// SPDX-License-Identifier: GPL-2.0-only /* * linux/mm/swap.c * * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds */ /* * This file contains the default values for the operation of the * Linux VM subsystem. Fine-tuning documentation can be found in * Documentation/admin-guide/sysctl/vm.rst. * Started 18.12.91 * Swap aging added 23.2.95, Stephen Tweedie. * Buffermem limits added 12.3.98, Rik van Riel. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" #define CREATE_TRACE_POINTS #include /* How many pages do we try to swap or page in/out together? As a power of 2 */ int page_cluster; const int page_cluster_max = 31; struct cpu_fbatches { /* * The following folio batches are grouped together because they are protected * by disabling preemption (and interrupts remain enabled). */ local_lock_t lock; struct folio_batch lru_add; struct folio_batch lru_deactivate_file; struct folio_batch lru_deactivate; struct folio_batch lru_lazyfree; #ifdef CONFIG_SMP struct folio_batch lru_activate; #endif /* Protecting the following batches which require disabling interrupts */ local_lock_t lock_irq; struct folio_batch lru_move_tail; }; static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = { .lock = INIT_LOCAL_LOCK(lock), .lock_irq = INIT_LOCAL_LOCK(lock_irq), }; static void __page_cache_release(struct folio *folio, struct lruvec **lruvecp, unsigned long *flagsp) { if (folio_test_lru(folio)) { folio_lruvec_relock_irqsave(folio, lruvecp, flagsp); lruvec_del_folio(*lruvecp, folio); __folio_clear_lru_flags(folio); } /* * In rare cases, when truncation or holepunching raced with * munlock after VM_LOCKED was cleared, Mlocked may still be * found set here. This does not indicate a problem, unless * "unevictable_pgs_cleared" appears worryingly large. */ if (unlikely(folio_test_mlocked(folio))) { long nr_pages = folio_nr_pages(folio); __folio_clear_mlocked(folio); zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages); count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages); } } /* * This path almost never happens for VM activity - pages are normally freed * in batches. But it gets used by networking - and for compound pages. */ static void page_cache_release(struct folio *folio) { struct lruvec *lruvec = NULL; unsigned long flags; __page_cache_release(folio, &lruvec, &flags); if (lruvec) unlock_page_lruvec_irqrestore(lruvec, flags); } void __folio_put(struct folio *folio) { if (unlikely(folio_is_zone_device(folio))) { free_zone_device_folio(folio); return; } if (folio_test_hugetlb(folio)) { free_huge_folio(folio); return; } page_cache_release(folio); folio_undo_large_rmappable(folio); mem_cgroup_uncharge(folio); free_unref_page(&folio->page, folio_order(folio)); } EXPORT_SYMBOL(__folio_put); /** * put_pages_list() - release a list of pages * @pages: list of pages threaded on page->lru * * Release a list of pages which are strung together on page.lru. */ void put_pages_list(struct list_head *pages) { struct folio_batch fbatch; struct folio *folio, *next; folio_batch_init(&fbatch); list_for_each_entry_safe(folio, next, pages, lru) { if (!folio_put_testzero(folio)) continue; if (folio_test_hugetlb(folio)) { free_huge_folio(folio); continue; } /* LRU flag must be clear because it's passed using the lru */ if (folio_batch_add(&fbatch, folio) > 0) continue; free_unref_folios(&fbatch); } if (fbatch.nr) free_unref_folios(&fbatch); INIT_LIST_HEAD(pages); } EXPORT_SYMBOL(put_pages_list); typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio); static void lru_add(struct lruvec *lruvec, struct folio *folio) { int was_unevictable = folio_test_clear_unevictable(folio); long nr_pages = folio_nr_pages(folio); VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); /* * Is an smp_mb__after_atomic() still required here, before * folio_evictable() tests the mlocked flag, to rule out the possibility * of stranding an evictable folio on an unevictable LRU? I think * not, because __munlock_folio() only clears the mlocked flag * while the LRU lock is held. * * (That is not true of __page_cache_release(), and not necessarily * true of folios_put(): but those only clear the mlocked flag after * folio_put_testzero() has excluded any other users of the folio.) */ if (folio_evictable(folio)) { if (was_unevictable) __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages); } else { folio_clear_active(folio); folio_set_unevictable(folio); /* * folio->mlock_count = !!folio_test_mlocked(folio)? * But that leaves __mlock_folio() in doubt whether another * actor has already counted the mlock or not. Err on the * safe side, underestimate, let page reclaim fix it, rather * than leaving a page on the unevictable LRU indefinitely. */ folio->mlock_count = 0; if (!was_unevictable) __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages); } lruvec_add_folio(lruvec, folio); trace_mm_lru_insertion(folio); } static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn) { int i; struct lruvec *lruvec = NULL; unsigned long flags = 0; for (i = 0; i < folio_batch_count(fbatch); i++) { struct folio *folio = fbatch->folios[i]; folio_lruvec_relock_irqsave(folio, &lruvec, &flags); move_fn(lruvec, folio); folio_set_lru(folio); } if (lruvec) unlock_page_lruvec_irqrestore(lruvec, flags); folios_put(fbatch); } static void __folio_batch_add_and_move(struct folio_batch __percpu *fbatch, struct folio *folio, move_fn_t move_fn, bool on_lru, bool disable_irq) { unsigned long flags; folio_get(folio); if (on_lru && !folio_test_clear_lru(folio)) { folio_put(folio); return; } if (disable_irq) local_lock_irqsave(&cpu_fbatches.lock_irq, flags); else local_lock(&cpu_fbatches.lock); if (!folio_batch_add(this_cpu_ptr(fbatch), folio) || folio_test_large(folio) || lru_cache_disabled()) folio_batch_move_lru(this_cpu_ptr(fbatch), move_fn); if (disable_irq) local_unlock_irqrestore(&cpu_fbatches.lock_irq, flags); else local_unlock(&cpu_fbatches.lock); } #define folio_batch_add_and_move(folio, op, on_lru) \ __folio_batch_add_and_move( \ &cpu_fbatches.op, \ folio, \ op, \ on_lru, \ offsetof(struct cpu_fbatches, op) >= offsetof(struct cpu_fbatches, lock_irq) \ ) static void lru_move_tail(struct lruvec *lruvec, struct folio *folio) { if (folio_test_unevictable(folio)) return; lruvec_del_folio(lruvec, folio); folio_clear_active(folio); lruvec_add_folio_tail(lruvec, folio); __count_vm_events(PGROTATED, folio_nr_pages(folio)); } /* * Writeback is about to end against a folio which has been marked for * immediate reclaim. If it still appears to be reclaimable, move it * to the tail of the inactive list. * * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races. */ void folio_rotate_reclaimable(struct folio *folio) { if (folio_test_locked(folio) || folio_test_dirty(folio) || folio_test_unevictable(folio)) return; folio_batch_add_and_move(folio, lru_move_tail, true); } void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_io, unsigned int nr_rotated) { unsigned long cost; /* * Reflect the relative cost of incurring IO and spending CPU * time on rotations. This doesn't attempt to make a precise * comparison, it just says: if reloads are about comparable * between the LRU lists, or rotations are overwhelmingly * different between them, adjust scan balance for CPU work. */ cost = nr_io * SWAP_CLUSTER_MAX + nr_rotated; do { unsigned long lrusize; /* * Hold lruvec->lru_lock is safe here, since * 1) The pinned lruvec in reclaim, or * 2) From a pre-LRU page during refault (which also holds the * rcu lock, so would be safe even if the page was on the LRU * and could move simultaneously to a new lruvec). */ spin_lock_irq(&lruvec->lru_lock); /* Record cost event */ if (file) lruvec->file_cost += cost; else lruvec->anon_cost += cost; /* * Decay previous events * * Because workloads change over time (and to avoid * overflow) we keep these statistics as a floating * average, which ends up weighing recent refaults * more than old ones. */ lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) + lruvec_page_state(lruvec, NR_ACTIVE_ANON) + lruvec_page_state(lruvec, NR_INACTIVE_FILE) + lruvec_page_state(lruvec, NR_ACTIVE_FILE); if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) { lruvec->file_cost /= 2; lruvec->anon_cost /= 2; } spin_unlock_irq(&lruvec->lru_lock); } while ((lruvec = parent_lruvec(lruvec))); } void lru_note_cost_refault(struct folio *folio) { lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio), folio_nr_pages(folio), 0); } static void lru_activate(struct lruvec *lruvec, struct folio *folio) { long nr_pages = folio_nr_pages(folio); if (folio_test_active(folio) || folio_test_unevictable(folio)) return; lruvec_del_folio(lruvec, folio); folio_set_active(folio); lruvec_add_folio(lruvec, folio); trace_mm_lru_activate(folio); __count_vm_events(PGACTIVATE, nr_pages); __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE, nr_pages); } #ifdef CONFIG_SMP static void folio_activate_drain(int cpu) { struct folio_batch *fbatch = &per_cpu(cpu_fbatches.lru_activate, cpu); if (folio_batch_count(fbatch)) folio_batch_move_lru(fbatch, lru_activate); } void folio_activate(struct folio *folio) { if (folio_test_active(folio) || folio_test_unevictable(folio)) return; folio_batch_add_and_move(folio, lru_activate, true); } #else static inline void folio_activate_drain(int cpu) { } void folio_activate(struct folio *folio) { struct lruvec *lruvec; if (!folio_test_clear_lru(folio)) return; lruvec = folio_lruvec_lock_irq(folio); lru_activate(lruvec, folio); unlock_page_lruvec_irq(lruvec); folio_set_lru(folio); } #endif static void __lru_cache_activate_folio(struct folio *folio) { struct folio_batch *fbatch; int i; local_lock(&cpu_fbatches.lock); fbatch = this_cpu_ptr(&cpu_fbatches.lru_add); /* * Search backwards on the optimistic assumption that the folio being * activated has just been added to this batch. Note that only * the local batch is examined as a !LRU folio could be in the * process of being released, reclaimed, migrated or on a remote * batch that is currently being drained. Furthermore, marking * a remote batch's folio active potentially hits a race where * a folio is marked active just after it is added to the inactive * list causing accounting errors and BUG_ON checks to trigger. */ for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) { struct folio *batch_folio = fbatch->folios[i]; if (batch_folio == folio) { folio_set_active(folio); break; } } local_unlock(&cpu_fbatches.lock); } #ifdef CONFIG_LRU_GEN static void folio_inc_refs(struct folio *folio) { unsigned long new_flags, old_flags = READ_ONCE(folio->flags); if (folio_test_unevictable(folio)) return; if (!folio_test_referenced(folio)) { folio_set_referenced(folio); return; } if (!folio_test_workingset(folio)) { folio_set_workingset(folio); return; } /* see the comment on MAX_NR_TIERS */ do { new_flags = old_flags & LRU_REFS_MASK; if (new_flags == LRU_REFS_MASK) break; new_flags += BIT(LRU_REFS_PGOFF); new_flags |= old_flags & ~LRU_REFS_MASK; } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); } #else static void folio_inc_refs(struct folio *folio) { } #endif /* CONFIG_LRU_GEN */ /** * folio_mark_accessed - Mark a folio as having seen activity. * @folio: The folio to mark. * * This function will perform one of the following transitions: * * * inactive,unreferenced -> inactive,referenced * * inactive,referenced -> active,unreferenced * * active,unreferenced -> active,referenced * * When a newly allocated folio is not yet visible, so safe for non-atomic ops, * __folio_set_referenced() may be substituted for folio_mark_accessed(). */ void folio_mark_accessed(struct folio *folio) { if (lru_gen_enabled()) { folio_inc_refs(folio); return; } if (!folio_test_referenced(folio)) { folio_set_referenced(folio); } else if (folio_test_unevictable(folio)) { /* * Unevictable pages are on the "LRU_UNEVICTABLE" list. But, * this list is never rotated or maintained, so marking an * unevictable page accessed has no effect. */ } else if (!folio_test_active(folio)) { /* * If the folio is on the LRU, queue it for activation via * cpu_fbatches.lru_activate. Otherwise, assume the folio is in a * folio_batch, mark it active and it'll be moved to the active * LRU on the next drain. */ if (folio_test_lru(folio)) folio_activate(folio); else __lru_cache_activate_folio(folio); folio_clear_referenced(folio); workingset_activation(folio); } if (folio_test_idle(folio)) folio_clear_idle(folio); } EXPORT_SYMBOL(folio_mark_accessed); /** * folio_add_lru - Add a folio to an LRU list. * @folio: The folio to be added to the LRU. * * Queue the folio for addition to the LRU. The decision on whether * to add the page to the [in]active [file|anon] list is deferred until the * folio_batch is drained. This gives a chance for the caller of folio_add_lru() * have the folio added to the active list using folio_mark_accessed(). */ void folio_add_lru(struct folio *folio) { VM_BUG_ON_FOLIO(folio_test_active(folio) && folio_test_unevictable(folio), folio); VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); /* see the comment in lru_gen_add_folio() */ if (lru_gen_enabled() && !folio_test_unevictable(folio) && lru_gen_in_fault() && !(current->flags & PF_MEMALLOC)) folio_set_active(folio); folio_batch_add_and_move(folio, lru_add, false); } EXPORT_SYMBOL(folio_add_lru); /** * folio_add_lru_vma() - Add a folio to the appropate LRU list for this VMA. * @folio: The folio to be added to the LRU. * @vma: VMA in which the folio is mapped. * * If the VMA is mlocked, @folio is added to the unevictable list. * Otherwise, it is treated the same way as folio_add_lru(). */ void folio_add_lru_vma(struct folio *folio, struct vm_area_struct *vma) { VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED)) mlock_new_folio(folio); else folio_add_lru(folio); } /* * If the folio cannot be invalidated, it is moved to the * inactive list to speed up its reclaim. It is moved to the * head of the list, rather than the tail, to give the flusher * threads some time to write it out, as this is much more * effective than the single-page writeout from reclaim. * * If the folio isn't mapped and dirty/writeback, the folio * could be reclaimed asap using the reclaim flag. * * 1. active, mapped folio -> none * 2. active, dirty/writeback folio -> inactive, head, reclaim * 3. inactive, mapped folio -> none * 4. inactive, dirty/writeback folio -> inactive, head, reclaim * 5. inactive, clean -> inactive, tail * 6. Others -> none * * In 4, it moves to the head of the inactive list so the folio is * written out by flusher threads as this is much more efficient * than the single-page writeout from reclaim. */ static void lru_deactivate_file(struct lruvec *lruvec, struct folio *folio) { bool active = folio_test_active(folio); long nr_pages = folio_nr_pages(folio); if (folio_test_unevictable(folio)) return; /* Some processes are using the folio */ if (folio_mapped(folio)) return; lruvec_del_folio(lruvec, folio); folio_clear_active(folio); folio_clear_referenced(folio); if (folio_test_writeback(folio) || folio_test_dirty(folio)) { /* * Setting the reclaim flag could race with * folio_end_writeback() and confuse readahead. But the * race window is _really_ small and it's not a critical * problem. */ lruvec_add_folio(lruvec, folio); folio_set_reclaim(folio); } else { /* * The folio's writeback ended while it was in the batch. * We move that folio to the tail of the inactive list. */ lruvec_add_folio_tail(lruvec, folio); __count_vm_events(PGROTATED, nr_pages); } if (active) { __count_vm_events(PGDEACTIVATE, nr_pages); __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_pages); } } static void lru_deactivate(struct lruvec *lruvec, struct folio *folio) { long nr_pages = folio_nr_pages(folio); if (folio_test_unevictable(folio) || !(folio_test_active(folio) || lru_gen_enabled())) return; lruvec_del_folio(lruvec, folio); folio_clear_active(folio); folio_clear_referenced(folio); lruvec_add_folio(lruvec, folio); __count_vm_events(PGDEACTIVATE, nr_pages); __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_pages); } static void lru_lazyfree(struct lruvec *lruvec, struct folio *folio) { long nr_pages = folio_nr_pages(folio); if (!folio_test_anon(folio) || !folio_test_swapbacked(folio) || folio_test_swapcache(folio) || folio_test_unevictable(folio)) return; lruvec_del_folio(lruvec, folio); folio_clear_active(folio); folio_clear_referenced(folio); /* * Lazyfree folios are clean anonymous folios. They have * the swapbacked flag cleared, to distinguish them from normal * anonymous folios */ folio_clear_swapbacked(folio); lruvec_add_folio(lruvec, folio); __count_vm_events(PGLAZYFREE, nr_pages); __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE, nr_pages); } /* * Drain pages out of the cpu's folio_batch. * Either "cpu" is the current CPU, and preemption has already been * disabled; or "cpu" is being hot-unplugged, and is already dead. */ void lru_add_drain_cpu(int cpu) { struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu); struct folio_batch *fbatch = &fbatches->lru_add; if (folio_batch_count(fbatch)) folio_batch_move_lru(fbatch, lru_add); fbatch = &fbatches->lru_move_tail; /* Disabling interrupts below acts as a compiler barrier. */ if (data_race(folio_batch_count(fbatch))) { unsigned long flags; /* No harm done if a racing interrupt already did this */ local_lock_irqsave(&cpu_fbatches.lock_irq, flags); folio_batch_move_lru(fbatch, lru_move_tail); local_unlock_irqrestore(&cpu_fbatches.lock_irq, flags); } fbatch = &fbatches->lru_deactivate_file; if (folio_batch_count(fbatch)) folio_batch_move_lru(fbatch, lru_deactivate_file); fbatch = &fbatches->lru_deactivate; if (folio_batch_count(fbatch)) folio_batch_move_lru(fbatch, lru_deactivate); fbatch = &fbatches->lru_lazyfree; if (folio_batch_count(fbatch)) folio_batch_move_lru(fbatch, lru_lazyfree); folio_activate_drain(cpu); } /** * deactivate_file_folio() - Deactivate a file folio. * @folio: Folio to deactivate. * * This function hints to the VM that @folio is a good reclaim candidate, * for example if its invalidation fails due to the folio being dirty * or under writeback. * * Context: Caller holds a reference on the folio. */ void deactivate_file_folio(struct folio *folio) { /* Deactivating an unevictable folio will not accelerate reclaim */ if (folio_test_unevictable(folio)) return; folio_batch_add_and_move(folio, lru_deactivate_file, true); } /* * folio_deactivate - deactivate a folio * @folio: folio to deactivate * * folio_deactivate() moves @folio to the inactive list if @folio was on the * active list and was not unevictable. This is done to accelerate the * reclaim of @folio. */ void folio_deactivate(struct folio *folio) { if (folio_test_unevictable(folio) || !(folio_test_active(folio) || lru_gen_enabled())) return; folio_batch_add_and_move(folio, lru_deactivate, true); } /** * folio_mark_lazyfree - make an anon folio lazyfree * @folio: folio to deactivate * * folio_mark_lazyfree() moves @folio to the inactive file list. * This is done to accelerate the reclaim of @folio. */ void folio_mark_lazyfree(struct folio *folio) { if (!folio_test_anon(folio) || !folio_test_swapbacked(folio) || folio_test_swapcache(folio) || folio_test_unevictable(folio)) return; folio_batch_add_and_move(folio, lru_lazyfree, true); } void lru_add_drain(void) { local_lock(&cpu_fbatches.lock); lru_add_drain_cpu(smp_processor_id()); local_unlock(&cpu_fbatches.lock); mlock_drain_local(); } /* * It's called from per-cpu workqueue context in SMP case so * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on * the same cpu. It shouldn't be a problem in !SMP case since * the core is only one and the locks will disable preemption. */ static void lru_add_and_bh_lrus_drain(void) { local_lock(&cpu_fbatches.lock); lru_add_drain_cpu(smp_processor_id()); local_unlock(&cpu_fbatches.lock); invalidate_bh_lrus_cpu(); mlock_drain_local(); } void lru_add_drain_cpu_zone(struct zone *zone) { local_lock(&cpu_fbatches.lock); lru_add_drain_cpu(smp_processor_id()); drain_local_pages(zone); local_unlock(&cpu_fbatches.lock); mlock_drain_local(); } #ifdef CONFIG_SMP static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work); static void lru_add_drain_per_cpu(struct work_struct *dummy) { lru_add_and_bh_lrus_drain(); } static bool cpu_needs_drain(unsigned int cpu) { struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu); /* Check these in order of likelihood that they're not zero */ return folio_batch_count(&fbatches->lru_add) || folio_batch_count(&fbatches->lru_move_tail) || folio_batch_count(&fbatches->lru_deactivate_file) || folio_batch_count(&fbatches->lru_deactivate) || folio_batch_count(&fbatches->lru_lazyfree) || folio_batch_count(&fbatches->lru_activate) || need_mlock_drain(cpu) || has_bh_in_lru(cpu, NULL); } /* * Doesn't need any cpu hotplug locking because we do rely on per-cpu * kworkers being shut down before our page_alloc_cpu_dead callback is * executed on the offlined cpu. * Calling this function with cpu hotplug locks held can actually lead * to obscure indirect dependencies via WQ context. */ static inline void __lru_add_drain_all(bool force_all_cpus) { /* * lru_drain_gen - Global pages generation number * * (A) Definition: global lru_drain_gen = x implies that all generations * 0 < n <= x are already *scheduled* for draining. * * This is an optimization for the highly-contended use case where a * user space workload keeps constantly generating a flow of pages for * each CPU. */ static unsigned int lru_drain_gen; static struct cpumask has_work; static DEFINE_MUTEX(lock); unsigned cpu, this_gen; /* * Make sure nobody triggers this path before mm_percpu_wq is fully * initialized. */ if (WARN_ON(!mm_percpu_wq)) return; /* * Guarantee folio_batch counter stores visible by this CPU * are visible to other CPUs before loading the current drain * generation. */ smp_mb(); /* * (B) Locally cache global LRU draining generation number * * The read barrier ensures that the counter is loaded before the mutex * is taken. It pairs with smp_mb() inside the mutex critical section * at (D). */ this_gen = smp_load_acquire(&lru_drain_gen); mutex_lock(&lock); /* * (C) Exit the draining operation if a newer generation, from another * lru_add_drain_all(), was already scheduled for draining. Check (A). */ if (unlikely(this_gen != lru_drain_gen && !force_all_cpus)) goto done; /* * (D) Increment global generation number * * Pairs with smp_load_acquire() at (B), outside of the critical * section. Use a full memory barrier to guarantee that the * new global drain generation number is stored before loading * folio_batch counters. * * This pairing must be done here, before the for_each_online_cpu loop * below which drains the page vectors. * * Let x, y, and z represent some system CPU numbers, where x < y < z. * Assume CPU #z is in the middle of the for_each_online_cpu loop * below and has already reached CPU #y's per-cpu data. CPU #x comes * along, adds some pages to its per-cpu vectors, then calls * lru_add_drain_all(). * * If the paired barrier is done at any later step, e.g. after the * loop, CPU #x will just exit at (C) and miss flushing out all of its * added pages. */ WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1); smp_mb(); cpumask_clear(&has_work); for_each_online_cpu(cpu) { struct work_struct *work = &per_cpu(lru_add_drain_work, cpu); if (cpu_needs_drain(cpu)) { INIT_WORK(work, lru_add_drain_per_cpu); queue_work_on(cpu, mm_percpu_wq, work); __cpumask_set_cpu(cpu, &has_work); } } for_each_cpu(cpu, &has_work) flush_work(&per_cpu(lru_add_drain_work, cpu)); done: mutex_unlock(&lock); } void lru_add_drain_all(void) { __lru_add_drain_all(false); } #else void lru_add_drain_all(void) { lru_add_drain(); } #endif /* CONFIG_SMP */ atomic_t lru_disable_count = ATOMIC_INIT(0); /* * lru_cache_disable() needs to be called before we start compiling * a list of pages to be migrated using isolate_lru_page(). * It drains pages on LRU cache and then disable on all cpus until * lru_cache_enable is called. * * Must be paired with a call to lru_cache_enable(). */ void lru_cache_disable(void) { atomic_inc(&lru_disable_count); /* * Readers of lru_disable_count are protected by either disabling * preemption or rcu_read_lock: * * preempt_disable, local_irq_disable [bh_lru_lock()] * rcu_read_lock [rt_spin_lock CONFIG_PREEMPT_RT] * preempt_disable [local_lock !CONFIG_PREEMPT_RT] * * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on * preempt_disable() regions of code. So any CPU which sees * lru_disable_count = 0 will have exited the critical * section when synchronize_rcu() returns. */ synchronize_rcu_expedited(); #ifdef CONFIG_SMP __lru_add_drain_all(true); #else lru_add_and_bh_lrus_drain(); #endif } /** * folios_put_refs - Reduce the reference count on a batch of folios. * @folios: The folios. * @refs: The number of refs to subtract from each folio. * * Like folio_put(), but for a batch of folios. This is more efficient * than writing the loop yourself as it will optimise the locks which need * to be taken if the folios are freed. The folios batch is returned * empty and ready to be reused for another batch; there is no need * to reinitialise it. If @refs is NULL, we subtract one from each * folio refcount. * * Context: May be called in process or interrupt context, but not in NMI * context. May be called while holding a spinlock. */ void folios_put_refs(struct folio_batch *folios, unsigned int *refs) { int i, j; struct lruvec *lruvec = NULL; unsigned long flags = 0; for (i = 0, j = 0; i < folios->nr; i++) { struct folio *folio = folios->folios[i]; unsigned int nr_refs = refs ? refs[i] : 1; if (is_huge_zero_folio(folio)) continue; if (folio_is_zone_device(folio)) { if (lruvec) { unlock_page_lruvec_irqrestore(lruvec, flags); lruvec = NULL; } if (put_devmap_managed_folio_refs(folio, nr_refs)) continue; if (folio_ref_sub_and_test(folio, nr_refs)) free_zone_device_folio(folio); continue; } if (!folio_ref_sub_and_test(folio, nr_refs)) continue; /* hugetlb has its own memcg */ if (folio_test_hugetlb(folio)) { if (lruvec) { unlock_page_lruvec_irqrestore(lruvec, flags); lruvec = NULL; } free_huge_folio(folio); continue; } folio_undo_large_rmappable(folio); __page_cache_release(folio, &lruvec, &flags); if (j != i) folios->folios[j] = folio; j++; } if (lruvec) unlock_page_lruvec_irqrestore(lruvec, flags); if (!j) { folio_batch_reinit(folios); return; } folios->nr = j; mem_cgroup_uncharge_folios(folios); free_unref_folios(folios); } EXPORT_SYMBOL(folios_put_refs); /** * release_pages - batched put_page() * @arg: array of pages to release * @nr: number of pages * * Decrement the reference count on all the pages in @arg. If it * fell to zero, remove the page from the LRU and free it. * * Note that the argument can be an array of pages, encoded pages, * or folio pointers. We ignore any encoded bits, and turn any of * them into just a folio that gets free'd. */ void release_pages(release_pages_arg arg, int nr) { struct folio_batch fbatch; int refs[PAGEVEC_SIZE]; struct encoded_page **encoded = arg.encoded_pages; int i; folio_batch_init(&fbatch); for (i = 0; i < nr; i++) { /* Turn any of the argument types into a folio */ struct folio *folio = page_folio(encoded_page_ptr(encoded[i])); /* Is our next entry actually "nr_pages" -> "nr_refs" ? */ refs[fbatch.nr] = 1; if (unlikely(encoded_page_flags(encoded[i]) & ENCODED_PAGE_BIT_NR_PAGES_NEXT)) refs[fbatch.nr] = encoded_nr_pages(encoded[++i]); if (folio_batch_add(&fbatch, folio) > 0) continue; folios_put_refs(&fbatch, refs); } if (fbatch.nr) folios_put_refs(&fbatch, refs); } EXPORT_SYMBOL(release_pages); /* * The folios which we're about to release may be in the deferred lru-addition * queues. That would prevent them from really being freed right now. That's * OK from a correctness point of view but is inefficient - those folios may be * cache-warm and we want to give them back to the page allocator ASAP. * * So __folio_batch_release() will drain those queues here. * folio_batch_move_lru() calls folios_put() directly to avoid * mutual recursion. */ void __folio_batch_release(struct folio_batch *fbatch) { if (!fbatch->percpu_pvec_drained) { lru_add_drain(); fbatch->percpu_pvec_drained = true; } folios_put(fbatch); } EXPORT_SYMBOL(__folio_batch_release); /** * folio_batch_remove_exceptionals() - Prune non-folios from a batch. * @fbatch: The batch to prune * * find_get_entries() fills a batch with both folios and shadow/swap/DAX * entries. This function prunes all the non-folio entries from @fbatch * without leaving holes, so that it can be passed on to folio-only batch * operations. */ void folio_batch_remove_exceptionals(struct folio_batch *fbatch) { unsigned int i, j; for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) { struct folio *folio = fbatch->folios[i]; if (!xa_is_value(folio)) fbatch->folios[j++] = folio; } fbatch->nr = j; } /* * Perform any setup for the swap system */ void __init swap_setup(void) { unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT); /* Use a smaller cluster for small-memory machines */ if (megs < 16) page_cluster = 2; else page_cluster = 3; /* * Right now other parts of the system means that we * _really_ don't want to cluster much more */ }