/* Copyright (c) 2018, Mellanox Technologies All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include #include #include #include #include "trace.h" /* device_offload_lock is used to synchronize tls_dev_add * against NETDEV_DOWN notifications. */ static DECLARE_RWSEM(device_offload_lock); static void tls_device_gc_task(struct work_struct *work); static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task); static LIST_HEAD(tls_device_gc_list); static LIST_HEAD(tls_device_list); static LIST_HEAD(tls_device_down_list); static DEFINE_SPINLOCK(tls_device_lock); static void tls_device_free_ctx(struct tls_context *ctx) { if (ctx->tx_conf == TLS_HW) { kfree(tls_offload_ctx_tx(ctx)); kfree(ctx->tx.rec_seq); kfree(ctx->tx.iv); } if (ctx->rx_conf == TLS_HW) kfree(tls_offload_ctx_rx(ctx)); tls_ctx_free(NULL, ctx); } static void tls_device_gc_task(struct work_struct *work) { struct tls_context *ctx, *tmp; unsigned long flags; LIST_HEAD(gc_list); spin_lock_irqsave(&tls_device_lock, flags); list_splice_init(&tls_device_gc_list, &gc_list); spin_unlock_irqrestore(&tls_device_lock, flags); list_for_each_entry_safe(ctx, tmp, &gc_list, list) { struct net_device *netdev = ctx->netdev; if (netdev && ctx->tx_conf == TLS_HW) { netdev->tlsdev_ops->tls_dev_del(netdev, ctx, TLS_OFFLOAD_CTX_DIR_TX); dev_put(netdev); ctx->netdev = NULL; } list_del(&ctx->list); tls_device_free_ctx(ctx); } } static void tls_device_queue_ctx_destruction(struct tls_context *ctx) { unsigned long flags; spin_lock_irqsave(&tls_device_lock, flags); list_move_tail(&ctx->list, &tls_device_gc_list); /* schedule_work inside the spinlock * to make sure tls_device_down waits for that work. */ schedule_work(&tls_device_gc_work); spin_unlock_irqrestore(&tls_device_lock, flags); } /* We assume that the socket is already connected */ static struct net_device *get_netdev_for_sock(struct sock *sk) { struct dst_entry *dst = sk_dst_get(sk); struct net_device *netdev = NULL; if (likely(dst)) { netdev = netdev_sk_get_lowest_dev(dst->dev, sk); dev_hold(netdev); } dst_release(dst); return netdev; } static void destroy_record(struct tls_record_info *record) { int i; for (i = 0; i < record->num_frags; i++) __skb_frag_unref(&record->frags[i], false); kfree(record); } static void delete_all_records(struct tls_offload_context_tx *offload_ctx) { struct tls_record_info *info, *temp; list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) { list_del(&info->list); destroy_record(info); } offload_ctx->retransmit_hint = NULL; } static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_record_info *info, *temp; struct tls_offload_context_tx *ctx; u64 deleted_records = 0; unsigned long flags; if (!tls_ctx) return; ctx = tls_offload_ctx_tx(tls_ctx); spin_lock_irqsave(&ctx->lock, flags); info = ctx->retransmit_hint; if (info && !before(acked_seq, info->end_seq)) ctx->retransmit_hint = NULL; list_for_each_entry_safe(info, temp, &ctx->records_list, list) { if (before(acked_seq, info->end_seq)) break; list_del(&info->list); destroy_record(info); deleted_records++; } ctx->unacked_record_sn += deleted_records; spin_unlock_irqrestore(&ctx->lock, flags); } /* At this point, there should be no references on this * socket and no in-flight SKBs associated with this * socket, so it is safe to free all the resources. */ void tls_device_sk_destruct(struct sock *sk) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); tls_ctx->sk_destruct(sk); if (tls_ctx->tx_conf == TLS_HW) { if (ctx->open_record) destroy_record(ctx->open_record); delete_all_records(ctx); crypto_free_aead(ctx->aead_send); clean_acked_data_disable(inet_csk(sk)); } if (refcount_dec_and_test(&tls_ctx->refcount)) tls_device_queue_ctx_destruction(tls_ctx); } EXPORT_SYMBOL_GPL(tls_device_sk_destruct); void tls_device_free_resources_tx(struct sock *sk) { struct tls_context *tls_ctx = tls_get_ctx(sk); tls_free_partial_record(sk, tls_ctx); } void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq) { struct tls_context *tls_ctx = tls_get_ctx(sk); trace_tls_device_tx_resync_req(sk, got_seq, exp_seq); WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags)); } EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request); static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx, u32 seq) { struct net_device *netdev; struct sk_buff *skb; int err = 0; u8 *rcd_sn; skb = tcp_write_queue_tail(sk); if (skb) TCP_SKB_CB(skb)->eor = 1; rcd_sn = tls_ctx->tx.rec_seq; trace_tls_device_tx_resync_send(sk, seq, rcd_sn); down_read(&device_offload_lock); netdev = tls_ctx->netdev; if (netdev) err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn, TLS_OFFLOAD_CTX_DIR_TX); up_read(&device_offload_lock); if (err) return; clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags); } static void tls_append_frag(struct tls_record_info *record, struct page_frag *pfrag, int size) { skb_frag_t *frag; frag = &record->frags[record->num_frags - 1]; if (skb_frag_page(frag) == pfrag->page && skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) { skb_frag_size_add(frag, size); } else { ++frag; __skb_frag_set_page(frag, pfrag->page); skb_frag_off_set(frag, pfrag->offset); skb_frag_size_set(frag, size); ++record->num_frags; get_page(pfrag->page); } pfrag->offset += size; record->len += size; } static int tls_push_record(struct sock *sk, struct tls_context *ctx, struct tls_offload_context_tx *offload_ctx, struct tls_record_info *record, int flags) { struct tls_prot_info *prot = &ctx->prot_info; struct tcp_sock *tp = tcp_sk(sk); skb_frag_t *frag; int i; record->end_seq = tp->write_seq + record->len; list_add_tail_rcu(&record->list, &offload_ctx->records_list); offload_ctx->open_record = NULL; if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags)) tls_device_resync_tx(sk, ctx, tp->write_seq); tls_advance_record_sn(sk, prot, &ctx->tx); for (i = 0; i < record->num_frags; i++) { frag = &record->frags[i]; sg_unmark_end(&offload_ctx->sg_tx_data[i]); sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag), skb_frag_size(frag), skb_frag_off(frag)); sk_mem_charge(sk, skb_frag_size(frag)); get_page(skb_frag_page(frag)); } sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]); /* all ready, send */ return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags); } static int tls_device_record_close(struct sock *sk, struct tls_context *ctx, struct tls_record_info *record, struct page_frag *pfrag, unsigned char record_type) { struct tls_prot_info *prot = &ctx->prot_info; int ret; /* append tag * device will fill in the tag, we just need to append a placeholder * use socket memory to improve coalescing (re-using a single buffer * increases frag count) * if we can't allocate memory now, steal some back from data */ if (likely(skb_page_frag_refill(prot->tag_size, pfrag, sk->sk_allocation))) { ret = 0; tls_append_frag(record, pfrag, prot->tag_size); } else { ret = prot->tag_size; if (record->len <= prot->overhead_size) return -ENOMEM; } /* fill prepend */ tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]), record->len - prot->overhead_size, record_type); return ret; } static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx, struct page_frag *pfrag, size_t prepend_size) { struct tls_record_info *record; skb_frag_t *frag; record = kmalloc(sizeof(*record), GFP_KERNEL); if (!record) return -ENOMEM; frag = &record->frags[0]; __skb_frag_set_page(frag, pfrag->page); skb_frag_off_set(frag, pfrag->offset); skb_frag_size_set(frag, prepend_size); get_page(pfrag->page); pfrag->offset += prepend_size; record->num_frags = 1; record->len = prepend_size; offload_ctx->open_record = record; return 0; } static int tls_do_allocation(struct sock *sk, struct tls_offload_context_tx *offload_ctx, struct page_frag *pfrag, size_t prepend_size) { int ret; if (!offload_ctx->open_record) { if (unlikely(!skb_page_frag_refill(prepend_size, pfrag, sk->sk_allocation))) { READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk); sk_stream_moderate_sndbuf(sk); return -ENOMEM; } ret = tls_create_new_record(offload_ctx, pfrag, prepend_size); if (ret) return ret; if (pfrag->size > pfrag->offset) return 0; } if (!sk_page_frag_refill(sk, pfrag)) return -ENOMEM; return 0; } static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i) { size_t pre_copy, nocache; pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1); if (pre_copy) { pre_copy = min(pre_copy, bytes); if (copy_from_iter(addr, pre_copy, i) != pre_copy) return -EFAULT; bytes -= pre_copy; addr += pre_copy; } nocache = round_down(bytes, SMP_CACHE_BYTES); if (copy_from_iter_nocache(addr, nocache, i) != nocache) return -EFAULT; bytes -= nocache; addr += nocache; if (bytes && copy_from_iter(addr, bytes, i) != bytes) return -EFAULT; return 0; } static int tls_push_data(struct sock *sk, struct iov_iter *msg_iter, size_t size, int flags, unsigned char record_type) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_prot_info *prot = &tls_ctx->prot_info; struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); struct tls_record_info *record; int tls_push_record_flags; struct page_frag *pfrag; size_t orig_size = size; u32 max_open_record_len; bool more = false; bool done = false; int copy, rc = 0; long timeo; if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST)) return -EOPNOTSUPP; if (unlikely(sk->sk_err)) return -sk->sk_err; flags |= MSG_SENDPAGE_DECRYPTED; tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST; timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); if (tls_is_partially_sent_record(tls_ctx)) { rc = tls_push_partial_record(sk, tls_ctx, flags); if (rc < 0) return rc; } pfrag = sk_page_frag(sk); /* TLS_HEADER_SIZE is not counted as part of the TLS record, and * we need to leave room for an authentication tag. */ max_open_record_len = TLS_MAX_PAYLOAD_SIZE + prot->prepend_size; do { rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size); if (unlikely(rc)) { rc = sk_stream_wait_memory(sk, &timeo); if (!rc) continue; record = ctx->open_record; if (!record) break; handle_error: if (record_type != TLS_RECORD_TYPE_DATA) { /* avoid sending partial * record with type != * application_data */ size = orig_size; destroy_record(record); ctx->open_record = NULL; } else if (record->len > prot->prepend_size) { goto last_record; } break; } record = ctx->open_record; copy = min_t(size_t, size, (pfrag->size - pfrag->offset)); copy = min_t(size_t, copy, (max_open_record_len - record->len)); if (copy) { rc = tls_device_copy_data(page_address(pfrag->page) + pfrag->offset, copy, msg_iter); if (rc) goto handle_error; tls_append_frag(record, pfrag, copy); } size -= copy; if (!size) { last_record: tls_push_record_flags = flags; if (flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE)) { more = true; break; } done = true; } if (done || record->len >= max_open_record_len || (record->num_frags >= MAX_SKB_FRAGS - 1)) { rc = tls_device_record_close(sk, tls_ctx, record, pfrag, record_type); if (rc) { if (rc > 0) { size += rc; } else { size = orig_size; destroy_record(record); ctx->open_record = NULL; break; } } rc = tls_push_record(sk, tls_ctx, ctx, record, tls_push_record_flags); if (rc < 0) break; } } while (!done); tls_ctx->pending_open_record_frags = more; if (orig_size - size > 0) rc = orig_size - size; return rc; } int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) { unsigned char record_type = TLS_RECORD_TYPE_DATA; struct tls_context *tls_ctx = tls_get_ctx(sk); int rc; mutex_lock(&tls_ctx->tx_lock); lock_sock(sk); if (unlikely(msg->msg_controllen)) { rc = tls_proccess_cmsg(sk, msg, &record_type); if (rc) goto out; } rc = tls_push_data(sk, &msg->msg_iter, size, msg->msg_flags, record_type); out: release_sock(sk); mutex_unlock(&tls_ctx->tx_lock); return rc; } int tls_device_sendpage(struct sock *sk, struct page *page, int offset, size_t size, int flags) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct iov_iter msg_iter; char *kaddr; struct kvec iov; int rc; if (flags & MSG_SENDPAGE_NOTLAST) flags |= MSG_MORE; mutex_lock(&tls_ctx->tx_lock); lock_sock(sk); if (flags & MSG_OOB) { rc = -EOPNOTSUPP; goto out; } kaddr = kmap(page); iov.iov_base = kaddr + offset; iov.iov_len = size; iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size); rc = tls_push_data(sk, &msg_iter, size, flags, TLS_RECORD_TYPE_DATA); kunmap(page); out: release_sock(sk); mutex_unlock(&tls_ctx->tx_lock); return rc; } struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context, u32 seq, u64 *p_record_sn) { u64 record_sn = context->hint_record_sn; struct tls_record_info *info, *last; info = context->retransmit_hint; if (!info || before(seq, info->end_seq - info->len)) { /* if retransmit_hint is irrelevant start * from the beginning of the list */ info = list_first_entry_or_null(&context->records_list, struct tls_record_info, list); if (!info) return NULL; /* send the start_marker record if seq number is before the * tls offload start marker sequence number. This record is * required to handle TCP packets which are before TLS offload * started. * And if it's not start marker, look if this seq number * belongs to the list. */ if (likely(!tls_record_is_start_marker(info))) { /* we have the first record, get the last record to see * if this seq number belongs to the list. */ last = list_last_entry(&context->records_list, struct tls_record_info, list); if (!between(seq, tls_record_start_seq(info), last->end_seq)) return NULL; } record_sn = context->unacked_record_sn; } /* We just need the _rcu for the READ_ONCE() */ rcu_read_lock(); list_for_each_entry_from_rcu(info, &context->records_list, list) { if (before(seq, info->end_seq)) { if (!context->retransmit_hint || after(info->end_seq, context->retransmit_hint->end_seq)) { context->hint_record_sn = record_sn; context->retransmit_hint = info; } *p_record_sn = record_sn; goto exit_rcu_unlock; } record_sn++; } info = NULL; exit_rcu_unlock: rcu_read_unlock(); return info; } EXPORT_SYMBOL(tls_get_record); static int tls_device_push_pending_record(struct sock *sk, int flags) { struct iov_iter msg_iter; iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0); return tls_push_data(sk, &msg_iter, 0, flags, TLS_RECORD_TYPE_DATA); } void tls_device_write_space(struct sock *sk, struct tls_context *ctx) { if (tls_is_partially_sent_record(ctx)) { gfp_t sk_allocation = sk->sk_allocation; WARN_ON_ONCE(sk->sk_write_pending); sk->sk_allocation = GFP_ATOMIC; tls_push_partial_record(sk, ctx, MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_DECRYPTED); sk->sk_allocation = sk_allocation; } } static void tls_device_resync_rx(struct tls_context *tls_ctx, struct sock *sk, u32 seq, u8 *rcd_sn) { struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); struct net_device *netdev; trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type); rcu_read_lock(); netdev = READ_ONCE(tls_ctx->netdev); if (netdev) netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn, TLS_OFFLOAD_CTX_DIR_RX); rcu_read_unlock(); TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC); } static bool tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async, s64 resync_req, u32 *seq, u16 *rcd_delta) { u32 is_async = resync_req & RESYNC_REQ_ASYNC; u32 req_seq = resync_req >> 32; u32 req_end = req_seq + ((resync_req >> 16) & 0xffff); u16 i; *rcd_delta = 0; if (is_async) { /* shouldn't get to wraparound: * too long in async stage, something bad happened */ if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX)) return false; /* asynchronous stage: log all headers seq such that * req_seq <= seq <= end_seq, and wait for real resync request */ if (before(*seq, req_seq)) return false; if (!after(*seq, req_end) && resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX) resync_async->log[resync_async->loglen++] = *seq; resync_async->rcd_delta++; return false; } /* synchronous stage: check against the logged entries and * proceed to check the next entries if no match was found */ for (i = 0; i < resync_async->loglen; i++) if (req_seq == resync_async->log[i] && atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) { *rcd_delta = resync_async->rcd_delta - i; *seq = req_seq; resync_async->loglen = 0; resync_async->rcd_delta = 0; return true; } resync_async->loglen = 0; resync_async->rcd_delta = 0; if (req_seq == *seq && atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) return true; return false; } void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_offload_context_rx *rx_ctx; u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE]; u32 sock_data, is_req_pending; struct tls_prot_info *prot; s64 resync_req; u16 rcd_delta; u32 req_seq; if (tls_ctx->rx_conf != TLS_HW) return; if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) return; prot = &tls_ctx->prot_info; rx_ctx = tls_offload_ctx_rx(tls_ctx); memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size); switch (rx_ctx->resync_type) { case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ: resync_req = atomic64_read(&rx_ctx->resync_req); req_seq = resync_req >> 32; seq += TLS_HEADER_SIZE - 1; is_req_pending = resync_req; if (likely(!is_req_pending) || req_seq != seq || !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0)) return; break; case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT: if (likely(!rx_ctx->resync_nh_do_now)) return; /* head of next rec is already in, note that the sock_inq will * include the currently parsed message when called from parser */ sock_data = tcp_inq(sk); if (sock_data > rcd_len) { trace_tls_device_rx_resync_nh_delay(sk, sock_data, rcd_len); return; } rx_ctx->resync_nh_do_now = 0; seq += rcd_len; tls_bigint_increment(rcd_sn, prot->rec_seq_size); break; case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC: resync_req = atomic64_read(&rx_ctx->resync_async->req); is_req_pending = resync_req; if (likely(!is_req_pending)) return; if (!tls_device_rx_resync_async(rx_ctx->resync_async, resync_req, &seq, &rcd_delta)) return; tls_bigint_subtract(rcd_sn, rcd_delta); break; } tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn); } static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx, struct tls_offload_context_rx *ctx, struct sock *sk, struct sk_buff *skb) { struct strp_msg *rxm; /* device will request resyncs by itself based on stream scan */ if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT) return; /* already scheduled */ if (ctx->resync_nh_do_now) return; /* seen decrypted fragments since last fully-failed record */ if (ctx->resync_nh_reset) { ctx->resync_nh_reset = 0; ctx->resync_nh.decrypted_failed = 1; ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL; return; } if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt) return; /* doing resync, bump the next target in case it fails */ if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL) ctx->resync_nh.decrypted_tgt *= 2; else ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL; rxm = strp_msg(skb); /* head of next rec is already in, parser will sync for us */ if (tcp_inq(sk) > rxm->full_len) { trace_tls_device_rx_resync_nh_schedule(sk); ctx->resync_nh_do_now = 1; } else { struct tls_prot_info *prot = &tls_ctx->prot_info; u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE]; memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size); tls_bigint_increment(rcd_sn, prot->rec_seq_size); tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq, rcd_sn); } } static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb) { struct strp_msg *rxm = strp_msg(skb); int err = 0, offset = rxm->offset, copy, nsg, data_len, pos; struct sk_buff *skb_iter, *unused; struct scatterlist sg[1]; char *orig_buf, *buf; orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation); if (!orig_buf) return -ENOMEM; buf = orig_buf; nsg = skb_cow_data(skb, 0, &unused); if (unlikely(nsg < 0)) { err = nsg; goto free_buf; } sg_init_table(sg, 1); sg_set_buf(&sg[0], buf, rxm->full_len + TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE); err = skb_copy_bits(skb, offset, buf, TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE); if (err) goto free_buf; /* We are interested only in the decrypted data not the auth */ err = decrypt_skb(sk, skb, sg); if (err != -EBADMSG) goto free_buf; else err = 0; data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE; if (skb_pagelen(skb) > offset) { copy = min_t(int, skb_pagelen(skb) - offset, data_len); if (skb->decrypted) { err = skb_store_bits(skb, offset, buf, copy); if (err) goto free_buf; } offset += copy; buf += copy; } pos = skb_pagelen(skb); skb_walk_frags(skb, skb_iter) { int frag_pos; /* Practically all frags must belong to msg if reencrypt * is needed with current strparser and coalescing logic, * but strparser may "get optimized", so let's be safe. */ if (pos + skb_iter->len <= offset) goto done_with_frag; if (pos >= data_len + rxm->offset) break; frag_pos = offset - pos; copy = min_t(int, skb_iter->len - frag_pos, data_len + rxm->offset - offset); if (skb_iter->decrypted) { err = skb_store_bits(skb_iter, frag_pos, buf, copy); if (err) goto free_buf; } offset += copy; buf += copy; done_with_frag: pos += skb_iter->len; } free_buf: kfree(orig_buf); return err; } int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx, struct sk_buff *skb, struct strp_msg *rxm) { struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx); int is_decrypted = skb->decrypted; int is_encrypted = !is_decrypted; struct sk_buff *skb_iter; /* Check if all the data is decrypted already */ skb_walk_frags(skb, skb_iter) { is_decrypted &= skb_iter->decrypted; is_encrypted &= !skb_iter->decrypted; } trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len, tls_ctx->rx.rec_seq, rxm->full_len, is_encrypted, is_decrypted); if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) { if (likely(is_encrypted || is_decrypted)) return is_decrypted; /* After tls_device_down disables the offload, the next SKB will * likely have initial fragments decrypted, and final ones not * decrypted. We need to reencrypt that single SKB. */ return tls_device_reencrypt(sk, skb); } /* Return immediately if the record is either entirely plaintext or * entirely ciphertext. Otherwise handle reencrypt partially decrypted * record. */ if (is_decrypted) { ctx->resync_nh_reset = 1; return is_decrypted; } if (is_encrypted) { tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb); return 0; } ctx->resync_nh_reset = 1; return tls_device_reencrypt(sk, skb); } static void tls_device_attach(struct tls_context *ctx, struct sock *sk, struct net_device *netdev) { if (sk->sk_destruct != tls_device_sk_destruct) { refcount_set(&ctx->refcount, 1); dev_hold(netdev); ctx->netdev = netdev; spin_lock_irq(&tls_device_lock); list_add_tail(&ctx->list, &tls_device_list); spin_unlock_irq(&tls_device_lock); ctx->sk_destruct = sk->sk_destruct; smp_store_release(&sk->sk_destruct, tls_device_sk_destruct); } } int tls_set_device_offload(struct sock *sk, struct tls_context *ctx) { u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size; struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_prot_info *prot = &tls_ctx->prot_info; struct tls_record_info *start_marker_record; struct tls_offload_context_tx *offload_ctx; struct tls_crypto_info *crypto_info; struct net_device *netdev; char *iv, *rec_seq; struct sk_buff *skb; __be64 rcd_sn; int rc; if (!ctx) return -EINVAL; if (ctx->priv_ctx_tx) return -EEXIST; netdev = get_netdev_for_sock(sk); if (!netdev) { pr_err_ratelimited("%s: netdev not found\n", __func__); return -EINVAL; } if (!(netdev->features & NETIF_F_HW_TLS_TX)) { rc = -EOPNOTSUPP; goto release_netdev; } crypto_info = &ctx->crypto_send.info; if (crypto_info->version != TLS_1_2_VERSION) { rc = -EOPNOTSUPP; goto release_netdev; } switch (crypto_info->cipher_type) { case TLS_CIPHER_AES_GCM_128: nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE; rec_seq = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; break; default: rc = -EINVAL; goto release_netdev; } /* Sanity-check the rec_seq_size for stack allocations */ if (rec_seq_size > TLS_MAX_REC_SEQ_SIZE) { rc = -EINVAL; goto release_netdev; } prot->version = crypto_info->version; prot->cipher_type = crypto_info->cipher_type; prot->prepend_size = TLS_HEADER_SIZE + nonce_size; prot->tag_size = tag_size; prot->overhead_size = prot->prepend_size + prot->tag_size; prot->iv_size = iv_size; prot->salt_size = salt_size; ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE, GFP_KERNEL); if (!ctx->tx.iv) { rc = -ENOMEM; goto release_netdev; } memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size); prot->rec_seq_size = rec_seq_size; ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); if (!ctx->tx.rec_seq) { rc = -ENOMEM; goto free_iv; } start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL); if (!start_marker_record) { rc = -ENOMEM; goto free_rec_seq; } offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL); if (!offload_ctx) { rc = -ENOMEM; goto free_marker_record; } rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info); if (rc) goto free_offload_ctx; /* start at rec_seq - 1 to account for the start marker record */ memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn)); offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1; start_marker_record->end_seq = tcp_sk(sk)->write_seq; start_marker_record->len = 0; start_marker_record->num_frags = 0; INIT_LIST_HEAD(&offload_ctx->records_list); list_add_tail(&start_marker_record->list, &offload_ctx->records_list); spin_lock_init(&offload_ctx->lock); sg_init_table(offload_ctx->sg_tx_data, ARRAY_SIZE(offload_ctx->sg_tx_data)); clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked); ctx->push_pending_record = tls_device_push_pending_record; /* TLS offload is greatly simplified if we don't send * SKBs where only part of the payload needs to be encrypted. * So mark the last skb in the write queue as end of record. */ skb = tcp_write_queue_tail(sk); if (skb) TCP_SKB_CB(skb)->eor = 1; /* Avoid offloading if the device is down * We don't want to offload new flows after * the NETDEV_DOWN event * * device_offload_lock is taken in tls_devices's NETDEV_DOWN * handler thus protecting from the device going down before * ctx was added to tls_device_list. */ down_read(&device_offload_lock); if (!(netdev->flags & IFF_UP)) { rc = -EINVAL; goto release_lock; } ctx->priv_ctx_tx = offload_ctx; rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX, &ctx->crypto_send.info, tcp_sk(sk)->write_seq); trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX, tcp_sk(sk)->write_seq, rec_seq, rc); if (rc) goto release_lock; tls_device_attach(ctx, sk, netdev); up_read(&device_offload_lock); /* following this assignment tls_is_sk_tx_device_offloaded * will return true and the context might be accessed * by the netdev's xmit function. */ smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb); dev_put(netdev); return 0; release_lock: up_read(&device_offload_lock); clean_acked_data_disable(inet_csk(sk)); crypto_free_aead(offload_ctx->aead_send); free_offload_ctx: kfree(offload_ctx); ctx->priv_ctx_tx = NULL; free_marker_record: kfree(start_marker_record); free_rec_seq: kfree(ctx->tx.rec_seq); free_iv: kfree(ctx->tx.iv); release_netdev: dev_put(netdev); return rc; } int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx) { struct tls12_crypto_info_aes_gcm_128 *info; struct tls_offload_context_rx *context; struct net_device *netdev; int rc = 0; if (ctx->crypto_recv.info.version != TLS_1_2_VERSION) return -EOPNOTSUPP; netdev = get_netdev_for_sock(sk); if (!netdev) { pr_err_ratelimited("%s: netdev not found\n", __func__); return -EINVAL; } if (!(netdev->features & NETIF_F_HW_TLS_RX)) { rc = -EOPNOTSUPP; goto release_netdev; } /* Avoid offloading if the device is down * We don't want to offload new flows after * the NETDEV_DOWN event * * device_offload_lock is taken in tls_devices's NETDEV_DOWN * handler thus protecting from the device going down before * ctx was added to tls_device_list. */ down_read(&device_offload_lock); if (!(netdev->flags & IFF_UP)) { rc = -EINVAL; goto release_lock; } context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL); if (!context) { rc = -ENOMEM; goto release_lock; } context->resync_nh_reset = 1; ctx->priv_ctx_rx = context; rc = tls_set_sw_offload(sk, ctx, 0); if (rc) goto release_ctx; rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX, &ctx->crypto_recv.info, tcp_sk(sk)->copied_seq); info = (void *)&ctx->crypto_recv.info; trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX, tcp_sk(sk)->copied_seq, info->rec_seq, rc); if (rc) goto free_sw_resources; tls_device_attach(ctx, sk, netdev); up_read(&device_offload_lock); dev_put(netdev); return 0; free_sw_resources: up_read(&device_offload_lock); tls_sw_free_resources_rx(sk); down_read(&device_offload_lock); release_ctx: ctx->priv_ctx_rx = NULL; release_lock: up_read(&device_offload_lock); release_netdev: dev_put(netdev); return rc; } void tls_device_offload_cleanup_rx(struct sock *sk) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct net_device *netdev; down_read(&device_offload_lock); netdev = tls_ctx->netdev; if (!netdev) goto out; netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx, TLS_OFFLOAD_CTX_DIR_RX); if (tls_ctx->tx_conf != TLS_HW) { dev_put(netdev); tls_ctx->netdev = NULL; } else { set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags); } out: up_read(&device_offload_lock); tls_sw_release_resources_rx(sk); } static int tls_device_down(struct net_device *netdev) { struct tls_context *ctx, *tmp; unsigned long flags; LIST_HEAD(list); /* Request a write lock to block new offload attempts */ down_write(&device_offload_lock); spin_lock_irqsave(&tls_device_lock, flags); list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) { if (ctx->netdev != netdev || !refcount_inc_not_zero(&ctx->refcount)) continue; list_move(&ctx->list, &list); } spin_unlock_irqrestore(&tls_device_lock, flags); list_for_each_entry_safe(ctx, tmp, &list, list) { /* Stop offloaded TX and switch to the fallback. * tls_is_sk_tx_device_offloaded will return false. */ WRITE_ONCE(ctx->sk->sk_validate_xmit_skb, tls_validate_xmit_skb_sw); /* Stop the RX and TX resync. * tls_dev_resync must not be called after tls_dev_del. */ WRITE_ONCE(ctx->netdev, NULL); /* Start skipping the RX resync logic completely. */ set_bit(TLS_RX_DEV_DEGRADED, &ctx->flags); /* Sync with inflight packets. After this point: * TX: no non-encrypted packets will be passed to the driver. * RX: resync requests from the driver will be ignored. */ synchronize_net(); /* Release the offload context on the driver side. */ if (ctx->tx_conf == TLS_HW) netdev->tlsdev_ops->tls_dev_del(netdev, ctx, TLS_OFFLOAD_CTX_DIR_TX); if (ctx->rx_conf == TLS_HW && !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags)) netdev->tlsdev_ops->tls_dev_del(netdev, ctx, TLS_OFFLOAD_CTX_DIR_RX); dev_put(netdev); /* Move the context to a separate list for two reasons: * 1. When the context is deallocated, list_del is called. * 2. It's no longer an offloaded context, so we don't want to * run offload-specific code on this context. */ spin_lock_irqsave(&tls_device_lock, flags); list_move_tail(&ctx->list, &tls_device_down_list); spin_unlock_irqrestore(&tls_device_lock, flags); /* Device contexts for RX and TX will be freed in on sk_destruct * by tls_device_free_ctx. rx_conf and tx_conf stay in TLS_HW. * Now release the ref taken above. */ if (refcount_dec_and_test(&ctx->refcount)) tls_device_free_ctx(ctx); } up_write(&device_offload_lock); flush_work(&tls_device_gc_work); return NOTIFY_DONE; } static int tls_dev_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); if (!dev->tlsdev_ops && !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX))) return NOTIFY_DONE; switch (event) { case NETDEV_REGISTER: case NETDEV_FEAT_CHANGE: if (netif_is_bond_master(dev)) return NOTIFY_DONE; if ((dev->features & NETIF_F_HW_TLS_RX) && !dev->tlsdev_ops->tls_dev_resync) return NOTIFY_BAD; if (dev->tlsdev_ops && dev->tlsdev_ops->tls_dev_add && dev->tlsdev_ops->tls_dev_del) return NOTIFY_DONE; else return NOTIFY_BAD; case NETDEV_DOWN: return tls_device_down(dev); } return NOTIFY_DONE; } static struct notifier_block tls_dev_notifier = { .notifier_call = tls_dev_event, }; void __init tls_device_init(void) { register_netdevice_notifier(&tls_dev_notifier); } void __exit tls_device_cleanup(void) { unregister_netdevice_notifier(&tls_dev_notifier); flush_work(&tls_device_gc_work); clean_acked_data_flush(); }