// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2000-2005 Silicon Graphics, Inc. * All Rights Reserved. */ #include "xfs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_mount.h" #include "xfs_inode.h" #include "xfs_trans.h" #include "xfs_inode_item.h" #include "xfs_alloc.h" #include "xfs_error.h" #include "xfs_iomap.h" #include "xfs_trace.h" #include "xfs_bmap.h" #include "xfs_bmap_util.h" #include "xfs_bmap_btree.h" #include "xfs_reflink.h" #include #include #include #include /* * structure owned by writepages passed to individual writepage calls */ struct xfs_writepage_ctx { struct xfs_bmbt_irec imap; unsigned int io_type; struct xfs_ioend *ioend; }; void xfs_count_page_state( struct page *page, int *delalloc, int *unwritten) { struct buffer_head *bh, *head; *delalloc = *unwritten = 0; bh = head = page_buffers(page); do { if (buffer_unwritten(bh)) (*unwritten) = 1; else if (buffer_delay(bh)) (*delalloc) = 1; } while ((bh = bh->b_this_page) != head); } struct block_device * xfs_find_bdev_for_inode( struct inode *inode) { struct xfs_inode *ip = XFS_I(inode); struct xfs_mount *mp = ip->i_mount; if (XFS_IS_REALTIME_INODE(ip)) return mp->m_rtdev_targp->bt_bdev; else return mp->m_ddev_targp->bt_bdev; } struct dax_device * xfs_find_daxdev_for_inode( struct inode *inode) { struct xfs_inode *ip = XFS_I(inode); struct xfs_mount *mp = ip->i_mount; if (XFS_IS_REALTIME_INODE(ip)) return mp->m_rtdev_targp->bt_daxdev; else return mp->m_ddev_targp->bt_daxdev; } /* * We're now finished for good with this page. Update the page state via the * associated buffer_heads, paying attention to the start and end offsets that * we need to process on the page. * * Note that we open code the action in end_buffer_async_write here so that we * only have to iterate over the buffers attached to the page once. This is not * only more efficient, but also ensures that we only calls end_page_writeback * at the end of the iteration, and thus avoids the pitfall of having the page * and buffers potentially freed after every call to end_buffer_async_write. */ static void xfs_finish_page_writeback( struct inode *inode, struct bio_vec *bvec, int error) { struct buffer_head *head = page_buffers(bvec->bv_page), *bh = head; bool busy = false; unsigned int off = 0; unsigned long flags; ASSERT(bvec->bv_offset < PAGE_SIZE); ASSERT((bvec->bv_offset & (i_blocksize(inode) - 1)) == 0); ASSERT(bvec->bv_offset + bvec->bv_len <= PAGE_SIZE); ASSERT((bvec->bv_len & (i_blocksize(inode) - 1)) == 0); local_irq_save(flags); bit_spin_lock(BH_Uptodate_Lock, &head->b_state); do { if (off >= bvec->bv_offset && off < bvec->bv_offset + bvec->bv_len) { ASSERT(buffer_async_write(bh)); ASSERT(bh->b_end_io == NULL); if (error) { mark_buffer_write_io_error(bh); clear_buffer_uptodate(bh); SetPageError(bvec->bv_page); } else { set_buffer_uptodate(bh); } clear_buffer_async_write(bh); unlock_buffer(bh); } else if (buffer_async_write(bh)) { ASSERT(buffer_locked(bh)); busy = true; } off += bh->b_size; } while ((bh = bh->b_this_page) != head); bit_spin_unlock(BH_Uptodate_Lock, &head->b_state); local_irq_restore(flags); if (!busy) end_page_writeback(bvec->bv_page); } /* * We're now finished for good with this ioend structure. Update the page * state, release holds on bios, and finally free up memory. Do not use the * ioend after this. */ STATIC void xfs_destroy_ioend( struct xfs_ioend *ioend, int error) { struct inode *inode = ioend->io_inode; struct bio *bio = &ioend->io_inline_bio; struct bio *last = ioend->io_bio, *next; u64 start = bio->bi_iter.bi_sector; bool quiet = bio_flagged(bio, BIO_QUIET); for (bio = &ioend->io_inline_bio; bio; bio = next) { struct bio_vec *bvec; int i; /* * For the last bio, bi_private points to the ioend, so we * need to explicitly end the iteration here. */ if (bio == last) next = NULL; else next = bio->bi_private; /* walk each page on bio, ending page IO on them */ bio_for_each_segment_all(bvec, bio, i) xfs_finish_page_writeback(inode, bvec, error); bio_put(bio); } if (unlikely(error && !quiet)) { xfs_err_ratelimited(XFS_I(inode)->i_mount, "writeback error on sector %llu", start); } } /* * Fast and loose check if this write could update the on-disk inode size. */ static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend) { return ioend->io_offset + ioend->io_size > XFS_I(ioend->io_inode)->i_d.di_size; } STATIC int xfs_setfilesize_trans_alloc( struct xfs_ioend *ioend) { struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; struct xfs_trans *tp; int error; error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, XFS_TRANS_NOFS, &tp); if (error) return error; ioend->io_append_trans = tp; /* * We may pass freeze protection with a transaction. So tell lockdep * we released it. */ __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS); /* * We hand off the transaction to the completion thread now, so * clear the flag here. */ current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); return 0; } /* * Update on-disk file size now that data has been written to disk. */ STATIC int __xfs_setfilesize( struct xfs_inode *ip, struct xfs_trans *tp, xfs_off_t offset, size_t size) { xfs_fsize_t isize; xfs_ilock(ip, XFS_ILOCK_EXCL); isize = xfs_new_eof(ip, offset + size); if (!isize) { xfs_iunlock(ip, XFS_ILOCK_EXCL); xfs_trans_cancel(tp); return 0; } trace_xfs_setfilesize(ip, offset, size); ip->i_d.di_size = isize; xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); return xfs_trans_commit(tp); } int xfs_setfilesize( struct xfs_inode *ip, xfs_off_t offset, size_t size) { struct xfs_mount *mp = ip->i_mount; struct xfs_trans *tp; int error; error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); if (error) return error; return __xfs_setfilesize(ip, tp, offset, size); } STATIC int xfs_setfilesize_ioend( struct xfs_ioend *ioend, int error) { struct xfs_inode *ip = XFS_I(ioend->io_inode); struct xfs_trans *tp = ioend->io_append_trans; /* * The transaction may have been allocated in the I/O submission thread, * thus we need to mark ourselves as being in a transaction manually. * Similarly for freeze protection. */ current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS); /* we abort the update if there was an IO error */ if (error) { xfs_trans_cancel(tp); return error; } return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size); } /* * IO write completion. */ STATIC void xfs_end_io( struct work_struct *work) { struct xfs_ioend *ioend = container_of(work, struct xfs_ioend, io_work); struct xfs_inode *ip = XFS_I(ioend->io_inode); xfs_off_t offset = ioend->io_offset; size_t size = ioend->io_size; int error; /* * Just clean up the in-memory strutures if the fs has been shut down. */ if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { error = -EIO; goto done; } /* * Clean up any COW blocks on an I/O error. */ error = blk_status_to_errno(ioend->io_bio->bi_status); if (unlikely(error)) { switch (ioend->io_type) { case XFS_IO_COW: xfs_reflink_cancel_cow_range(ip, offset, size, true); break; } goto done; } /* * Success: commit the COW or unwritten blocks if needed. */ switch (ioend->io_type) { case XFS_IO_COW: error = xfs_reflink_end_cow(ip, offset, size); break; case XFS_IO_UNWRITTEN: /* writeback should never update isize */ error = xfs_iomap_write_unwritten(ip, offset, size, false); break; default: ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans); break; } done: if (ioend->io_append_trans) error = xfs_setfilesize_ioend(ioend, error); xfs_destroy_ioend(ioend, error); } STATIC void xfs_end_bio( struct bio *bio) { struct xfs_ioend *ioend = bio->bi_private; struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW) queue_work(mp->m_unwritten_workqueue, &ioend->io_work); else if (ioend->io_append_trans) queue_work(mp->m_data_workqueue, &ioend->io_work); else xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status)); } STATIC int xfs_map_blocks( struct xfs_writepage_ctx *wpc, struct inode *inode, loff_t offset) { struct xfs_inode *ip = XFS_I(inode); struct xfs_mount *mp = ip->i_mount; ssize_t count = i_blocksize(inode); xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset), end_fsb; struct xfs_bmbt_irec imap; int whichfork = XFS_DATA_FORK; struct xfs_iext_cursor icur; bool imap_valid; int error = 0; /* * We have to make sure the cached mapping is within EOF to protect * against eofblocks trimming on file release leaving us with a stale * mapping. Otherwise, a page for a subsequent file extending buffered * write could get picked up by this writeback cycle and written to the * wrong blocks. * * Note that what we really want here is a generic mapping invalidation * mechanism to protect us from arbitrary extent modifying contexts, not * just eofblocks. */ xfs_trim_extent_eof(&wpc->imap, ip); /* * COW fork blocks can overlap data fork blocks even if the blocks * aren't shared. COW I/O always takes precedent, so we must always * check for overlap on reflink inodes unless the mapping is already a * COW one. */ imap_valid = offset_fsb >= wpc->imap.br_startoff && offset_fsb < wpc->imap.br_startoff + wpc->imap.br_blockcount; if (imap_valid && (!xfs_is_reflink_inode(ip) || wpc->io_type == XFS_IO_COW)) return 0; if (XFS_FORCED_SHUTDOWN(mp)) return -EIO; /* * If we don't have a valid map, now it's time to get a new one for this * offset. This will convert delayed allocations (including COW ones) * into real extents. If we return without a valid map, it means we * landed in a hole and we skip the block. */ xfs_ilock(ip, XFS_ILOCK_SHARED); ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || (ip->i_df.if_flags & XFS_IFEXTENTS)); ASSERT(offset <= mp->m_super->s_maxbytes); if (offset > mp->m_super->s_maxbytes - count) count = mp->m_super->s_maxbytes - offset; end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count); /* * Check if this is offset is covered by a COW extents, and if yes use * it directly instead of looking up anything in the data fork. */ if (xfs_is_reflink_inode(ip) && xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap) && imap.br_startoff <= offset_fsb) { xfs_iunlock(ip, XFS_ILOCK_SHARED); /* * Truncate can race with writeback since writeback doesn't * take the iolock and truncate decreases the file size before * it starts truncating the pages between new_size and old_size. * Therefore, we can end up in the situation where writeback * gets a CoW fork mapping but the truncate makes the mapping * invalid and we end up in here trying to get a new mapping. * bail out here so that we simply never get a valid mapping * and so we drop the write altogether. The page truncation * will kill the contents anyway. */ if (offset > i_size_read(inode)) { wpc->io_type = XFS_IO_HOLE; return 0; } whichfork = XFS_COW_FORK; wpc->io_type = XFS_IO_COW; goto allocate_blocks; } /* * Map valid and no COW extent in the way? We're done. */ if (imap_valid) { xfs_iunlock(ip, XFS_ILOCK_SHARED); return 0; } /* * If we don't have a valid map, now it's time to get a new one for this * offset. This will convert delayed allocations (including COW ones) * into real extents. */ if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) imap.br_startoff = end_fsb; /* fake a hole past EOF */ xfs_iunlock(ip, XFS_ILOCK_SHARED); if (imap.br_startoff > offset_fsb) { /* landed in a hole or beyond EOF */ imap.br_blockcount = imap.br_startoff - offset_fsb; imap.br_startoff = offset_fsb; imap.br_startblock = HOLESTARTBLOCK; wpc->io_type = XFS_IO_HOLE; } else { if (isnullstartblock(imap.br_startblock)) { /* got a delalloc extent */ wpc->io_type = XFS_IO_DELALLOC; goto allocate_blocks; } if (imap.br_state == XFS_EXT_UNWRITTEN) wpc->io_type = XFS_IO_UNWRITTEN; else wpc->io_type = XFS_IO_OVERWRITE; } wpc->imap = imap; trace_xfs_map_blocks_found(ip, offset, count, wpc->io_type, &imap); return 0; allocate_blocks: error = xfs_iomap_write_allocate(ip, whichfork, offset, &imap); if (error) return error; wpc->imap = imap; trace_xfs_map_blocks_alloc(ip, offset, count, wpc->io_type, &imap); return 0; } /* * Submit the bio for an ioend. We are passed an ioend with a bio attached to * it, and we submit that bio. The ioend may be used for multiple bio * submissions, so we only want to allocate an append transaction for the ioend * once. In the case of multiple bio submission, each bio will take an IO * reference to the ioend to ensure that the ioend completion is only done once * all bios have been submitted and the ioend is really done. * * If @fail is non-zero, it means that we have a situation where some part of * the submission process has failed after we have marked paged for writeback * and unlocked them. In this situation, we need to fail the bio and ioend * rather than submit it to IO. This typically only happens on a filesystem * shutdown. */ STATIC int xfs_submit_ioend( struct writeback_control *wbc, struct xfs_ioend *ioend, int status) { /* Convert CoW extents to regular */ if (!status && ioend->io_type == XFS_IO_COW) { /* * Yuk. This can do memory allocation, but is not a * transactional operation so everything is done in GFP_KERNEL * context. That can deadlock, because we hold pages in * writeback state and GFP_KERNEL allocations can block on them. * Hence we must operate in nofs conditions here. */ unsigned nofs_flag; nofs_flag = memalloc_nofs_save(); status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode), ioend->io_offset, ioend->io_size); memalloc_nofs_restore(nofs_flag); } /* Reserve log space if we might write beyond the on-disk inode size. */ if (!status && ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend) && !ioend->io_append_trans) status = xfs_setfilesize_trans_alloc(ioend); ioend->io_bio->bi_private = ioend; ioend->io_bio->bi_end_io = xfs_end_bio; ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc); /* * If we are failing the IO now, just mark the ioend with an * error and finish it. This will run IO completion immediately * as there is only one reference to the ioend at this point in * time. */ if (status) { ioend->io_bio->bi_status = errno_to_blk_status(status); bio_endio(ioend->io_bio); return status; } ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint; submit_bio(ioend->io_bio); return 0; } static struct xfs_ioend * xfs_alloc_ioend( struct inode *inode, unsigned int type, xfs_off_t offset, struct block_device *bdev, sector_t sector) { struct xfs_ioend *ioend; struct bio *bio; bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &xfs_ioend_bioset); bio_set_dev(bio, bdev); bio->bi_iter.bi_sector = sector; ioend = container_of(bio, struct xfs_ioend, io_inline_bio); INIT_LIST_HEAD(&ioend->io_list); ioend->io_type = type; ioend->io_inode = inode; ioend->io_size = 0; ioend->io_offset = offset; INIT_WORK(&ioend->io_work, xfs_end_io); ioend->io_append_trans = NULL; ioend->io_bio = bio; return ioend; } /* * Allocate a new bio, and chain the old bio to the new one. * * Note that we have to do perform the chaining in this unintuitive order * so that the bi_private linkage is set up in the right direction for the * traversal in xfs_destroy_ioend(). */ static void xfs_chain_bio( struct xfs_ioend *ioend, struct writeback_control *wbc, struct block_device *bdev, sector_t sector) { struct bio *new; new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES); bio_set_dev(new, bdev); new->bi_iter.bi_sector = sector; bio_chain(ioend->io_bio, new); bio_get(ioend->io_bio); /* for xfs_destroy_ioend */ ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc); ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint; submit_bio(ioend->io_bio); ioend->io_bio = new; } /* * Test to see if we have an existing ioend structure that we could append to * first, otherwise finish off the current ioend and start another. */ STATIC void xfs_add_to_ioend( struct inode *inode, xfs_off_t offset, struct page *page, struct xfs_writepage_ctx *wpc, struct writeback_control *wbc, struct list_head *iolist) { struct xfs_inode *ip = XFS_I(inode); struct xfs_mount *mp = ip->i_mount; struct block_device *bdev = xfs_find_bdev_for_inode(inode); unsigned len = i_blocksize(inode); unsigned poff = offset & (PAGE_SIZE - 1); sector_t sector; sector = xfs_fsb_to_db(ip, wpc->imap.br_startblock) + ((offset - XFS_FSB_TO_B(mp, wpc->imap.br_startoff)) >> 9); if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type || sector != bio_end_sector(wpc->ioend->io_bio) || offset != wpc->ioend->io_offset + wpc->ioend->io_size) { if (wpc->ioend) list_add(&wpc->ioend->io_list, iolist); wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bdev, sector); } /* * If the block doesn't fit into the bio we need to allocate a new * one. This shouldn't happen more than once for a given block. */ while (bio_add_page(wpc->ioend->io_bio, page, len, poff) != len) xfs_chain_bio(wpc->ioend, wbc, bdev, sector); wpc->ioend->io_size += len; } STATIC void xfs_map_buffer( struct inode *inode, struct buffer_head *bh, struct xfs_bmbt_irec *imap, xfs_off_t offset) { sector_t bn; struct xfs_mount *m = XFS_I(inode)->i_mount; xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff); xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock); ASSERT(imap->br_startblock != HOLESTARTBLOCK); ASSERT(imap->br_startblock != DELAYSTARTBLOCK); bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) + ((offset - iomap_offset) >> inode->i_blkbits); ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode))); bh->b_blocknr = bn; set_buffer_mapped(bh); } STATIC void xfs_map_at_offset( struct inode *inode, struct buffer_head *bh, struct xfs_bmbt_irec *imap, xfs_off_t offset) { ASSERT(imap->br_startblock != HOLESTARTBLOCK); ASSERT(imap->br_startblock != DELAYSTARTBLOCK); lock_buffer(bh); xfs_map_buffer(inode, bh, imap, offset); set_buffer_mapped(bh); clear_buffer_delay(bh); clear_buffer_unwritten(bh); /* * If this is a realtime file, data may be on a different device. * to that pointed to from the buffer_head b_bdev currently. We can't * trust that the bufferhead has a already been mapped correctly, so * set the bdev now. */ bh->b_bdev = xfs_find_bdev_for_inode(inode); bh->b_end_io = NULL; set_buffer_async_write(bh); set_buffer_uptodate(bh); clear_buffer_dirty(bh); } STATIC void xfs_vm_invalidatepage( struct page *page, unsigned int offset, unsigned int length) { trace_xfs_invalidatepage(page->mapping->host, page, offset, length); /* * If we are invalidating the entire page, clear the dirty state from it * so that we can check for attempts to release dirty cached pages in * xfs_vm_releasepage(). */ if (offset == 0 && length >= PAGE_SIZE) cancel_dirty_page(page); block_invalidatepage(page, offset, length); } /* * If the page has delalloc buffers on it, we need to punch them out before we * invalidate the page. If we don't, we leave a stale delalloc mapping on the * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read * is done on that same region - the delalloc extent is returned when none is * supposed to be there. * * We prevent this by truncating away the delalloc regions on the page before * invalidating it. Because they are delalloc, we can do this without needing a * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this * truncation without a transaction as there is no space left for block * reservation (typically why we see a ENOSPC in writeback). */ STATIC void xfs_aops_discard_page( struct page *page) { struct inode *inode = page->mapping->host; struct xfs_inode *ip = XFS_I(inode); struct xfs_mount *mp = ip->i_mount; loff_t offset = page_offset(page); xfs_fileoff_t start_fsb = XFS_B_TO_FSBT(mp, offset); int error; if (XFS_FORCED_SHUTDOWN(mp)) goto out_invalidate; xfs_alert(mp, "page discard on page "PTR_FMT", inode 0x%llx, offset %llu.", page, ip->i_ino, offset); error = xfs_bmap_punch_delalloc_range(ip, start_fsb, PAGE_SIZE / i_blocksize(inode)); if (error && !XFS_FORCED_SHUTDOWN(mp)) xfs_alert(mp, "page discard unable to remove delalloc mapping."); out_invalidate: xfs_vm_invalidatepage(page, 0, PAGE_SIZE); } /* * We implement an immediate ioend submission policy here to avoid needing to * chain multiple ioends and hence nest mempool allocations which can violate * forward progress guarantees we need to provide. The current ioend we are * adding buffers to is cached on the writepage context, and if the new buffer * does not append to the cached ioend it will create a new ioend and cache that * instead. * * If a new ioend is created and cached, the old ioend is returned and queued * locally for submission once the entire page is processed or an error has been * detected. While ioends are submitted immediately after they are completed, * batching optimisations are provided by higher level block plugging. * * At the end of a writeback pass, there will be a cached ioend remaining on the * writepage context that the caller will need to submit. */ static int xfs_writepage_map( struct xfs_writepage_ctx *wpc, struct writeback_control *wbc, struct inode *inode, struct page *page, uint64_t end_offset) { LIST_HEAD(submit_list); struct xfs_ioend *ioend, *next; struct buffer_head *bh; ssize_t len = i_blocksize(inode); uint64_t file_offset; /* file offset of page */ unsigned poffset; /* offset into page */ int error = 0; int count = 0; /* * Walk the blocks on the page, and if we run off the end of the current * map or find the current map invalid, grab a new one. We only use * bufferheads here to check per-block state - they no longer control * the iteration through the page. This allows us to replace the * bufferhead with some other state tracking mechanism in future. */ file_offset = page_offset(page); bh = page_buffers(page); for (poffset = 0; poffset < PAGE_SIZE; poffset += len, file_offset += len, bh = bh->b_this_page) { /* past the range we are writing, so nothing more to write. */ if (file_offset >= end_offset) break; if (!buffer_uptodate(bh)) { if (PageUptodate(page)) ASSERT(buffer_mapped(bh)); continue; } error = xfs_map_blocks(wpc, inode, file_offset); if (error) break; if (wpc->io_type == XFS_IO_HOLE) continue; xfs_map_at_offset(inode, bh, &wpc->imap, file_offset); xfs_add_to_ioend(inode, file_offset, page, wpc, wbc, &submit_list); count++; } ASSERT(wpc->ioend || list_empty(&submit_list)); ASSERT(PageLocked(page)); ASSERT(!PageWriteback(page)); /* * On error, we have to fail the ioend here because we have locked * buffers in the ioend. If we don't do this, we'll deadlock * invalidating the page as that tries to lock the buffers on the page. * Also, because we may have set pages under writeback, we have to make * sure we run IO completion to mark the error state of the IO * appropriately, so we can't cancel the ioend directly here. That means * we have to mark this page as under writeback if we included any * buffers from it in the ioend chain so that completion treats it * correctly. * * If we didn't include the page in the ioend, the on error we can * simply discard and unlock it as there are no other users of the page * or it's buffers right now. The caller will still need to trigger * submission of outstanding ioends on the writepage context so they are * treated correctly on error. */ if (unlikely(error)) { if (!count) { xfs_aops_discard_page(page); ClearPageUptodate(page); unlock_page(page); goto done; } /* * If the page was not fully cleaned, we need to ensure that the * higher layers come back to it correctly. That means we need * to keep the page dirty, and for WB_SYNC_ALL writeback we need * to ensure the PAGECACHE_TAG_TOWRITE index mark is not removed * so another attempt to write this page in this writeback sweep * will be made. */ set_page_writeback_keepwrite(page); } else { clear_page_dirty_for_io(page); set_page_writeback(page); } unlock_page(page); /* * Preserve the original error if there was one, otherwise catch * submission errors here and propagate into subsequent ioend * submissions. */ list_for_each_entry_safe(ioend, next, &submit_list, io_list) { int error2; list_del_init(&ioend->io_list); error2 = xfs_submit_ioend(wbc, ioend, error); if (error2 && !error) error = error2; } /* * We can end up here with no error and nothing to write if we race with * a partial page truncate on a sub-page block sized filesystem. */ if (!count) end_page_writeback(page); done: mapping_set_error(page->mapping, error); return error; } /* * Write out a dirty page. * * For delalloc space on the page we need to allocate space and flush it. * For unwritten space on the page we need to start the conversion to * regular allocated space. * For any other dirty buffer heads on the page we should flush them. */ STATIC int xfs_do_writepage( struct page *page, struct writeback_control *wbc, void *data) { struct xfs_writepage_ctx *wpc = data; struct inode *inode = page->mapping->host; loff_t offset; uint64_t end_offset; pgoff_t end_index; trace_xfs_writepage(inode, page, 0, 0); ASSERT(page_has_buffers(page)); /* * Refuse to write the page out if we are called from reclaim context. * * This avoids stack overflows when called from deeply used stacks in * random callers for direct reclaim or memcg reclaim. We explicitly * allow reclaim from kswapd as the stack usage there is relatively low. * * This should never happen except in the case of a VM regression so * warn about it. */ if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == PF_MEMALLOC)) goto redirty; /* * Given that we do not allow direct reclaim to call us, we should * never be called while in a filesystem transaction. */ if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS)) goto redirty; /* * Is this page beyond the end of the file? * * The page index is less than the end_index, adjust the end_offset * to the highest offset that this page should represent. * ----------------------------------------------------- * | file mapping | | * ----------------------------------------------------- * | Page ... | Page N-2 | Page N-1 | Page N | | * ^--------------------------------^----------|-------- * | desired writeback range | see else | * ---------------------------------^------------------| */ offset = i_size_read(inode); end_index = offset >> PAGE_SHIFT; if (page->index < end_index) end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT; else { /* * Check whether the page to write out is beyond or straddles * i_size or not. * ------------------------------------------------------- * | file mapping | | * ------------------------------------------------------- * | Page ... | Page N-2 | Page N-1 | Page N | Beyond | * ^--------------------------------^-----------|--------- * | | Straddles | * ---------------------------------^-----------|--------| */ unsigned offset_into_page = offset & (PAGE_SIZE - 1); /* * Skip the page if it is fully outside i_size, e.g. due to a * truncate operation that is in progress. We must redirty the * page so that reclaim stops reclaiming it. Otherwise * xfs_vm_releasepage() is called on it and gets confused. * * Note that the end_index is unsigned long, it would overflow * if the given offset is greater than 16TB on 32-bit system * and if we do check the page is fully outside i_size or not * via "if (page->index >= end_index + 1)" as "end_index + 1" * will be evaluated to 0. Hence this page will be redirtied * and be written out repeatedly which would result in an * infinite loop, the user program that perform this operation * will hang. Instead, we can verify this situation by checking * if the page to write is totally beyond the i_size or if it's * offset is just equal to the EOF. */ if (page->index > end_index || (page->index == end_index && offset_into_page == 0)) goto redirty; /* * The page straddles i_size. It must be zeroed out on each * and every writepage invocation because it may be mmapped. * "A file is mapped in multiples of the page size. For a file * that is not a multiple of the page size, the remaining * memory is zeroed when mapped, and writes to that region are * not written out to the file." */ zero_user_segment(page, offset_into_page, PAGE_SIZE); /* Adjust the end_offset to the end of file */ end_offset = offset; } return xfs_writepage_map(wpc, wbc, inode, page, end_offset); redirty: redirty_page_for_writepage(wbc, page); unlock_page(page); return 0; } STATIC int xfs_vm_writepage( struct page *page, struct writeback_control *wbc) { struct xfs_writepage_ctx wpc = { .io_type = XFS_IO_INVALID, }; int ret; ret = xfs_do_writepage(page, wbc, &wpc); if (wpc.ioend) ret = xfs_submit_ioend(wbc, wpc.ioend, ret); return ret; } STATIC int xfs_vm_writepages( struct address_space *mapping, struct writeback_control *wbc) { struct xfs_writepage_ctx wpc = { .io_type = XFS_IO_INVALID, }; int ret; xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc); if (wpc.ioend) ret = xfs_submit_ioend(wbc, wpc.ioend, ret); return ret; } STATIC int xfs_dax_writepages( struct address_space *mapping, struct writeback_control *wbc) { xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); return dax_writeback_mapping_range(mapping, xfs_find_bdev_for_inode(mapping->host), wbc); } /* * Called to move a page into cleanable state - and from there * to be released. The page should already be clean. We always * have buffer heads in this call. * * Returns 1 if the page is ok to release, 0 otherwise. */ STATIC int xfs_vm_releasepage( struct page *page, gfp_t gfp_mask) { int delalloc, unwritten; trace_xfs_releasepage(page->mapping->host, page, 0, 0); /* * mm accommodates an old ext3 case where clean pages might not have had * the dirty bit cleared. Thus, it can send actual dirty pages to * ->releasepage() via shrink_active_list(). Conversely, * block_invalidatepage() can send pages that are still marked dirty but * otherwise have invalidated buffers. * * We want to release the latter to avoid unnecessary buildup of the * LRU, so xfs_vm_invalidatepage() clears the page dirty flag on pages * that are entirely invalidated and need to be released. Hence the * only time we should get dirty pages here is through * shrink_active_list() and so we can simply skip those now. * * warn if we've left any lingering delalloc/unwritten buffers on clean * or invalidated pages we are about to release. */ if (PageDirty(page)) return 0; xfs_count_page_state(page, &delalloc, &unwritten); if (WARN_ON_ONCE(delalloc)) return 0; if (WARN_ON_ONCE(unwritten)) return 0; return try_to_free_buffers(page); } /* * If this is O_DIRECT or the mpage code calling tell them how large the mapping * is, so that we can avoid repeated get_blocks calls. * * If the mapping spans EOF, then we have to break the mapping up as the mapping * for blocks beyond EOF must be marked new so that sub block regions can be * correctly zeroed. We can't do this for mappings within EOF unless the mapping * was just allocated or is unwritten, otherwise the callers would overwrite * existing data with zeros. Hence we have to split the mapping into a range up * to and including EOF, and a second mapping for beyond EOF. */ static void xfs_map_trim_size( struct inode *inode, sector_t iblock, struct buffer_head *bh_result, struct xfs_bmbt_irec *imap, xfs_off_t offset, ssize_t size) { xfs_off_t mapping_size; mapping_size = imap->br_startoff + imap->br_blockcount - iblock; mapping_size <<= inode->i_blkbits; ASSERT(mapping_size > 0); if (mapping_size > size) mapping_size = size; if (offset < i_size_read(inode) && (xfs_ufsize_t)offset + mapping_size >= i_size_read(inode)) { /* limit mapping to block that spans EOF */ mapping_size = roundup_64(i_size_read(inode) - offset, i_blocksize(inode)); } if (mapping_size > LONG_MAX) mapping_size = LONG_MAX; bh_result->b_size = mapping_size; } static int xfs_get_blocks( struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create) { struct xfs_inode *ip = XFS_I(inode); struct xfs_mount *mp = ip->i_mount; xfs_fileoff_t offset_fsb, end_fsb; int error = 0; int lockmode = 0; struct xfs_bmbt_irec imap; int nimaps = 1; xfs_off_t offset; ssize_t size; BUG_ON(create); if (XFS_FORCED_SHUTDOWN(mp)) return -EIO; offset = (xfs_off_t)iblock << inode->i_blkbits; ASSERT(bh_result->b_size >= i_blocksize(inode)); size = bh_result->b_size; if (offset >= i_size_read(inode)) return 0; /* * Direct I/O is usually done on preallocated files, so try getting * a block mapping without an exclusive lock first. */ lockmode = xfs_ilock_data_map_shared(ip); ASSERT(offset <= mp->m_super->s_maxbytes); if (offset > mp->m_super->s_maxbytes - size) size = mp->m_super->s_maxbytes - offset; end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size); offset_fsb = XFS_B_TO_FSBT(mp, offset); error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap, &nimaps, 0); if (error) goto out_unlock; if (!nimaps) { trace_xfs_get_blocks_notfound(ip, offset, size); goto out_unlock; } trace_xfs_get_blocks_found(ip, offset, size, imap.br_state == XFS_EXT_UNWRITTEN ? XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, &imap); xfs_iunlock(ip, lockmode); /* trim mapping down to size requested */ xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size); /* * For unwritten extents do not report a disk address in the buffered * read case (treat as if we're reading into a hole). */ if (xfs_bmap_is_real_extent(&imap)) xfs_map_buffer(inode, bh_result, &imap, offset); /* * If this is a realtime file, data may be on a different device. * to that pointed to from the buffer_head b_bdev currently. */ bh_result->b_bdev = xfs_find_bdev_for_inode(inode); return 0; out_unlock: xfs_iunlock(ip, lockmode); return error; } STATIC sector_t xfs_vm_bmap( struct address_space *mapping, sector_t block) { struct xfs_inode *ip = XFS_I(mapping->host); trace_xfs_vm_bmap(ip); /* * The swap code (ab-)uses ->bmap to get a block mapping and then * bypasses the file system for actual I/O. We really can't allow * that on reflinks inodes, so we have to skip out here. And yes, * 0 is the magic code for a bmap error. * * Since we don't pass back blockdev info, we can't return bmap * information for rt files either. */ if (xfs_is_reflink_inode(ip) || XFS_IS_REALTIME_INODE(ip)) return 0; return iomap_bmap(mapping, block, &xfs_iomap_ops); } STATIC int xfs_vm_readpage( struct file *unused, struct page *page) { trace_xfs_vm_readpage(page->mapping->host, 1); if (i_blocksize(page->mapping->host) == PAGE_SIZE) return iomap_readpage(page, &xfs_iomap_ops); return mpage_readpage(page, xfs_get_blocks); } STATIC int xfs_vm_readpages( struct file *unused, struct address_space *mapping, struct list_head *pages, unsigned nr_pages) { trace_xfs_vm_readpages(mapping->host, nr_pages); if (i_blocksize(mapping->host) == PAGE_SIZE) return iomap_readpages(mapping, pages, nr_pages, &xfs_iomap_ops); return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks); } /* * This is basically a copy of __set_page_dirty_buffers() with one * small tweak: buffers beyond EOF do not get marked dirty. If we mark them * dirty, we'll never be able to clean them because we don't write buffers * beyond EOF, and that means we can't invalidate pages that span EOF * that have been marked dirty. Further, the dirty state can leak into * the file interior if the file is extended, resulting in all sorts of * bad things happening as the state does not match the underlying data. * * XXX: this really indicates that bufferheads in XFS need to die. Warts like * this only exist because of bufferheads and how the generic code manages them. */ STATIC int xfs_vm_set_page_dirty( struct page *page) { struct address_space *mapping = page->mapping; struct inode *inode = mapping->host; loff_t end_offset; loff_t offset; int newly_dirty; if (unlikely(!mapping)) return !TestSetPageDirty(page); end_offset = i_size_read(inode); offset = page_offset(page); spin_lock(&mapping->private_lock); if (page_has_buffers(page)) { struct buffer_head *head = page_buffers(page); struct buffer_head *bh = head; do { if (offset < end_offset) set_buffer_dirty(bh); bh = bh->b_this_page; offset += i_blocksize(inode); } while (bh != head); } /* * Lock out page->mem_cgroup migration to keep PageDirty * synchronized with per-memcg dirty page counters. */ lock_page_memcg(page); newly_dirty = !TestSetPageDirty(page); spin_unlock(&mapping->private_lock); if (newly_dirty) __set_page_dirty(page, mapping, 1); unlock_page_memcg(page); if (newly_dirty) __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); return newly_dirty; } static int xfs_iomap_swapfile_activate( struct swap_info_struct *sis, struct file *swap_file, sector_t *span) { sis->bdev = xfs_find_bdev_for_inode(file_inode(swap_file)); return iomap_swapfile_activate(sis, swap_file, span, &xfs_iomap_ops); } const struct address_space_operations xfs_address_space_operations = { .readpage = xfs_vm_readpage, .readpages = xfs_vm_readpages, .writepage = xfs_vm_writepage, .writepages = xfs_vm_writepages, .set_page_dirty = xfs_vm_set_page_dirty, .releasepage = xfs_vm_releasepage, .invalidatepage = xfs_vm_invalidatepage, .bmap = xfs_vm_bmap, .direct_IO = noop_direct_IO, .migratepage = buffer_migrate_page, .is_partially_uptodate = block_is_partially_uptodate, .error_remove_page = generic_error_remove_page, .swap_activate = xfs_iomap_swapfile_activate, }; const struct address_space_operations xfs_dax_aops = { .writepages = xfs_dax_writepages, .direct_IO = noop_direct_IO, .set_page_dirty = noop_set_page_dirty, .invalidatepage = noop_invalidatepage, .swap_activate = xfs_iomap_swapfile_activate, };