// SPDX-License-Identifier: GPL-2.0-only /* * set_id_regs - Test for setting ID register from usersapce. * * Copyright (c) 2023 Google LLC. * * * Test that KVM supports setting ID registers from userspace and handles the * feature set correctly. */ #include #include "kvm_util.h" #include "processor.h" #include "test_util.h" #include enum ftr_type { FTR_EXACT, /* Use a predefined safe value */ FTR_LOWER_SAFE, /* Smaller value is safe */ FTR_HIGHER_SAFE, /* Bigger value is safe */ FTR_HIGHER_OR_ZERO_SAFE, /* Bigger value is safe, but 0 is biggest */ FTR_END, /* Mark the last ftr bits */ }; #define FTR_SIGNED true /* Value should be treated as signed */ #define FTR_UNSIGNED false /* Value should be treated as unsigned */ struct reg_ftr_bits { char *name; bool sign; enum ftr_type type; uint8_t shift; uint64_t mask; /* * For FTR_EXACT, safe_val is used as the exact safe value. * For FTR_LOWER_SAFE, safe_val is used as the minimal safe value. */ int64_t safe_val; }; struct test_feature_reg { uint32_t reg; const struct reg_ftr_bits *ftr_bits; }; #define __REG_FTR_BITS(NAME, SIGNED, TYPE, SHIFT, MASK, SAFE_VAL) \ { \ .name = #NAME, \ .sign = SIGNED, \ .type = TYPE, \ .shift = SHIFT, \ .mask = MASK, \ .safe_val = SAFE_VAL, \ } #define REG_FTR_BITS(type, reg, field, safe_val) \ __REG_FTR_BITS(reg##_##field, FTR_UNSIGNED, type, reg##_##field##_SHIFT, \ reg##_##field##_MASK, safe_val) #define S_REG_FTR_BITS(type, reg, field, safe_val) \ __REG_FTR_BITS(reg##_##field, FTR_SIGNED, type, reg##_##field##_SHIFT, \ reg##_##field##_MASK, safe_val) #define REG_FTR_END \ { \ .type = FTR_END, \ } static const struct reg_ftr_bits ftr_id_aa64dfr0_el1[] = { S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, DoubleLock, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, WRPs, 0), S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, PMUVer, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, DebugVer, ID_AA64DFR0_EL1_DebugVer_IMP), REG_FTR_END, }; static const struct reg_ftr_bits ftr_id_dfr0_el1[] = { S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_DFR0_EL1, PerfMon, ID_DFR0_EL1_PerfMon_PMUv3), REG_FTR_BITS(FTR_LOWER_SAFE, ID_DFR0_EL1, CopDbg, ID_DFR0_EL1_CopDbg_Armv8), REG_FTR_END, }; static const struct reg_ftr_bits ftr_id_aa64isar0_el1[] = { REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, RNDR, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, TLB, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, TS, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, FHM, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, DP, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SM4, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SM3, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SHA3, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, RDM, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, TME, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, ATOMIC, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, CRC32, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SHA2, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SHA1, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, AES, 0), REG_FTR_END, }; static const struct reg_ftr_bits ftr_id_aa64isar1_el1[] = { REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, LS64, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, XS, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, I8MM, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, DGH, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, BF16, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, SPECRES, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, SB, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, FRINTTS, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, LRCPC, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, FCMA, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, JSCVT, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, DPB, 0), REG_FTR_END, }; static const struct reg_ftr_bits ftr_id_aa64isar2_el1[] = { REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR2_EL1, BC, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR2_EL1, RPRES, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR2_EL1, WFxT, 0), REG_FTR_END, }; static const struct reg_ftr_bits ftr_id_aa64pfr0_el1[] = { REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, CSV3, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, CSV2, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, DIT, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, SEL2, 0), REG_FTR_BITS(FTR_EXACT, ID_AA64PFR0_EL1, GIC, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL3, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL2, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL1, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL0, 0), REG_FTR_END, }; static const struct reg_ftr_bits ftr_id_aa64pfr1_el1[] = { REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR1_EL1, CSV2_frac, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR1_EL1, SSBS, ID_AA64PFR1_EL1_SSBS_NI), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR1_EL1, BT, 0), REG_FTR_END, }; static const struct reg_ftr_bits ftr_id_aa64mmfr0_el1[] = { REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, ECV, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, EXS, 0), S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, TGRAN4, 0), S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, TGRAN64, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, TGRAN16, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, BIGENDEL0, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, SNSMEM, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, BIGEND, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, PARANGE, 0), REG_FTR_END, }; static const struct reg_ftr_bits ftr_id_aa64mmfr1_el1[] = { REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, TIDCP1, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, AFP, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, ETS, 0), REG_FTR_BITS(FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1, SpecSEI, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, PAN, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, LO, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, HPDS, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, HAFDBS, 0), REG_FTR_END, }; static const struct reg_ftr_bits ftr_id_aa64mmfr2_el1[] = { REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, E0PD, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, BBM, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, TTL, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, AT, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, ST, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, VARange, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, IESB, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, LSM, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, UAO, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, CnP, 0), REG_FTR_END, }; static const struct reg_ftr_bits ftr_id_aa64zfr0_el1[] = { REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, F64MM, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, F32MM, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, I8MM, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, SM4, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, SHA3, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, BF16, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, BitPerm, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, AES, 0), REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, SVEver, 0), REG_FTR_END, }; #define TEST_REG(id, table) \ { \ .reg = id, \ .ftr_bits = &((table)[0]), \ } static struct test_feature_reg test_regs[] = { TEST_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0_el1), TEST_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0_el1), TEST_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0_el1), TEST_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1_el1), TEST_REG(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2_el1), TEST_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0_el1), TEST_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1_el1), TEST_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0_el1), TEST_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1_el1), TEST_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2_el1), TEST_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0_el1), }; #define GUEST_REG_SYNC(id) GUEST_SYNC_ARGS(0, id, read_sysreg_s(id), 0, 0); static void guest_code(void) { GUEST_REG_SYNC(SYS_ID_AA64DFR0_EL1); GUEST_REG_SYNC(SYS_ID_DFR0_EL1); GUEST_REG_SYNC(SYS_ID_AA64ISAR0_EL1); GUEST_REG_SYNC(SYS_ID_AA64ISAR1_EL1); GUEST_REG_SYNC(SYS_ID_AA64ISAR2_EL1); GUEST_REG_SYNC(SYS_ID_AA64PFR0_EL1); GUEST_REG_SYNC(SYS_ID_AA64MMFR0_EL1); GUEST_REG_SYNC(SYS_ID_AA64MMFR1_EL1); GUEST_REG_SYNC(SYS_ID_AA64MMFR2_EL1); GUEST_REG_SYNC(SYS_ID_AA64ZFR0_EL1); GUEST_REG_SYNC(SYS_CTR_EL0); GUEST_DONE(); } /* Return a safe value to a given ftr_bits an ftr value */ uint64_t get_safe_value(const struct reg_ftr_bits *ftr_bits, uint64_t ftr) { uint64_t ftr_max = GENMASK_ULL(ARM64_FEATURE_FIELD_BITS - 1, 0); if (ftr_bits->sign == FTR_UNSIGNED) { switch (ftr_bits->type) { case FTR_EXACT: ftr = ftr_bits->safe_val; break; case FTR_LOWER_SAFE: if (ftr > ftr_bits->safe_val) ftr--; break; case FTR_HIGHER_SAFE: if (ftr < ftr_max) ftr++; break; case FTR_HIGHER_OR_ZERO_SAFE: if (ftr == ftr_max) ftr = 0; else if (ftr != 0) ftr++; break; default: break; } } else if (ftr != ftr_max) { switch (ftr_bits->type) { case FTR_EXACT: ftr = ftr_bits->safe_val; break; case FTR_LOWER_SAFE: if (ftr > ftr_bits->safe_val) ftr--; break; case FTR_HIGHER_SAFE: if (ftr < ftr_max - 1) ftr++; break; case FTR_HIGHER_OR_ZERO_SAFE: if (ftr != 0 && ftr != ftr_max - 1) ftr++; break; default: break; } } return ftr; } /* Return an invalid value to a given ftr_bits an ftr value */ uint64_t get_invalid_value(const struct reg_ftr_bits *ftr_bits, uint64_t ftr) { uint64_t ftr_max = GENMASK_ULL(ARM64_FEATURE_FIELD_BITS - 1, 0); if (ftr_bits->sign == FTR_UNSIGNED) { switch (ftr_bits->type) { case FTR_EXACT: ftr = max((uint64_t)ftr_bits->safe_val + 1, ftr + 1); break; case FTR_LOWER_SAFE: ftr++; break; case FTR_HIGHER_SAFE: ftr--; break; case FTR_HIGHER_OR_ZERO_SAFE: if (ftr == 0) ftr = ftr_max; else ftr--; break; default: break; } } else if (ftr != ftr_max) { switch (ftr_bits->type) { case FTR_EXACT: ftr = max((uint64_t)ftr_bits->safe_val + 1, ftr + 1); break; case FTR_LOWER_SAFE: ftr++; break; case FTR_HIGHER_SAFE: ftr--; break; case FTR_HIGHER_OR_ZERO_SAFE: if (ftr == 0) ftr = ftr_max - 1; else ftr--; break; default: break; } } else { ftr = 0; } return ftr; } static uint64_t test_reg_set_success(struct kvm_vcpu *vcpu, uint64_t reg, const struct reg_ftr_bits *ftr_bits) { uint8_t shift = ftr_bits->shift; uint64_t mask = ftr_bits->mask; uint64_t val, new_val, ftr; vcpu_get_reg(vcpu, reg, &val); ftr = (val & mask) >> shift; ftr = get_safe_value(ftr_bits, ftr); ftr <<= shift; val &= ~mask; val |= ftr; vcpu_set_reg(vcpu, reg, val); vcpu_get_reg(vcpu, reg, &new_val); TEST_ASSERT_EQ(new_val, val); return new_val; } static void test_reg_set_fail(struct kvm_vcpu *vcpu, uint64_t reg, const struct reg_ftr_bits *ftr_bits) { uint8_t shift = ftr_bits->shift; uint64_t mask = ftr_bits->mask; uint64_t val, old_val, ftr; int r; vcpu_get_reg(vcpu, reg, &val); ftr = (val & mask) >> shift; ftr = get_invalid_value(ftr_bits, ftr); old_val = val; ftr <<= shift; val &= ~mask; val |= ftr; r = __vcpu_set_reg(vcpu, reg, val); TEST_ASSERT(r < 0 && errno == EINVAL, "Unexpected KVM_SET_ONE_REG error: r=%d, errno=%d", r, errno); vcpu_get_reg(vcpu, reg, &val); TEST_ASSERT_EQ(val, old_val); } static uint64_t test_reg_vals[KVM_ARM_FEATURE_ID_RANGE_SIZE]; #define encoding_to_range_idx(encoding) \ KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(encoding), sys_reg_Op1(encoding), \ sys_reg_CRn(encoding), sys_reg_CRm(encoding), \ sys_reg_Op2(encoding)) static void test_vm_ftr_id_regs(struct kvm_vcpu *vcpu, bool aarch64_only) { uint64_t masks[KVM_ARM_FEATURE_ID_RANGE_SIZE]; struct reg_mask_range range = { .addr = (__u64)masks, }; int ret; /* KVM should return error when reserved field is not zero */ range.reserved[0] = 1; ret = __vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range); TEST_ASSERT(ret, "KVM doesn't check invalid parameters."); /* Get writable masks for feature ID registers */ memset(range.reserved, 0, sizeof(range.reserved)); vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range); for (int i = 0; i < ARRAY_SIZE(test_regs); i++) { const struct reg_ftr_bits *ftr_bits = test_regs[i].ftr_bits; uint32_t reg_id = test_regs[i].reg; uint64_t reg = KVM_ARM64_SYS_REG(reg_id); int idx; /* Get the index to masks array for the idreg */ idx = encoding_to_range_idx(reg_id); for (int j = 0; ftr_bits[j].type != FTR_END; j++) { /* Skip aarch32 reg on aarch64 only system, since they are RAZ/WI. */ if (aarch64_only && sys_reg_CRm(reg_id) < 4) { ksft_test_result_skip("%s on AARCH64 only system\n", ftr_bits[j].name); continue; } /* Make sure the feature field is writable */ TEST_ASSERT_EQ(masks[idx] & ftr_bits[j].mask, ftr_bits[j].mask); test_reg_set_fail(vcpu, reg, &ftr_bits[j]); test_reg_vals[idx] = test_reg_set_success(vcpu, reg, &ftr_bits[j]); ksft_test_result_pass("%s\n", ftr_bits[j].name); } } } #define MPAM_IDREG_TEST 6 static void test_user_set_mpam_reg(struct kvm_vcpu *vcpu) { uint64_t masks[KVM_ARM_FEATURE_ID_RANGE_SIZE]; struct reg_mask_range range = { .addr = (__u64)masks, }; uint64_t val; int idx, err; /* * If ID_AA64PFR0.MPAM is _not_ officially modifiable and is zero, * check that if it can be set to 1, (i.e. it is supported by the * hardware), that it can't be set to other values. */ /* Get writable masks for feature ID registers */ memset(range.reserved, 0, sizeof(range.reserved)); vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range); /* Writeable? Nothing to test! */ idx = encoding_to_range_idx(SYS_ID_AA64PFR0_EL1); if ((masks[idx] & ID_AA64PFR0_EL1_MPAM_MASK) == ID_AA64PFR0_EL1_MPAM_MASK) { ksft_test_result_skip("ID_AA64PFR0_EL1.MPAM is officially writable, nothing to test\n"); return; } /* Get the id register value */ vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), &val); /* Try to set MPAM=0. This should always be possible. */ val &= ~ID_AA64PFR0_EL1_MPAM_MASK; val |= FIELD_PREP(ID_AA64PFR0_EL1_MPAM_MASK, 0); err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), val); if (err) ksft_test_result_fail("ID_AA64PFR0_EL1.MPAM=0 was not accepted\n"); else ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM=0 worked\n"); /* Try to set MPAM=1 */ val &= ~ID_AA64PFR0_EL1_MPAM_MASK; val |= FIELD_PREP(ID_AA64PFR0_EL1_MPAM_MASK, 1); err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), val); if (err) ksft_test_result_skip("ID_AA64PFR0_EL1.MPAM is not writable, nothing to test\n"); else ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM=1 was writable\n"); /* Try to set MPAM=2 */ val &= ~ID_AA64PFR0_EL1_MPAM_MASK; val |= FIELD_PREP(ID_AA64PFR0_EL1_MPAM_MASK, 2); err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), val); if (err) ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM not arbitrarily modifiable\n"); else ksft_test_result_fail("ID_AA64PFR0_EL1.MPAM value should not be ignored\n"); /* And again for ID_AA64PFR1_EL1.MPAM_frac */ idx = encoding_to_range_idx(SYS_ID_AA64PFR1_EL1); if ((masks[idx] & ID_AA64PFR1_EL1_MPAM_frac_MASK) == ID_AA64PFR1_EL1_MPAM_frac_MASK) { ksft_test_result_skip("ID_AA64PFR1_EL1.MPAM_frac is officially writable, nothing to test\n"); return; } /* Get the id register value */ vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), &val); /* Try to set MPAM_frac=0. This should always be possible. */ val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK; val |= FIELD_PREP(ID_AA64PFR1_EL1_MPAM_frac_MASK, 0); err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), val); if (err) ksft_test_result_fail("ID_AA64PFR0_EL1.MPAM_frac=0 was not accepted\n"); else ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM_frac=0 worked\n"); /* Try to set MPAM_frac=1 */ val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK; val |= FIELD_PREP(ID_AA64PFR1_EL1_MPAM_frac_MASK, 1); err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), val); if (err) ksft_test_result_skip("ID_AA64PFR1_EL1.MPAM_frac is not writable, nothing to test\n"); else ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM_frac=1 was writable\n"); /* Try to set MPAM_frac=2 */ val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK; val |= FIELD_PREP(ID_AA64PFR1_EL1_MPAM_frac_MASK, 2); err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), val); if (err) ksft_test_result_pass("ID_AA64PFR1_EL1.MPAM_frac not arbitrarily modifiable\n"); else ksft_test_result_fail("ID_AA64PFR1_EL1.MPAM_frac value should not be ignored\n"); } static void test_guest_reg_read(struct kvm_vcpu *vcpu) { bool done = false; struct ucall uc; while (!done) { vcpu_run(vcpu); switch (get_ucall(vcpu, &uc)) { case UCALL_ABORT: REPORT_GUEST_ASSERT(uc); break; case UCALL_SYNC: /* Make sure the written values are seen by guest */ TEST_ASSERT_EQ(test_reg_vals[encoding_to_range_idx(uc.args[2])], uc.args[3]); break; case UCALL_DONE: done = true; break; default: TEST_FAIL("Unexpected ucall: %lu", uc.cmd); } } } /* Politely lifted from arch/arm64/include/asm/cache.h */ /* Ctypen, bits[3(n - 1) + 2 : 3(n - 1)], for n = 1 to 7 */ #define CLIDR_CTYPE_SHIFT(level) (3 * (level - 1)) #define CLIDR_CTYPE_MASK(level) (7 << CLIDR_CTYPE_SHIFT(level)) #define CLIDR_CTYPE(clidr, level) \ (((clidr) & CLIDR_CTYPE_MASK(level)) >> CLIDR_CTYPE_SHIFT(level)) static void test_clidr(struct kvm_vcpu *vcpu) { uint64_t clidr; int level; vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CLIDR_EL1), &clidr); /* find the first empty level in the cache hierarchy */ for (level = 1; level < 7; level++) { if (!CLIDR_CTYPE(clidr, level)) break; } /* * If you have a mind-boggling 7 levels of cache, congratulations, you * get to fix this. */ TEST_ASSERT(level <= 7, "can't find an empty level in cache hierarchy"); /* stick in a unified cache level */ clidr |= BIT(2) << CLIDR_CTYPE_SHIFT(level); vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CLIDR_EL1), clidr); test_reg_vals[encoding_to_range_idx(SYS_CLIDR_EL1)] = clidr; } static void test_ctr(struct kvm_vcpu *vcpu) { u64 ctr; vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CTR_EL0), &ctr); ctr &= ~CTR_EL0_DIC_MASK; if (ctr & CTR_EL0_IminLine_MASK) ctr--; vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CTR_EL0), ctr); test_reg_vals[encoding_to_range_idx(SYS_CTR_EL0)] = ctr; } static void test_vcpu_ftr_id_regs(struct kvm_vcpu *vcpu) { u64 val; test_clidr(vcpu); test_ctr(vcpu); vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_MPIDR_EL1), &val); val++; vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_MPIDR_EL1), val); test_reg_vals[encoding_to_range_idx(SYS_MPIDR_EL1)] = val; ksft_test_result_pass("%s\n", __func__); } static void test_assert_id_reg_unchanged(struct kvm_vcpu *vcpu, uint32_t encoding) { size_t idx = encoding_to_range_idx(encoding); uint64_t observed; vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(encoding), &observed); TEST_ASSERT_EQ(test_reg_vals[idx], observed); } static void test_reset_preserves_id_regs(struct kvm_vcpu *vcpu) { /* * Calls KVM_ARM_VCPU_INIT behind the scenes, which will do an * architectural reset of the vCPU. */ aarch64_vcpu_setup(vcpu, NULL); for (int i = 0; i < ARRAY_SIZE(test_regs); i++) test_assert_id_reg_unchanged(vcpu, test_regs[i].reg); test_assert_id_reg_unchanged(vcpu, SYS_MPIDR_EL1); test_assert_id_reg_unchanged(vcpu, SYS_CLIDR_EL1); test_assert_id_reg_unchanged(vcpu, SYS_CTR_EL0); ksft_test_result_pass("%s\n", __func__); } int main(void) { struct kvm_vcpu *vcpu; struct kvm_vm *vm; bool aarch64_only; uint64_t val, el0; int test_cnt; TEST_REQUIRE(kvm_has_cap(KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES)); vm = vm_create_with_one_vcpu(&vcpu, guest_code); /* Check for AARCH64 only system */ vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), &val); el0 = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_EL0), val); aarch64_only = (el0 == ID_AA64PFR0_EL1_ELx_64BIT_ONLY); ksft_print_header(); test_cnt = ARRAY_SIZE(ftr_id_aa64dfr0_el1) + ARRAY_SIZE(ftr_id_dfr0_el1) + ARRAY_SIZE(ftr_id_aa64isar0_el1) + ARRAY_SIZE(ftr_id_aa64isar1_el1) + ARRAY_SIZE(ftr_id_aa64isar2_el1) + ARRAY_SIZE(ftr_id_aa64pfr0_el1) + ARRAY_SIZE(ftr_id_aa64pfr1_el1) + ARRAY_SIZE(ftr_id_aa64mmfr0_el1) + ARRAY_SIZE(ftr_id_aa64mmfr1_el1) + ARRAY_SIZE(ftr_id_aa64mmfr2_el1) + ARRAY_SIZE(ftr_id_aa64zfr0_el1) - ARRAY_SIZE(test_regs) + 2 + MPAM_IDREG_TEST; ksft_set_plan(test_cnt); test_vm_ftr_id_regs(vcpu, aarch64_only); test_vcpu_ftr_id_regs(vcpu); test_user_set_mpam_reg(vcpu); test_guest_reg_read(vcpu); test_reset_preserves_id_regs(vcpu); kvm_vm_free(vm); ksft_finished(); }