// SPDX-License-Identifier: GPL-2.0 /* * mm/mremap.c * * (C) Copyright 1996 Linus Torvalds * * Address space accounting code * (C) Copyright 2002 Red Hat Inc, All Rights Reserved */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" static pud_t *get_old_pud(struct mm_struct *mm, unsigned long addr) { pgd_t *pgd; p4d_t *p4d; pud_t *pud; pgd = pgd_offset(mm, addr); if (pgd_none_or_clear_bad(pgd)) return NULL; p4d = p4d_offset(pgd, addr); if (p4d_none_or_clear_bad(p4d)) return NULL; pud = pud_offset(p4d, addr); if (pud_none_or_clear_bad(pud)) return NULL; return pud; } static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr) { pud_t *pud; pmd_t *pmd; pud = get_old_pud(mm, addr); if (!pud) return NULL; pmd = pmd_offset(pud, addr); if (pmd_none(*pmd)) return NULL; return pmd; } static pud_t *alloc_new_pud(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr) { pgd_t *pgd; p4d_t *p4d; pgd = pgd_offset(mm, addr); p4d = p4d_alloc(mm, pgd, addr); if (!p4d) return NULL; return pud_alloc(mm, p4d, addr); } static pmd_t *alloc_new_pmd(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr) { pud_t *pud; pmd_t *pmd; pud = alloc_new_pud(mm, vma, addr); if (!pud) return NULL; pmd = pmd_alloc(mm, pud, addr); if (!pmd) return NULL; VM_BUG_ON(pmd_trans_huge(*pmd)); return pmd; } static void take_rmap_locks(struct vm_area_struct *vma) { if (vma->vm_file) i_mmap_lock_write(vma->vm_file->f_mapping); if (vma->anon_vma) anon_vma_lock_write(vma->anon_vma); } static void drop_rmap_locks(struct vm_area_struct *vma) { if (vma->anon_vma) anon_vma_unlock_write(vma->anon_vma); if (vma->vm_file) i_mmap_unlock_write(vma->vm_file->f_mapping); } static pte_t move_soft_dirty_pte(pte_t pte) { /* * Set soft dirty bit so we can notice * in userspace the ptes were moved. */ #ifdef CONFIG_MEM_SOFT_DIRTY if (pte_present(pte)) pte = pte_mksoft_dirty(pte); else if (is_swap_pte(pte)) pte = pte_swp_mksoft_dirty(pte); #endif return pte; } static int move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd, unsigned long old_addr, unsigned long old_end, struct vm_area_struct *new_vma, pmd_t *new_pmd, unsigned long new_addr, bool need_rmap_locks) { bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma); struct mm_struct *mm = vma->vm_mm; pte_t *old_pte, *new_pte, pte; pmd_t dummy_pmdval; spinlock_t *old_ptl, *new_ptl; bool force_flush = false; unsigned long len = old_end - old_addr; int err = 0; /* * When need_rmap_locks is true, we take the i_mmap_rwsem and anon_vma * locks to ensure that rmap will always observe either the old or the * new ptes. This is the easiest way to avoid races with * truncate_pagecache(), page migration, etc... * * When need_rmap_locks is false, we use other ways to avoid * such races: * * - During exec() shift_arg_pages(), we use a specially tagged vma * which rmap call sites look for using vma_is_temporary_stack(). * * - During mremap(), new_vma is often known to be placed after vma * in rmap traversal order. This ensures rmap will always observe * either the old pte, or the new pte, or both (the page table locks * serialize access to individual ptes, but only rmap traversal * order guarantees that we won't miss both the old and new ptes). */ if (need_rmap_locks) take_rmap_locks(vma); /* * We don't have to worry about the ordering of src and dst * pte locks because exclusive mmap_lock prevents deadlock. */ old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl); if (!old_pte) { err = -EAGAIN; goto out; } /* * Now new_pte is none, so hpage_collapse_scan_file() path can not find * this by traversing file->f_mapping, so there is no concurrency with * retract_page_tables(). In addition, we already hold the exclusive * mmap_lock, so this new_pte page is stable, so there is no need to get * pmdval and do pmd_same() check. */ new_pte = pte_offset_map_rw_nolock(mm, new_pmd, new_addr, &dummy_pmdval, &new_ptl); if (!new_pte) { pte_unmap_unlock(old_pte, old_ptl); err = -EAGAIN; goto out; } if (new_ptl != old_ptl) spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); flush_tlb_batched_pending(vma->vm_mm); arch_enter_lazy_mmu_mode(); for (; old_addr < old_end; old_pte++, old_addr += PAGE_SIZE, new_pte++, new_addr += PAGE_SIZE) { if (pte_none(ptep_get(old_pte))) continue; pte = ptep_get_and_clear(mm, old_addr, old_pte); /* * If we are remapping a valid PTE, make sure * to flush TLB before we drop the PTL for the * PTE. * * NOTE! Both old and new PTL matter: the old one * for racing with folio_mkclean(), the new one to * make sure the physical page stays valid until * the TLB entry for the old mapping has been * flushed. */ if (pte_present(pte)) force_flush = true; pte = move_pte(pte, old_addr, new_addr); pte = move_soft_dirty_pte(pte); if (need_clear_uffd_wp && pte_marker_uffd_wp(pte)) pte_clear(mm, new_addr, new_pte); else { if (need_clear_uffd_wp) { if (pte_present(pte)) pte = pte_clear_uffd_wp(pte); else if (is_swap_pte(pte)) pte = pte_swp_clear_uffd_wp(pte); } set_pte_at(mm, new_addr, new_pte, pte); } } arch_leave_lazy_mmu_mode(); if (force_flush) flush_tlb_range(vma, old_end - len, old_end); if (new_ptl != old_ptl) spin_unlock(new_ptl); pte_unmap(new_pte - 1); pte_unmap_unlock(old_pte - 1, old_ptl); out: if (need_rmap_locks) drop_rmap_locks(vma); return err; } #ifndef arch_supports_page_table_move #define arch_supports_page_table_move arch_supports_page_table_move static inline bool arch_supports_page_table_move(void) { return IS_ENABLED(CONFIG_HAVE_MOVE_PMD) || IS_ENABLED(CONFIG_HAVE_MOVE_PUD); } #endif #ifdef CONFIG_HAVE_MOVE_PMD static bool move_normal_pmd(struct vm_area_struct *vma, unsigned long old_addr, unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd) { spinlock_t *old_ptl, *new_ptl; struct mm_struct *mm = vma->vm_mm; bool res = false; pmd_t pmd; if (!arch_supports_page_table_move()) return false; /* * The destination pmd shouldn't be established, free_pgtables() * should have released it. * * However, there's a case during execve() where we use mremap * to move the initial stack, and in that case the target area * may overlap the source area (always moving down). * * If everything is PMD-aligned, that works fine, as moving * each pmd down will clear the source pmd. But if we first * have a few 4kB-only pages that get moved down, and then * hit the "now the rest is PMD-aligned, let's do everything * one pmd at a time", we will still have the old (now empty * of any 4kB pages, but still there) PMD in the page table * tree. * * Warn on it once - because we really should try to figure * out how to do this better - but then say "I won't move * this pmd". * * One alternative might be to just unmap the target pmd at * this point, and verify that it really is empty. We'll see. */ if (WARN_ON_ONCE(!pmd_none(*new_pmd))) return false; /* If this pmd belongs to a uffd vma with remap events disabled, we need * to ensure that the uffd-wp state is cleared from all pgtables. This * means recursing into lower page tables in move_page_tables(), and we * can reuse the existing code if we simply treat the entry as "not * moved". */ if (vma_has_uffd_without_event_remap(vma)) return false; /* * We don't have to worry about the ordering of src and dst * ptlocks because exclusive mmap_lock prevents deadlock. */ old_ptl = pmd_lock(vma->vm_mm, old_pmd); new_ptl = pmd_lockptr(mm, new_pmd); if (new_ptl != old_ptl) spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); pmd = *old_pmd; /* Racing with collapse? */ if (unlikely(!pmd_present(pmd) || pmd_leaf(pmd))) goto out_unlock; /* Clear the pmd */ pmd_clear(old_pmd); res = true; VM_BUG_ON(!pmd_none(*new_pmd)); pmd_populate(mm, new_pmd, pmd_pgtable(pmd)); flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE); out_unlock: if (new_ptl != old_ptl) spin_unlock(new_ptl); spin_unlock(old_ptl); return res; } #else static inline bool move_normal_pmd(struct vm_area_struct *vma, unsigned long old_addr, unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd) { return false; } #endif #if CONFIG_PGTABLE_LEVELS > 2 && defined(CONFIG_HAVE_MOVE_PUD) static bool move_normal_pud(struct vm_area_struct *vma, unsigned long old_addr, unsigned long new_addr, pud_t *old_pud, pud_t *new_pud) { spinlock_t *old_ptl, *new_ptl; struct mm_struct *mm = vma->vm_mm; pud_t pud; if (!arch_supports_page_table_move()) return false; /* * The destination pud shouldn't be established, free_pgtables() * should have released it. */ if (WARN_ON_ONCE(!pud_none(*new_pud))) return false; /* If this pud belongs to a uffd vma with remap events disabled, we need * to ensure that the uffd-wp state is cleared from all pgtables. This * means recursing into lower page tables in move_page_tables(), and we * can reuse the existing code if we simply treat the entry as "not * moved". */ if (vma_has_uffd_without_event_remap(vma)) return false; /* * We don't have to worry about the ordering of src and dst * ptlocks because exclusive mmap_lock prevents deadlock. */ old_ptl = pud_lock(vma->vm_mm, old_pud); new_ptl = pud_lockptr(mm, new_pud); if (new_ptl != old_ptl) spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); /* Clear the pud */ pud = *old_pud; pud_clear(old_pud); VM_BUG_ON(!pud_none(*new_pud)); pud_populate(mm, new_pud, pud_pgtable(pud)); flush_tlb_range(vma, old_addr, old_addr + PUD_SIZE); if (new_ptl != old_ptl) spin_unlock(new_ptl); spin_unlock(old_ptl); return true; } #else static inline bool move_normal_pud(struct vm_area_struct *vma, unsigned long old_addr, unsigned long new_addr, pud_t *old_pud, pud_t *new_pud) { return false; } #endif #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr, unsigned long new_addr, pud_t *old_pud, pud_t *new_pud) { spinlock_t *old_ptl, *new_ptl; struct mm_struct *mm = vma->vm_mm; pud_t pud; /* * The destination pud shouldn't be established, free_pgtables() * should have released it. */ if (WARN_ON_ONCE(!pud_none(*new_pud))) return false; /* * We don't have to worry about the ordering of src and dst * ptlocks because exclusive mmap_lock prevents deadlock. */ old_ptl = pud_lock(vma->vm_mm, old_pud); new_ptl = pud_lockptr(mm, new_pud); if (new_ptl != old_ptl) spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); /* Clear the pud */ pud = *old_pud; pud_clear(old_pud); VM_BUG_ON(!pud_none(*new_pud)); /* Set the new pud */ /* mark soft_ditry when we add pud level soft dirty support */ set_pud_at(mm, new_addr, new_pud, pud); flush_pud_tlb_range(vma, old_addr, old_addr + HPAGE_PUD_SIZE); if (new_ptl != old_ptl) spin_unlock(new_ptl); spin_unlock(old_ptl); return true; } #else static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr, unsigned long new_addr, pud_t *old_pud, pud_t *new_pud) { WARN_ON_ONCE(1); return false; } #endif enum pgt_entry { NORMAL_PMD, HPAGE_PMD, NORMAL_PUD, HPAGE_PUD, }; /* * Returns an extent of the corresponding size for the pgt_entry specified if * valid. Else returns a smaller extent bounded by the end of the source and * destination pgt_entry. */ static __always_inline unsigned long get_extent(enum pgt_entry entry, unsigned long old_addr, unsigned long old_end, unsigned long new_addr) { unsigned long next, extent, mask, size; switch (entry) { case HPAGE_PMD: case NORMAL_PMD: mask = PMD_MASK; size = PMD_SIZE; break; case HPAGE_PUD: case NORMAL_PUD: mask = PUD_MASK; size = PUD_SIZE; break; default: BUILD_BUG(); break; } next = (old_addr + size) & mask; /* even if next overflowed, extent below will be ok */ extent = next - old_addr; if (extent > old_end - old_addr) extent = old_end - old_addr; next = (new_addr + size) & mask; if (extent > next - new_addr) extent = next - new_addr; return extent; } /* * Attempts to speedup the move by moving entry at the level corresponding to * pgt_entry. Returns true if the move was successful, else false. */ static bool move_pgt_entry(enum pgt_entry entry, struct vm_area_struct *vma, unsigned long old_addr, unsigned long new_addr, void *old_entry, void *new_entry, bool need_rmap_locks) { bool moved = false; /* See comment in move_ptes() */ if (need_rmap_locks) take_rmap_locks(vma); switch (entry) { case NORMAL_PMD: moved = move_normal_pmd(vma, old_addr, new_addr, old_entry, new_entry); break; case NORMAL_PUD: moved = move_normal_pud(vma, old_addr, new_addr, old_entry, new_entry); break; case HPAGE_PMD: moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && move_huge_pmd(vma, old_addr, new_addr, old_entry, new_entry); break; case HPAGE_PUD: moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && move_huge_pud(vma, old_addr, new_addr, old_entry, new_entry); break; default: WARN_ON_ONCE(1); break; } if (need_rmap_locks) drop_rmap_locks(vma); return moved; } /* * A helper to check if aligning down is OK. The aligned address should fall * on *no mapping*. For the stack moving down, that's a special move within * the VMA that is created to span the source and destination of the move, * so we make an exception for it. */ static bool can_align_down(struct vm_area_struct *vma, unsigned long addr_to_align, unsigned long mask, bool for_stack) { unsigned long addr_masked = addr_to_align & mask; /* * If @addr_to_align of either source or destination is not the beginning * of the corresponding VMA, we can't align down or we will destroy part * of the current mapping. */ if (!for_stack && vma->vm_start != addr_to_align) return false; /* In the stack case we explicitly permit in-VMA alignment. */ if (for_stack && addr_masked >= vma->vm_start) return true; /* * Make sure the realignment doesn't cause the address to fall on an * existing mapping. */ return find_vma_intersection(vma->vm_mm, addr_masked, vma->vm_start) == NULL; } /* Opportunistically realign to specified boundary for faster copy. */ static void try_realign_addr(unsigned long *old_addr, struct vm_area_struct *old_vma, unsigned long *new_addr, struct vm_area_struct *new_vma, unsigned long mask, bool for_stack) { /* Skip if the addresses are already aligned. */ if ((*old_addr & ~mask) == 0) return; /* Only realign if the new and old addresses are mutually aligned. */ if ((*old_addr & ~mask) != (*new_addr & ~mask)) return; /* Ensure realignment doesn't cause overlap with existing mappings. */ if (!can_align_down(old_vma, *old_addr, mask, for_stack) || !can_align_down(new_vma, *new_addr, mask, for_stack)) return; *old_addr = *old_addr & mask; *new_addr = *new_addr & mask; } unsigned long move_page_tables(struct vm_area_struct *vma, unsigned long old_addr, struct vm_area_struct *new_vma, unsigned long new_addr, unsigned long len, bool need_rmap_locks, bool for_stack) { unsigned long extent, old_end; struct mmu_notifier_range range; pmd_t *old_pmd, *new_pmd; pud_t *old_pud, *new_pud; if (!len) return 0; old_end = old_addr + len; if (is_vm_hugetlb_page(vma)) return move_hugetlb_page_tables(vma, new_vma, old_addr, new_addr, len); /* * If possible, realign addresses to PMD boundary for faster copy. * Only realign if the mremap copying hits a PMD boundary. */ if (len >= PMD_SIZE - (old_addr & ~PMD_MASK)) try_realign_addr(&old_addr, vma, &new_addr, new_vma, PMD_MASK, for_stack); flush_cache_range(vma, old_addr, old_end); mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, old_addr, old_end); mmu_notifier_invalidate_range_start(&range); for (; old_addr < old_end; old_addr += extent, new_addr += extent) { cond_resched(); /* * If extent is PUD-sized try to speed up the move by moving at the * PUD level if possible. */ extent = get_extent(NORMAL_PUD, old_addr, old_end, new_addr); old_pud = get_old_pud(vma->vm_mm, old_addr); if (!old_pud) continue; new_pud = alloc_new_pud(vma->vm_mm, vma, new_addr); if (!new_pud) break; if (pud_trans_huge(*old_pud) || pud_devmap(*old_pud)) { if (extent == HPAGE_PUD_SIZE) { move_pgt_entry(HPAGE_PUD, vma, old_addr, new_addr, old_pud, new_pud, need_rmap_locks); /* We ignore and continue on error? */ continue; } } else if (IS_ENABLED(CONFIG_HAVE_MOVE_PUD) && extent == PUD_SIZE) { if (move_pgt_entry(NORMAL_PUD, vma, old_addr, new_addr, old_pud, new_pud, true)) continue; } extent = get_extent(NORMAL_PMD, old_addr, old_end, new_addr); old_pmd = get_old_pmd(vma->vm_mm, old_addr); if (!old_pmd) continue; new_pmd = alloc_new_pmd(vma->vm_mm, vma, new_addr); if (!new_pmd) break; again: if (is_swap_pmd(*old_pmd) || pmd_trans_huge(*old_pmd) || pmd_devmap(*old_pmd)) { if (extent == HPAGE_PMD_SIZE && move_pgt_entry(HPAGE_PMD, vma, old_addr, new_addr, old_pmd, new_pmd, need_rmap_locks)) continue; split_huge_pmd(vma, old_pmd, old_addr); } else if (IS_ENABLED(CONFIG_HAVE_MOVE_PMD) && extent == PMD_SIZE) { /* * If the extent is PMD-sized, try to speed the move by * moving at the PMD level if possible. */ if (move_pgt_entry(NORMAL_PMD, vma, old_addr, new_addr, old_pmd, new_pmd, true)) continue; } if (pmd_none(*old_pmd)) continue; if (pte_alloc(new_vma->vm_mm, new_pmd)) break; if (move_ptes(vma, old_pmd, old_addr, old_addr + extent, new_vma, new_pmd, new_addr, need_rmap_locks) < 0) goto again; } mmu_notifier_invalidate_range_end(&range); /* * Prevent negative return values when {old,new}_addr was realigned * but we broke out of the above loop for the first PMD itself. */ if (old_addr < old_end - len) return 0; return len + old_addr - old_end; /* how much done */ } static unsigned long move_vma(struct vm_area_struct *vma, unsigned long old_addr, unsigned long old_len, unsigned long new_len, unsigned long new_addr, bool *locked, unsigned long flags, struct vm_userfaultfd_ctx *uf, struct list_head *uf_unmap) { long to_account = new_len - old_len; struct mm_struct *mm = vma->vm_mm; struct vm_area_struct *new_vma; unsigned long vm_flags = vma->vm_flags; unsigned long new_pgoff; unsigned long moved_len; unsigned long account_start = 0; unsigned long account_end = 0; unsigned long hiwater_vm; int err = 0; bool need_rmap_locks; struct vma_iterator vmi; /* * We'd prefer to avoid failure later on in do_munmap: * which may split one vma into three before unmapping. */ if (mm->map_count >= sysctl_max_map_count - 3) return -ENOMEM; if (unlikely(flags & MREMAP_DONTUNMAP)) to_account = new_len; if (vma->vm_ops && vma->vm_ops->may_split) { if (vma->vm_start != old_addr) err = vma->vm_ops->may_split(vma, old_addr); if (!err && vma->vm_end != old_addr + old_len) err = vma->vm_ops->may_split(vma, old_addr + old_len); if (err) return err; } /* * Advise KSM to break any KSM pages in the area to be moved: * it would be confusing if they were to turn up at the new * location, where they happen to coincide with different KSM * pages recently unmapped. But leave vma->vm_flags as it was, * so KSM can come around to merge on vma and new_vma afterwards. */ err = ksm_madvise(vma, old_addr, old_addr + old_len, MADV_UNMERGEABLE, &vm_flags); if (err) return err; if (vm_flags & VM_ACCOUNT) { if (security_vm_enough_memory_mm(mm, to_account >> PAGE_SHIFT)) return -ENOMEM; } vma_start_write(vma); new_pgoff = vma->vm_pgoff + ((old_addr - vma->vm_start) >> PAGE_SHIFT); new_vma = copy_vma(&vma, new_addr, new_len, new_pgoff, &need_rmap_locks); if (!new_vma) { if (vm_flags & VM_ACCOUNT) vm_unacct_memory(to_account >> PAGE_SHIFT); return -ENOMEM; } moved_len = move_page_tables(vma, old_addr, new_vma, new_addr, old_len, need_rmap_locks, false); if (moved_len < old_len) { err = -ENOMEM; } else if (vma->vm_ops && vma->vm_ops->mremap) { err = vma->vm_ops->mremap(new_vma); } if (unlikely(err)) { /* * On error, move entries back from new area to old, * which will succeed since page tables still there, * and then proceed to unmap new area instead of old. */ move_page_tables(new_vma, new_addr, vma, old_addr, moved_len, true, false); vma = new_vma; old_len = new_len; old_addr = new_addr; new_addr = err; } else { mremap_userfaultfd_prep(new_vma, uf); } if (is_vm_hugetlb_page(vma)) { clear_vma_resv_huge_pages(vma); } /* Conceal VM_ACCOUNT so old reservation is not undone */ if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP)) { vm_flags_clear(vma, VM_ACCOUNT); if (vma->vm_start < old_addr) account_start = vma->vm_start; if (vma->vm_end > old_addr + old_len) account_end = vma->vm_end; } /* * If we failed to move page tables we still do total_vm increment * since do_munmap() will decrement it by old_len == new_len. * * Since total_vm is about to be raised artificially high for a * moment, we need to restore high watermark afterwards: if stats * are taken meanwhile, total_vm and hiwater_vm appear too high. * If this were a serious issue, we'd add a flag to do_munmap(). */ hiwater_vm = mm->hiwater_vm; vm_stat_account(mm, vma->vm_flags, new_len >> PAGE_SHIFT); /* Tell pfnmap has moved from this vma */ if (unlikely(vma->vm_flags & VM_PFNMAP)) untrack_pfn_clear(vma); if (unlikely(!err && (flags & MREMAP_DONTUNMAP))) { /* We always clear VM_LOCKED[ONFAULT] on the old vma */ vm_flags_clear(vma, VM_LOCKED_MASK); /* * anon_vma links of the old vma is no longer needed after its page * table has been moved. */ if (new_vma != vma && vma->vm_start == old_addr && vma->vm_end == (old_addr + old_len)) unlink_anon_vmas(vma); /* Because we won't unmap we don't need to touch locked_vm */ return new_addr; } vma_iter_init(&vmi, mm, old_addr); if (do_vmi_munmap(&vmi, mm, old_addr, old_len, uf_unmap, false) < 0) { /* OOM: unable to split vma, just get accounts right */ if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP)) vm_acct_memory(old_len >> PAGE_SHIFT); account_start = account_end = 0; } if (vm_flags & VM_LOCKED) { mm->locked_vm += new_len >> PAGE_SHIFT; *locked = true; } mm->hiwater_vm = hiwater_vm; /* Restore VM_ACCOUNT if one or two pieces of vma left */ if (account_start) { vma = vma_prev(&vmi); vm_flags_set(vma, VM_ACCOUNT); } if (account_end) { vma = vma_next(&vmi); vm_flags_set(vma, VM_ACCOUNT); } return new_addr; } /* * resize_is_valid() - Ensure the vma can be resized to the new length at the give * address. * * @vma: The vma to resize * @addr: The old address * @old_len: The current size * @new_len: The desired size * @flags: The vma flags * * Return 0 on success, error otherwise. */ static int resize_is_valid(struct vm_area_struct *vma, unsigned long addr, unsigned long old_len, unsigned long new_len, unsigned long flags) { struct mm_struct *mm = current->mm; unsigned long pgoff; /* * !old_len is a special case where an attempt is made to 'duplicate' * a mapping. This makes no sense for private mappings as it will * instead create a fresh/new mapping unrelated to the original. This * is contrary to the basic idea of mremap which creates new mappings * based on the original. There are no known use cases for this * behavior. As a result, fail such attempts. */ if (!old_len && !(vma->vm_flags & (VM_SHARED | VM_MAYSHARE))) { pr_warn_once("%s (%d): attempted to duplicate a private mapping with mremap. This is not supported.\n", current->comm, current->pid); return -EINVAL; } if ((flags & MREMAP_DONTUNMAP) && (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP))) return -EINVAL; /* We can't remap across vm area boundaries */ if (old_len > vma->vm_end - addr) return -EFAULT; if (new_len == old_len) return 0; /* Need to be careful about a growing mapping */ pgoff = (addr - vma->vm_start) >> PAGE_SHIFT; pgoff += vma->vm_pgoff; if (pgoff + (new_len >> PAGE_SHIFT) < pgoff) return -EINVAL; if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP)) return -EFAULT; if (!mlock_future_ok(mm, vma->vm_flags, new_len - old_len)) return -EAGAIN; if (!may_expand_vm(mm, vma->vm_flags, (new_len - old_len) >> PAGE_SHIFT)) return -ENOMEM; return 0; } /* * mremap_to() - remap a vma to a new location * @addr: The old address * @old_len: The old size * @new_addr: The target address * @new_len: The new size * @locked: If the returned vma is locked (VM_LOCKED) * @flags: the mremap flags * @uf: The mremap userfaultfd context * @uf_unmap_early: The userfaultfd unmap early context * @uf_unmap: The userfaultfd unmap context * * Returns: The new address of the vma or an error. */ static unsigned long mremap_to(unsigned long addr, unsigned long old_len, unsigned long new_addr, unsigned long new_len, bool *locked, unsigned long flags, struct vm_userfaultfd_ctx *uf, struct list_head *uf_unmap_early, struct list_head *uf_unmap) { struct mm_struct *mm = current->mm; struct vm_area_struct *vma; unsigned long ret; unsigned long map_flags = 0; if (offset_in_page(new_addr)) return -EINVAL; if (new_len > TASK_SIZE || new_addr > TASK_SIZE - new_len) return -EINVAL; /* Ensure the old/new locations do not overlap */ if (addr + old_len > new_addr && new_addr + new_len > addr) return -EINVAL; /* * move_vma() need us to stay 4 maps below the threshold, otherwise * it will bail out at the very beginning. * That is a problem if we have already unmaped the regions here * (new_addr, and old_addr), because userspace will not know the * state of the vma's after it gets -ENOMEM. * So, to avoid such scenario we can pre-compute if the whole * operation has high chances to success map-wise. * Worst-scenario case is when both vma's (new_addr and old_addr) get * split in 3 before unmapping it. * That means 2 more maps (1 for each) to the ones we already hold. * Check whether current map count plus 2 still leads us to 4 maps below * the threshold, otherwise return -ENOMEM here to be more safe. */ if ((mm->map_count + 2) >= sysctl_max_map_count - 3) return -ENOMEM; if (flags & MREMAP_FIXED) { /* * In mremap_to(). * VMA is moved to dst address, and munmap dst first. * do_munmap will check if dst is sealed. */ ret = do_munmap(mm, new_addr, new_len, uf_unmap_early); if (ret) return ret; } if (old_len > new_len) { ret = do_munmap(mm, addr+new_len, old_len - new_len, uf_unmap); if (ret) return ret; old_len = new_len; } vma = vma_lookup(mm, addr); if (!vma) return -EFAULT; ret = resize_is_valid(vma, addr, old_len, new_len, flags); if (ret) return ret; /* MREMAP_DONTUNMAP expands by old_len since old_len == new_len */ if (flags & MREMAP_DONTUNMAP && !may_expand_vm(mm, vma->vm_flags, old_len >> PAGE_SHIFT)) { return -ENOMEM; } if (flags & MREMAP_FIXED) map_flags |= MAP_FIXED; if (vma->vm_flags & VM_MAYSHARE) map_flags |= MAP_SHARED; ret = get_unmapped_area(vma->vm_file, new_addr, new_len, vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT), map_flags); if (IS_ERR_VALUE(ret)) return ret; /* We got a new mapping */ if (!(flags & MREMAP_FIXED)) new_addr = ret; return move_vma(vma, addr, old_len, new_len, new_addr, locked, flags, uf, uf_unmap); } static int vma_expandable(struct vm_area_struct *vma, unsigned long delta) { unsigned long end = vma->vm_end + delta; if (end < vma->vm_end) /* overflow */ return 0; if (find_vma_intersection(vma->vm_mm, vma->vm_end, end)) return 0; if (get_unmapped_area(NULL, vma->vm_start, end - vma->vm_start, 0, MAP_FIXED) & ~PAGE_MASK) return 0; return 1; } /* * Expand (or shrink) an existing mapping, potentially moving it at the * same time (controlled by the MREMAP_MAYMOVE flag and available VM space) * * MREMAP_FIXED option added 5-Dec-1999 by Benjamin LaHaise * This option implies MREMAP_MAYMOVE. */ SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, unsigned long, new_len, unsigned long, flags, unsigned long, new_addr) { struct mm_struct *mm = current->mm; struct vm_area_struct *vma; unsigned long ret = -EINVAL; bool locked = false; struct vm_userfaultfd_ctx uf = NULL_VM_UFFD_CTX; LIST_HEAD(uf_unmap_early); LIST_HEAD(uf_unmap); /* * There is a deliberate asymmetry here: we strip the pointer tag * from the old address but leave the new address alone. This is * for consistency with mmap(), where we prevent the creation of * aliasing mappings in userspace by leaving the tag bits of the * mapping address intact. A non-zero tag will cause the subsequent * range checks to reject the address as invalid. * * See Documentation/arch/arm64/tagged-address-abi.rst for more * information. */ addr = untagged_addr(addr); if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE | MREMAP_DONTUNMAP)) return ret; if (flags & MREMAP_FIXED && !(flags & MREMAP_MAYMOVE)) return ret; /* * MREMAP_DONTUNMAP is always a move and it does not allow resizing * in the process. */ if (flags & MREMAP_DONTUNMAP && (!(flags & MREMAP_MAYMOVE) || old_len != new_len)) return ret; if (offset_in_page(addr)) return ret; old_len = PAGE_ALIGN(old_len); new_len = PAGE_ALIGN(new_len); /* * We allow a zero old-len as a special case * for DOS-emu "duplicate shm area" thing. But * a zero new-len is nonsensical. */ if (!new_len) return ret; if (mmap_write_lock_killable(current->mm)) return -EINTR; vma = vma_lookup(mm, addr); if (!vma) { ret = -EFAULT; goto out; } /* Don't allow remapping vmas when they have already been sealed */ if (!can_modify_vma(vma)) { ret = -EPERM; goto out; } if (is_vm_hugetlb_page(vma)) { struct hstate *h __maybe_unused = hstate_vma(vma); old_len = ALIGN(old_len, huge_page_size(h)); new_len = ALIGN(new_len, huge_page_size(h)); /* addrs must be huge page aligned */ if (addr & ~huge_page_mask(h)) goto out; if (new_addr & ~huge_page_mask(h)) goto out; /* * Don't allow remap expansion, because the underlying hugetlb * reservation is not yet capable to handle split reservation. */ if (new_len > old_len) goto out; } if (flags & (MREMAP_FIXED | MREMAP_DONTUNMAP)) { ret = mremap_to(addr, old_len, new_addr, new_len, &locked, flags, &uf, &uf_unmap_early, &uf_unmap); goto out; } /* * Always allow a shrinking remap: that just unmaps * the unnecessary pages.. * do_vmi_munmap does all the needed commit accounting, and * unlocks the mmap_lock if so directed. */ if (old_len >= new_len) { VMA_ITERATOR(vmi, mm, addr + new_len); if (old_len == new_len) { ret = addr; goto out; } ret = do_vmi_munmap(&vmi, mm, addr + new_len, old_len - new_len, &uf_unmap, true); if (ret) goto out; ret = addr; goto out_unlocked; } /* * Ok, we need to grow.. */ ret = resize_is_valid(vma, addr, old_len, new_len, flags); if (ret) goto out; /* old_len exactly to the end of the area.. */ if (old_len == vma->vm_end - addr) { unsigned long delta = new_len - old_len; /* can we just expand the current mapping? */ if (vma_expandable(vma, delta)) { long pages = delta >> PAGE_SHIFT; VMA_ITERATOR(vmi, mm, vma->vm_end); long charged = 0; if (vma->vm_flags & VM_ACCOUNT) { if (security_vm_enough_memory_mm(mm, pages)) { ret = -ENOMEM; goto out; } charged = pages; } /* * Function vma_merge_extend() is called on the * extension we are adding to the already existing vma, * vma_merge_extend() will merge this extension with the * already existing vma (expand operation itself) and * possibly also with the next vma if it becomes * adjacent to the expanded vma and otherwise * compatible. */ vma = vma_merge_extend(&vmi, vma, delta); if (!vma) { vm_unacct_memory(charged); ret = -ENOMEM; goto out; } vm_stat_account(mm, vma->vm_flags, pages); if (vma->vm_flags & VM_LOCKED) { mm->locked_vm += pages; locked = true; new_addr = addr; } ret = addr; goto out; } } /* * We weren't able to just expand or shrink the area, * we need to create a new one and move it.. */ ret = -ENOMEM; if (flags & MREMAP_MAYMOVE) { unsigned long map_flags = 0; if (vma->vm_flags & VM_MAYSHARE) map_flags |= MAP_SHARED; new_addr = get_unmapped_area(vma->vm_file, 0, new_len, vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT), map_flags); if (IS_ERR_VALUE(new_addr)) { ret = new_addr; goto out; } ret = move_vma(vma, addr, old_len, new_len, new_addr, &locked, flags, &uf, &uf_unmap); } out: if (offset_in_page(ret)) locked = false; mmap_write_unlock(current->mm); if (locked && new_len > old_len) mm_populate(new_addr + old_len, new_len - old_len); out_unlocked: userfaultfd_unmap_complete(mm, &uf_unmap_early); mremap_userfaultfd_complete(&uf, addr, ret, old_len); userfaultfd_unmap_complete(mm, &uf_unmap); return ret; }