/* * fs/f2fs/segment.h * * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include /* constant macro */ #define NULL_SEGNO ((unsigned int)(~0)) #define NULL_SECNO ((unsigned int)(~0)) #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */ /* L: Logical segment # in volume, R: Relative segment # in main area */ #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno) #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno) #define IS_DATASEG(t) (t <= CURSEG_COLD_DATA) #define IS_NODESEG(t) (t >= CURSEG_HOT_NODE) #define IS_CURSEG(sbi, seg) \ ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \ (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \ (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \ (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \ (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \ (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno)) #define IS_CURSEC(sbi, secno) \ ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \ sbi->segs_per_sec) || \ (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \ sbi->segs_per_sec) || \ (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \ sbi->segs_per_sec) || \ (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \ sbi->segs_per_sec) || \ (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \ sbi->segs_per_sec) || \ (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \ sbi->segs_per_sec)) \ #define START_BLOCK(sbi, segno) \ (SM_I(sbi)->seg0_blkaddr + \ (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg)) #define NEXT_FREE_BLKADDR(sbi, curseg) \ (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff) #define MAIN_BASE_BLOCK(sbi) (SM_I(sbi)->main_blkaddr) #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) \ ((blk_addr) - SM_I(sbi)->seg0_blkaddr) #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \ (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg) #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \ (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1)) #define GET_SEGNO(sbi, blk_addr) \ (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \ NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \ GET_SEGNO_FROM_SEG0(sbi, blk_addr))) #define GET_SECNO(sbi, segno) \ ((segno) / sbi->segs_per_sec) #define GET_ZONENO_FROM_SEGNO(sbi, segno) \ ((segno / sbi->segs_per_sec) / sbi->secs_per_zone) #define GET_SUM_BLOCK(sbi, segno) \ ((sbi->sm_info->ssa_blkaddr) + segno) #define GET_SUM_TYPE(footer) ((footer)->entry_type) #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type) #define SIT_ENTRY_OFFSET(sit_i, segno) \ (segno % sit_i->sents_per_block) #define SIT_BLOCK_OFFSET(segno) \ (segno / SIT_ENTRY_PER_BLOCK) #define START_SEGNO(segno) \ (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK) #define SIT_BLK_CNT(sbi) \ ((TOTAL_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK) #define f2fs_bitmap_size(nr) \ (BITS_TO_LONGS(nr) * sizeof(unsigned long)) #define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments) #define TOTAL_SECS(sbi) (sbi->total_sections) #define TOTAL_BLKS(sbi) (SM_I(sbi)->segment_count << sbi->log_blocks_per_seg) #define SECTOR_FROM_BLOCK(blk_addr) \ (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK) #define SECTOR_TO_BLOCK(sectors) \ (sectors >> F2FS_LOG_SECTORS_PER_BLOCK) #define MAX_BIO_BLOCKS(sbi) \ ((int)min((int)max_hw_blocks(sbi), BIO_MAX_PAGES)) /* * indicate a block allocation direction: RIGHT and LEFT. * RIGHT means allocating new sections towards the end of volume. * LEFT means the opposite direction. */ enum { ALLOC_RIGHT = 0, ALLOC_LEFT }; /* * In the victim_sel_policy->alloc_mode, there are two block allocation modes. * LFS writes data sequentially with cleaning operations. * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations. */ enum { LFS = 0, SSR }; /* * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes. * GC_CB is based on cost-benefit algorithm. * GC_GREEDY is based on greedy algorithm. */ enum { GC_CB = 0, GC_GREEDY }; /* * BG_GC means the background cleaning job. * FG_GC means the on-demand cleaning job. */ enum { BG_GC = 0, FG_GC }; /* for a function parameter to select a victim segment */ struct victim_sel_policy { int alloc_mode; /* LFS or SSR */ int gc_mode; /* GC_CB or GC_GREEDY */ unsigned long *dirty_segmap; /* dirty segment bitmap */ unsigned int max_search; /* maximum # of segments to search */ unsigned int offset; /* last scanned bitmap offset */ unsigned int ofs_unit; /* bitmap search unit */ unsigned int min_cost; /* minimum cost */ unsigned int min_segno; /* segment # having min. cost */ }; struct seg_entry { unsigned short valid_blocks; /* # of valid blocks */ unsigned char *cur_valid_map; /* validity bitmap of blocks */ /* * # of valid blocks and the validity bitmap stored in the the last * checkpoint pack. This information is used by the SSR mode. */ unsigned short ckpt_valid_blocks; unsigned char *ckpt_valid_map; unsigned char type; /* segment type like CURSEG_XXX_TYPE */ unsigned long long mtime; /* modification time of the segment */ }; struct sec_entry { unsigned int valid_blocks; /* # of valid blocks in a section */ }; struct segment_allocation { void (*allocate_segment)(struct f2fs_sb_info *, int, bool); }; struct sit_info { const struct segment_allocation *s_ops; block_t sit_base_addr; /* start block address of SIT area */ block_t sit_blocks; /* # of blocks used by SIT area */ block_t written_valid_blocks; /* # of valid blocks in main area */ char *sit_bitmap; /* SIT bitmap pointer */ unsigned int bitmap_size; /* SIT bitmap size */ unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */ unsigned int dirty_sentries; /* # of dirty sentries */ unsigned int sents_per_block; /* # of SIT entries per block */ struct mutex sentry_lock; /* to protect SIT cache */ struct seg_entry *sentries; /* SIT segment-level cache */ struct sec_entry *sec_entries; /* SIT section-level cache */ /* for cost-benefit algorithm in cleaning procedure */ unsigned long long elapsed_time; /* elapsed time after mount */ unsigned long long mounted_time; /* mount time */ unsigned long long min_mtime; /* min. modification time */ unsigned long long max_mtime; /* max. modification time */ }; struct free_segmap_info { unsigned int start_segno; /* start segment number logically */ unsigned int free_segments; /* # of free segments */ unsigned int free_sections; /* # of free sections */ rwlock_t segmap_lock; /* free segmap lock */ unsigned long *free_segmap; /* free segment bitmap */ unsigned long *free_secmap; /* free section bitmap */ }; /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */ enum dirty_type { DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */ DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */ DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */ DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */ DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */ DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */ DIRTY, /* to count # of dirty segments */ PRE, /* to count # of entirely obsolete segments */ NR_DIRTY_TYPE }; struct dirty_seglist_info { const struct victim_selection *v_ops; /* victim selction operation */ unsigned long *dirty_segmap[NR_DIRTY_TYPE]; struct mutex seglist_lock; /* lock for segment bitmaps */ int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */ unsigned long *victim_secmap; /* background GC victims */ }; /* victim selection function for cleaning and SSR */ struct victim_selection { int (*get_victim)(struct f2fs_sb_info *, unsigned int *, int, int, char); }; /* for active log information */ struct curseg_info { struct mutex curseg_mutex; /* lock for consistency */ struct f2fs_summary_block *sum_blk; /* cached summary block */ unsigned char alloc_type; /* current allocation type */ unsigned int segno; /* current segment number */ unsigned short next_blkoff; /* next block offset to write */ unsigned int zone; /* current zone number */ unsigned int next_segno; /* preallocated segment */ }; struct sit_entry_set { struct list_head set_list; /* link with all sit sets */ unsigned int start_segno; /* start segno of sits in set */ unsigned int entry_cnt; /* the # of sit entries in set */ }; /* * inline functions */ static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type) { return (struct curseg_info *)(SM_I(sbi)->curseg_array + type); } static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi, unsigned int segno) { struct sit_info *sit_i = SIT_I(sbi); return &sit_i->sentries[segno]; } static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi, unsigned int segno) { struct sit_info *sit_i = SIT_I(sbi); return &sit_i->sec_entries[GET_SECNO(sbi, segno)]; } static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi, unsigned int segno, int section) { /* * In order to get # of valid blocks in a section instantly from many * segments, f2fs manages two counting structures separately. */ if (section > 1) return get_sec_entry(sbi, segno)->valid_blocks; else return get_seg_entry(sbi, segno)->valid_blocks; } static inline void seg_info_from_raw_sit(struct seg_entry *se, struct f2fs_sit_entry *rs) { se->valid_blocks = GET_SIT_VBLOCKS(rs); se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs); memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); se->type = GET_SIT_TYPE(rs); se->mtime = le64_to_cpu(rs->mtime); } static inline void seg_info_to_raw_sit(struct seg_entry *se, struct f2fs_sit_entry *rs) { unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) | se->valid_blocks; rs->vblocks = cpu_to_le16(raw_vblocks); memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); se->ckpt_valid_blocks = se->valid_blocks; rs->mtime = cpu_to_le64(se->mtime); } static inline unsigned int find_next_inuse(struct free_segmap_info *free_i, unsigned int max, unsigned int segno) { unsigned int ret; read_lock(&free_i->segmap_lock); ret = find_next_bit(free_i->free_segmap, max, segno); read_unlock(&free_i->segmap_lock); return ret; } static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno) { struct free_segmap_info *free_i = FREE_I(sbi); unsigned int secno = segno / sbi->segs_per_sec; unsigned int start_segno = secno * sbi->segs_per_sec; unsigned int next; write_lock(&free_i->segmap_lock); clear_bit(segno, free_i->free_segmap); free_i->free_segments++; next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno); if (next >= start_segno + sbi->segs_per_sec) { clear_bit(secno, free_i->free_secmap); free_i->free_sections++; } write_unlock(&free_i->segmap_lock); } static inline void __set_inuse(struct f2fs_sb_info *sbi, unsigned int segno) { struct free_segmap_info *free_i = FREE_I(sbi); unsigned int secno = segno / sbi->segs_per_sec; set_bit(segno, free_i->free_segmap); free_i->free_segments--; if (!test_and_set_bit(secno, free_i->free_secmap)) free_i->free_sections--; } static inline void __set_test_and_free(struct f2fs_sb_info *sbi, unsigned int segno) { struct free_segmap_info *free_i = FREE_I(sbi); unsigned int secno = segno / sbi->segs_per_sec; unsigned int start_segno = secno * sbi->segs_per_sec; unsigned int next; write_lock(&free_i->segmap_lock); if (test_and_clear_bit(segno, free_i->free_segmap)) { free_i->free_segments++; next = find_next_bit(free_i->free_segmap, start_segno + sbi->segs_per_sec, start_segno); if (next >= start_segno + sbi->segs_per_sec) { if (test_and_clear_bit(secno, free_i->free_secmap)) free_i->free_sections++; } } write_unlock(&free_i->segmap_lock); } static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi, unsigned int segno) { struct free_segmap_info *free_i = FREE_I(sbi); unsigned int secno = segno / sbi->segs_per_sec; write_lock(&free_i->segmap_lock); if (!test_and_set_bit(segno, free_i->free_segmap)) { free_i->free_segments--; if (!test_and_set_bit(secno, free_i->free_secmap)) free_i->free_sections--; } write_unlock(&free_i->segmap_lock); } static inline void get_sit_bitmap(struct f2fs_sb_info *sbi, void *dst_addr) { struct sit_info *sit_i = SIT_I(sbi); memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size); } static inline block_t written_block_count(struct f2fs_sb_info *sbi) { return SIT_I(sbi)->written_valid_blocks; } static inline unsigned int free_segments(struct f2fs_sb_info *sbi) { return FREE_I(sbi)->free_segments; } static inline int reserved_segments(struct f2fs_sb_info *sbi) { return SM_I(sbi)->reserved_segments; } static inline unsigned int free_sections(struct f2fs_sb_info *sbi) { return FREE_I(sbi)->free_sections; } static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi) { return DIRTY_I(sbi)->nr_dirty[PRE]; } static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi) { return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] + DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] + DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] + DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] + DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] + DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE]; } static inline int overprovision_segments(struct f2fs_sb_info *sbi) { return SM_I(sbi)->ovp_segments; } static inline int overprovision_sections(struct f2fs_sb_info *sbi) { return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec; } static inline int reserved_sections(struct f2fs_sb_info *sbi) { return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec; } static inline bool need_SSR(struct f2fs_sb_info *sbi) { int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); return free_sections(sbi) <= (node_secs + 2 * dent_secs + reserved_sections(sbi) + 1); } static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed) { int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); if (unlikely(sbi->por_doing)) return false; return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs + reserved_sections(sbi)); } static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi) { return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments; } static inline int utilization(struct f2fs_sb_info *sbi) { return div_u64((u64)valid_user_blocks(sbi) * 100, sbi->user_block_count); } /* * Sometimes f2fs may be better to drop out-of-place update policy. * And, users can control the policy through sysfs entries. * There are five policies with triggering conditions as follows. * F2FS_IPU_FORCE - all the time, * F2FS_IPU_SSR - if SSR mode is activated, * F2FS_IPU_UTIL - if FS utilization is over threashold, * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over * threashold, * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash * storages. IPU will be triggered only if the # of dirty * pages over min_fsync_blocks. * F2FS_IPUT_DISABLE - disable IPU. (=default option) */ #define DEF_MIN_IPU_UTIL 70 #define DEF_MIN_FSYNC_BLOCKS 8 enum { F2FS_IPU_FORCE, F2FS_IPU_SSR, F2FS_IPU_UTIL, F2FS_IPU_SSR_UTIL, F2FS_IPU_FSYNC, }; static inline bool need_inplace_update(struct inode *inode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); unsigned int policy = SM_I(sbi)->ipu_policy; /* IPU can be done only for the user data */ if (S_ISDIR(inode->i_mode)) return false; if (policy & (0x1 << F2FS_IPU_FORCE)) return true; if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi)) return true; if (policy & (0x1 << F2FS_IPU_UTIL) && utilization(sbi) > SM_I(sbi)->min_ipu_util) return true; if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util) return true; /* this is only set during fdatasync */ if (policy & (0x1 << F2FS_IPU_FSYNC) && is_inode_flag_set(F2FS_I(inode), FI_NEED_IPU)) return true; return false; } static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi, int type) { struct curseg_info *curseg = CURSEG_I(sbi, type); return curseg->segno; } static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi, int type) { struct curseg_info *curseg = CURSEG_I(sbi, type); return curseg->alloc_type; } static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type) { struct curseg_info *curseg = CURSEG_I(sbi, type); return curseg->next_blkoff; } #ifdef CONFIG_F2FS_CHECK_FS static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno) { unsigned int end_segno = SM_I(sbi)->segment_count - 1; BUG_ON(segno > end_segno); } static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr) { struct f2fs_sm_info *sm_info = SM_I(sbi); block_t total_blks = TOTAL_BLKS(sbi); block_t start_addr = sm_info->seg0_blkaddr; block_t end_addr = start_addr + total_blks - 1; BUG_ON(blk_addr < start_addr); BUG_ON(blk_addr > end_addr); } /* * Summary block is always treated as an invalid block */ static inline void check_block_count(struct f2fs_sb_info *sbi, int segno, struct f2fs_sit_entry *raw_sit) { struct f2fs_sm_info *sm_info = SM_I(sbi); unsigned int end_segno = sm_info->segment_count - 1; bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false; int valid_blocks = 0; int cur_pos = 0, next_pos; /* check segment usage */ BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg); /* check boundary of a given segment number */ BUG_ON(segno > end_segno); /* check bitmap with valid block count */ do { if (is_valid) { next_pos = find_next_zero_bit_le(&raw_sit->valid_map, sbi->blocks_per_seg, cur_pos); valid_blocks += next_pos - cur_pos; } else next_pos = find_next_bit_le(&raw_sit->valid_map, sbi->blocks_per_seg, cur_pos); cur_pos = next_pos; is_valid = !is_valid; } while (cur_pos < sbi->blocks_per_seg); BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks); } #else static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno) { unsigned int end_segno = SM_I(sbi)->segment_count - 1; if (segno > end_segno) sbi->need_fsck = true; } static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr) { struct f2fs_sm_info *sm_info = SM_I(sbi); block_t total_blks = TOTAL_BLKS(sbi); block_t start_addr = sm_info->seg0_blkaddr; block_t end_addr = start_addr + total_blks - 1; if (blk_addr < start_addr || blk_addr > end_addr) sbi->need_fsck = true; } /* * Summary block is always treated as an invalid block */ static inline void check_block_count(struct f2fs_sb_info *sbi, int segno, struct f2fs_sit_entry *raw_sit) { unsigned int end_segno = SM_I(sbi)->segment_count - 1; /* check segment usage */ if (GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg) sbi->need_fsck = true; /* check boundary of a given segment number */ if (segno > end_segno) sbi->need_fsck = true; } #endif static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi, unsigned int start) { struct sit_info *sit_i = SIT_I(sbi); unsigned int offset = SIT_BLOCK_OFFSET(start); block_t blk_addr = sit_i->sit_base_addr + offset; check_seg_range(sbi, start); /* calculate sit block address */ if (f2fs_test_bit(offset, sit_i->sit_bitmap)) blk_addr += sit_i->sit_blocks; return blk_addr; } static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi, pgoff_t block_addr) { struct sit_info *sit_i = SIT_I(sbi); block_addr -= sit_i->sit_base_addr; if (block_addr < sit_i->sit_blocks) block_addr += sit_i->sit_blocks; else block_addr -= sit_i->sit_blocks; return block_addr + sit_i->sit_base_addr; } static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start) { unsigned int block_off = SIT_BLOCK_OFFSET(start); if (f2fs_test_bit(block_off, sit_i->sit_bitmap)) f2fs_clear_bit(block_off, sit_i->sit_bitmap); else f2fs_set_bit(block_off, sit_i->sit_bitmap); } static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi) { struct sit_info *sit_i = SIT_I(sbi); return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec - sit_i->mounted_time; } static inline void set_summary(struct f2fs_summary *sum, nid_t nid, unsigned int ofs_in_node, unsigned char version) { sum->nid = cpu_to_le32(nid); sum->ofs_in_node = cpu_to_le16(ofs_in_node); sum->version = version; } static inline block_t start_sum_block(struct f2fs_sb_info *sbi) { return __start_cp_addr(sbi) + le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); } static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type) { return __start_cp_addr(sbi) + le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count) - (base + 1) + type; } static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno) { if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno)) return true; return false; } static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi) { struct block_device *bdev = sbi->sb->s_bdev; struct request_queue *q = bdev_get_queue(bdev); return SECTOR_TO_BLOCK(queue_max_sectors(q)); } /* * It is very important to gather dirty pages and write at once, so that we can * submit a big bio without interfering other data writes. * By default, 512 pages for directory data, * 512 pages (2MB) * 3 for three types of nodes, and * max_bio_blocks for meta are set. */ static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type) { if (type == DATA) return sbi->blocks_per_seg; else if (type == NODE) return 3 * sbi->blocks_per_seg; else if (type == META) return MAX_BIO_BLOCKS(sbi); else return 0; } /* * When writing pages, it'd better align nr_to_write for segment size. */ static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type, struct writeback_control *wbc) { long nr_to_write, desired; if (wbc->sync_mode != WB_SYNC_NONE) return 0; nr_to_write = wbc->nr_to_write; if (type == DATA) desired = 4096; else if (type == NODE) desired = 3 * max_hw_blocks(sbi); else desired = MAX_BIO_BLOCKS(sbi); wbc->nr_to_write = desired; return desired - nr_to_write; }