1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
|
/*
* IEEE754 floating point
* double precision internal header file
*/
/*
* MIPS floating point support
* Copyright (C) 1994-2000 Algorithmics Ltd.
*
* ########################################################################
*
* This program is free software; you can distribute it and/or modify it
* under the terms of the GNU General Public License (Version 2) as
* published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
*
* ########################################################################
*/
#include <linux/compiler.h>
#include "ieee754int.h"
#define assert(expr) ((void)0)
/* 3bit extended single precision sticky right shift */
#define SPXSRSXn(rs) \
(xe += rs, \
xm = (rs > (SP_FBITS+3))?1:((xm) >> (rs)) | ((xm) << (32-(rs)) != 0))
#define SPXSRSX1() \
(xe++, (xm = (xm >> 1) | (xm & 1)))
#define SPXSRSYn(rs) \
(ye+=rs, \
ym = (rs > (SP_FBITS+3))?1:((ym) >> (rs)) | ((ym) << (32-(rs)) != 0))
#define SPXSRSY1() \
(ye++, (ym = (ym >> 1) | (ym & 1)))
/* convert denormal to normalized with extended exponent */
#define SPDNORMx(m,e) \
while ((m >> SP_FBITS) == 0) { m <<= 1; e--; }
#define SPDNORMX SPDNORMx(xm, xe)
#define SPDNORMY SPDNORMx(ym, ye)
static inline union ieee754sp buildsp(int s, int bx, unsigned m)
{
union ieee754sp r;
assert((s) == 0 || (s) == 1);
assert((bx) >= SP_EMIN - 1 + SP_EBIAS
&& (bx) <= SP_EMAX + 1 + SP_EBIAS);
assert(((m) >> SP_FBITS) == 0);
r.parts.sign = s;
r.parts.bexp = bx;
r.parts.mant = m;
return r;
}
extern int ieee754sp_isnan(union ieee754sp);
extern int ieee754sp_issnan(union ieee754sp);
extern int __cold ieee754si_xcpt(int, const char *, ...);
extern s64 __cold ieee754di_xcpt(s64, const char *, ...);
extern union ieee754sp __cold ieee754sp_xcpt(union ieee754sp, const char *, ...);
extern union ieee754sp __cold ieee754sp_nanxcpt(union ieee754sp, const char *, ...);
extern union ieee754sp ieee754sp_bestnan(union ieee754sp, union ieee754sp);
extern union ieee754sp ieee754sp_format(int, int, unsigned);
#define SPNORMRET2(s, e, m, name, a0, a1) \
{ \
union ieee754sp V = ieee754sp_format(s, e, m); \
\
if (ieee754_tstx()) \
return ieee754sp_xcpt(V, name, a0, a1); \
else \
return V; \
}
#define SPNORMRET1(s, e, m, name, a0) SPNORMRET2(s, e, m, name, a0, a0)
|