu_reset(void *info) { struct arm_pmu *cpu_pmu = (struct arm_pmu *)info; u64 pmcr; /* The counter and interrupt enable registers are unknown at reset. */ armv8pmu_disable_counter(U32_MAX); armv8pmu_disable_intens(U32_MAX); /* Clear the counters we flip at guest entry/exit */ kvm_clr_pmu_events(U32_MAX); /* * Initialize & Reset PMNC. Request overflow interrupt for * 64 bit cycle counter but cheat in armv8pmu_write_counter(). */ pmcr = ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C | ARMV8_PMU_PMCR_LC; /* Enable long event counter support where available */ if (armv8pmu_has_long_event(cpu_pmu)) pmcr |= ARMV8_PMU_PMCR_LP; armv8pmu_pmcr_write(pmcr); } static int __armv8_pmuv3_map_event_id(struct arm_pmu *armpmu, struct perf_event *event) { if (event->attr.type == PERF_TYPE_HARDWARE && event->attr.config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) { if (test_bit(ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED, armpmu->pmceid_bitmap)) return ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED; if (test_bit(ARMV8_PMUV3_PERFCTR_BR_RETIRED, armpmu->pmceid_bitmap)) return ARMV8_PMUV3_PERFCTR_BR_RETIRED; return HW_OP_UNSUPPORTED; } return armpmu_map_event(event, &armv8_pmuv3_perf_map, &armv8_pmuv3_perf_cache_map, ARMV8_PMU_EVTYPE_EVENT); } static int __armv8_pmuv3_map_event(struct perf_event *event, const unsigned (*extra_event_map) [PERF_COUNT_HW_MAX], const unsigned (*extra_cache_map) [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX]) { int hw_event_id; struct arm_pmu *armpmu = to_arm_pmu(event->pmu); hw_event_id = __armv8_pmuv3_map_event_id(armpmu, event); /* * CHAIN events only work when paired with an adjacent counter, and it * never makes sense for a user to open one in isolation, as they'll be * rotated arbitrarily. */ if (hw_event_id == ARMV8_PMUV3_PERFCTR_CHAIN) return -EINVAL; if (armv8pmu_event_is_64bit(event)) event->hw.flags |= ARMPMU_EVT_64BIT; /* * User events must be allocated into a single counter, and so * must not be chained. * * Most 64-bit events require long counter support, but 64-bit * CPU_CYCLES events can be placed into the dedicated cycle * counter when this is free. */ if (armv8pmu_event_want_user_access(event)) { if (!(event->attach_state & PERF_ATTACH_TASK)) return -EINVAL; if (armv8pmu_event_is_64bit(event) && (hw_event_id != ARMV8_PMUV3_PERFCTR_CPU_CYCLES) && !armv8pmu_has_long_event(armpmu)) return -EOPNOTSUPP; event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT; } /* Only expose micro/arch events supported by this PMU */ if ((hw_event_id > 0) && (hw_event_id < ARMV8_PMUV3_MAX_COMMON_EVENTS) && test_bit(hw_event_id, armpmu->pmceid_bitmap)) { return hw_event_id; } return armpmu_map_event(event, extra_event_map, extra_cache_map, ARMV8_PMU_EVTYPE_EVENT); } static int armv8_pmuv3_map_event(struct perf_event *event) { return __armv8_pmuv3_map_event(event, NULL, NULL); } static int armv8_a53_map_event(struct perf_event *event) { return __armv8_pmuv3_map_event(event, NULL, &armv8_a53_perf_cache_map); } static int armv8_a57_map_event(struct perf_event *event) { return __armv8_pmuv3_map_event(event, NULL, &armv8_a57_perf_cache_map); } static int armv8_a73_map_event(struct perf_event *event) { return __armv8_pmuv3_map_event(event, NULL, &armv8_a73_perf_cache_map); } static int armv8_thunder_map_event(struct perf_event *event) { return __armv8_pmuv3_map_event(event, NULL, &armv8_thunder_perf_cache_map); } static int armv8_vulcan_map_event(struct perf_event *event) { return __armv8_pmuv3_map_event(event, NULL, &armv8_vulcan_perf_cache_map); } struct armv8pmu_probe_info { struct arm_pmu *pmu; bool present; }; static void __armv8pmu_probe_pmu(void *info) { struct armv8pmu_probe_info *probe = info; struct arm_pmu *cpu_pmu = probe->pmu; u64 pmceid_raw[2]; u32 pmceid[2]; int pmuver; pmuver = read_pmuver(); if (!pmuv3_implemented(pmuver)) return; cpu_pmu->pmuver = pmuver; probe->present = true; /* Read the nb of CNTx counters supported from PMNC */ cpu_pmu->num_events = FIELD_GET(ARMV8_PMU_PMCR_N, armv8pmu_pmcr_read()); /* Add the CPU cycles counter */ cpu_pmu->num_events += 1; pmceid[0] = pmceid_raw[0] = read_pmceid0(); pmceid[1] = pmceid_raw[1] = read_pmceid1(); bitmap_from_arr32(cpu_pmu->pmceid_bitmap, pmceid, ARMV8_PMUV3_MAX_COMMON_EVENTS); pmceid[0] = pmceid_raw[0] >> 32; pmceid[1] = pmceid_raw[1] >> 32; bitmap_from_arr32(cpu_pmu->pmceid_ext_bitmap, pmceid, ARMV8_PMUV3_MAX_COMMON_EVENTS); /* store PMMIR register for sysfs */ if (is_pmuv3p4(pmuver)) cpu_pmu->reg_pmmir = read_pmmir(); else cpu_pmu->reg_pmmir = 0; } static int armv8pmu_probe_pmu(struct arm_pmu *cpu_pmu) { struct armv8pmu_probe_info probe = { .pmu = cpu_pmu, .present = false, }; int ret; ret = smp_call_function_any(&cpu_pmu->supported_cpus, __armv8pmu_probe_pmu, &probe, 1); if (ret) return ret; return probe.present ? 0 : -ENODEV; } static void armv8pmu_disable_user_access_ipi(void *unused) { armv8pmu_disable_user_access(); } static int armv8pmu_proc_user_access_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); if (ret || !write || sysctl_perf_user_access) return ret; on_each_cpu(armv8pmu_disable_user_access_ipi, NULL, 1); return 0; } static struct ctl_table armv8_pmu_sysctl_table[] = { { .procname = "perf_user_access", .data = &sysctl_perf_user_access, .maxlen = sizeof(unsigned int), .mode = 0644, .proc_handler = armv8pmu_proc_user_access_handler, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_ONE, }, }; static void armv8_pmu_register_sysctl_table(void) { static u32 tbl_registered = 0; if (!cmpxchg_relaxed(&tbl_registered, 0, 1)) register_sysctl("kernel", armv8_pmu_sysctl_table); } static int armv8_pmu_init(struct arm_pmu *cpu_pmu, char *name, int (*map_event)(struct perf_event *event)) { int ret = armv8pmu_probe_pmu(cpu_pmu); if (ret) return ret; cpu_pmu->handle_irq = armv8pmu_handle_irq; cpu_pmu->enable = armv8pmu_enable_event; cpu_pmu->disable = armv8pmu_disable_event; cpu_pmu->read_counter = armv8pmu_read_counter; cpu_pmu->write_counter = armv8pmu_write_counter; cpu_pmu->get_event_idx = armv8pmu_get_event_idx; cpu_pmu->clear_event_idx = armv8pmu_clear_event_idx; cpu_pmu->start = armv8pmu_start; cpu_pmu->stop = armv8pmu_stop; cpu_pmu->reset = armv8pmu_reset; cpu_pmu->set_event_filter = armv8pmu_set_event_filter; cpu_pmu->pmu.event_idx = armv8pmu_user_event_idx; cpu_pmu->name = name; cpu_pmu->map_event = map_event; cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_EVENTS] = &armv8_pmuv3_events_attr_group; cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_FORMATS] = &armv8_pmuv3_format_attr_group; cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_CAPS] = &armv8_pmuv3_caps_attr_group; armv8_pmu_register_sysctl_table(); return 0; } #define PMUV3_INIT_SIMPLE(name) \ static int name##_pmu_init(struct arm_pmu *cpu_pmu) \ { \ return armv8_pmu_init(cpu_pmu, #name, armv8_pmuv3_map_event); \ } #define PMUV3_INIT_MAP_EVENT(name, map_event) \ static int name##_pmu_init(struct arm_pmu *cpu_pmu) \ { \ return armv8_pmu_init(cpu_pmu, #name, map_event); \ } PMUV3_INIT_SIMPLE(armv8_pmuv3) PMUV3_INIT_SIMPLE(armv8_cortex_a34) PMUV3_INIT_SIMPLE(armv8_cortex_a55) PMUV3_INIT_SIMPLE(armv8_cortex_a65) PMUV3_INIT_SIMPLE(armv8_cortex_a75) PMUV3_INIT_SIMPLE(armv8_cortex_a76) PMUV3_INIT_SIMPLE(armv8_cortex_a77) PMUV3_INIT_SIMPLE(armv8_cortex_a78) PMUV3_INIT_SIMPLE(armv9_cortex_a510) PMUV3_INIT_SIMPLE(armv9_cortex_a520) PMUV3_INIT_SIMPLE(armv9_cortex_a710) PMUV3_INIT_SIMPLE(armv9_cortex_a715) PMUV3_INIT_SIMPLE(armv9_cortex_a720) PMUV3_INIT_SIMPLE(armv9_cortex_a725) PMUV3_INIT_SIMPLE(armv8_cortex_x1) PMUV3_INIT_SIMPLE(armv9_cortex_x2) PMUV3_INIT_SIMPLE(armv9_cortex_x3) PMUV3_INIT_SIMPLE(armv9_cortex_x4) PMUV3_INIT_SIMPLE(armv9_cortex_x925) PMUV3_INIT_SIMPLE(armv8_neoverse_e1) PMUV3_INIT_SIMPLE(armv8_neoverse_n1) PMUV3_INIT_SIMPLE(armv9_neoverse_n2) PMUV3_INIT_SIMPLE(armv9_neoverse_n3) PMUV3_INIT_SIMPLE(armv8_neoverse_v1) PMUV3_INIT_SIMPLE(armv8_neoverse_v2) PMUV3_INIT_SIMPLE(armv8_neoverse_v3) PMUV3_INIT_SIMPLE(armv8_neoverse_v3ae) PMUV3_INIT_SIMPLE(armv8_nvidia_carmel) PMUV3_INIT_SIMPLE(armv8_nvidia_denver) PMUV3_INIT_MAP_EVENT(armv8_cortex_a35, armv8_a53_map_event) PMUV3_INIT_MAP_EVENT(armv8_cortex_a53, armv8_a53_map_event) PMUV3_INIT_MAP_EVENT(armv8_cortex_a57, armv8_a57_map_event) PMUV3_INIT_MAP_EVENT(armv8_cortex_a72, armv8_a57_map_event) PMUV3_INIT_MAP_EVENT(armv8_cortex_a73, armv8_a73_map_event) PMUV3_INIT_MAP_EVENT(armv8_cavium_thunder, armv8_thunder_map_event) PMUV3_INIT_MAP_EVENT(armv8_brcm_vulcan, armv8_vulcan_map_event) static const struct of_device_id armv8_pmu_of_device_ids[] = { {.compatible = "arm,armv8-pmuv3", .data = armv8_pmuv3_pmu_init}, {.compatible = "arm,cortex-a34-pmu", .data = armv8_cortex_a34_pmu_init}, {.compatible = "arm,cortex-a35-pmu", .data = armv8_cortex_a35_pmu_init}, {.compatible = "arm,cortex-a53-pmu", .data = armv8_cortex_a53_pmu_init}, {.compatible = "arm,cortex-a55-pmu", .data = armv8_cortex_a55_pmu_init}, {.compatible = "arm,cortex-a57-pmu", .data = armv8_cortex_a57_pmu_init}, {.compatible = "arm,cortex-a65-pmu", .data = armv8_cortex_a65_pmu_init}, {.compatible = "arm,cortex-a72-pmu", .data = armv8_cortex_a72_pmu_init}, {.compatible = "arm,cortex-a73-pmu", .data = armv8_cortex_a73_pmu_init}, {.compatible = "arm,cortex-a75-pmu", .data = armv8_cortex_a75_pmu_init}, {.compatible = "arm,cortex-a76-pmu", .data = armv8_cortex_a76_pmu_init}, {.compatible = "arm,cortex-a77-pmu", .data = armv8_cortex_a77_pmu_init}, {.compatible = "arm,cortex-a78-pmu", .data = armv8_cortex_a78_pmu_init}, {.compatible = "arm,cortex-a510-pmu", .data = armv9_cortex_a510_pmu_init}, {.compatible = "arm,cortex-a520-pmu", .data = armv9_cortex_a520_pmu_init}, {.compatible = "arm,cortex-a710-pmu", .data = armv9_cortex_a710_pmu_init}, {.compatible = "arm,cortex-a715-pmu", .data = armv9_cortex_a715_pmu_init}, {.compatible = "arm,cortex-a720-pmu", .data = armv9_cortex_a720_pmu_init}, {.compatible = "arm,cortex-a725-pmu", .data = armv9_cortex_a725_pmu_init}, {.compatible = "arm,cortex-x1-pmu", .data = armv8_cortex_x1_pmu_init}, {.compatible = "arm,cortex-x2-pmu", .data = armv9_cortex_x2_pmu_init}, {.compatible = "arm,cortex-x3-pmu", .data = armv9_cortex_x3_pmu_init}, {.compatible = "arm,cortex-x4-pmu", .data = armv9_cortex_x4_pmu_init}, {.compatible = "arm,cortex-x925-pmu", .data = armv9_cortex_x925_pmu_init}, {.compatible = "arm,neoverse-e1-pmu", .data = armv8_neoverse_e1_pmu_init}, {.compatible = "arm,neoverse-n1-pmu", .data = armv8_neoverse_n1_pmu_init}, {.compatible = "arm,neoverse-n2-pmu", .data = armv9_neoverse_n2_pmu_init}, {.compatible = "arm,neoverse-n3-pmu", .data = armv9_neoverse_n3_pmu_init}, {.compatible = "arm,neoverse-v1-pmu", .data = armv8_neoverse_v1_pmu_init}, {.compatible = "arm,neoverse-v2-pmu", .data = armv8_neoverse_v2_pmu_init}, {.compatible = "arm,neoverse-v3-pmu", .data = armv8_neoverse_v3_pmu_init}, {.compatible = "arm,neoverse-v3ae-pmu", .data = armv8_neoverse_v3ae_pmu_init}, {.compatible = "cavium,thunder-pmu", .data = armv8_cavium_thunder_pmu_init}, {.compatible = "brcm,vulcan-pmu", .data = armv8_brcm_vulcan_pmu_init}, {.compatible = "nvidia,carmel-pmu", .data = armv8_nvidia_carmel_pmu_init}, {.compatible = "nvidia,denver-pmu", .data = armv8_nvidia_denver_pmu_init}, {}, }; static int armv8_pmu_device_probe(struct platform_device *pdev) { return arm_pmu_device_probe(pdev, armv8_pmu_of_device_ids, NULL); } static struct platform_driver armv8_pmu_driver = { .driver = { .name = ARMV8_PMU_PDEV_NAME, .of_match_table = armv8_pmu_of_device_ids, .suppress_bind_attrs = true, }, .probe = armv8_pmu_device_probe, }; static int __init armv8_pmu_driver_init(void) { int ret; if (acpi_disabled) ret = platform_driver_register(&armv8_pmu_driver); else ret = arm_pmu_acpi_probe(armv8_pmuv3_pmu_init); if (!ret) lockup_detector_retry_init(); return ret; } device_initcall(armv8_pmu_driver_init) void arch_perf_update_userpage(struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) { struct clock_read_data *rd; unsigned int seq; u64 ns; userpg->cap_user_time = 0; userpg->cap_user_time_zero = 0; userpg->cap_user_time_short = 0; userpg->cap_user_rdpmc = armv8pmu_event_has_user_read(event); if (userpg->cap_user_rdpmc) { if (event->hw.flags & ARMPMU_EVT_64BIT) userpg->pmc_width = 64; else userpg->pmc_width = 32; } do { rd = sched_clock_read_begin(&seq); if (rd->read_sched_clock != arch_timer_read_counter) return; userpg->time_mult = rd->mult; userpg->time_shift = rd->shift; userpg->time_zero = rd->epoch_ns; userpg->time_cycles = rd->epoch_cyc; userpg->time_mask = rd->sched_clock_mask; /* * Subtract the cycle base, such that software that * doesn't know about cap_user_time_short still 'works' * assuming no wraps. */ ns = mul_u64_u32_shr(rd->epoch_cyc, rd->mult, rd->shift); userpg->time_zero -= ns; } while (sched_clock_read_retry(seq)); userpg->time_offset = userpg->time_zero - now; /* * time_shift is not expected to be greater than 31 due to * the original published conversion algorithm shifting a * 32-bit value (now specifies a 64-bit value) - refer * perf_event_mmap_page documentation in perf_event.h. */ if (userpg->time_shift == 32) { userpg->time_shift = 31; userpg->time_mult >>= 1; } /* * Internal timekeeping for enabled/running/stopped times * is always computed with the sched_clock. */ userpg->cap_user_time = 1; userpg->cap_user_time_zero = 1; userpg->cap_user_time_short = 1; }