summaryrefslogtreecommitdiffstats
path: root/drivers/base/regmap/regmap-irq.c
blob: 760296a4b6062ab7ebb25d874a4ad23130b23eeb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
// SPDX-License-Identifier: GPL-2.0
//
// regmap based irq_chip
//
// Copyright 2011 Wolfson Microelectronics plc
//
// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>

#include <linux/device.h>
#include <linux/export.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/irqdomain.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/slab.h>

#include "internal.h"

struct regmap_irq_chip_data {
	struct mutex lock;
	struct irq_chip irq_chip;

	struct regmap *map;
	const struct regmap_irq_chip *chip;

	int irq_base;
	struct irq_domain *domain;

	int irq;
	int wake_count;

	void *status_reg_buf;
	unsigned int *main_status_buf;
	unsigned int *status_buf;
	unsigned int *mask_buf;
	unsigned int *mask_buf_def;
	unsigned int *wake_buf;
	unsigned int *type_buf;
	unsigned int *type_buf_def;
	unsigned int **virt_buf;

	unsigned int irq_reg_stride;
	unsigned int type_reg_stride;

	bool clear_status:1;
};

static int sub_irq_reg(struct regmap_irq_chip_data *data,
		       unsigned int base_reg, int i)
{
	const struct regmap_irq_chip *chip = data->chip;
	struct regmap *map = data->map;
	struct regmap_irq_sub_irq_map *subreg;
	unsigned int offset;
	int reg = 0;

	if (!chip->sub_reg_offsets || !chip->not_fixed_stride) {
		/* Assume linear mapping */
		reg = base_reg + (i * map->reg_stride * data->irq_reg_stride);
	} else {
		subreg = &chip->sub_reg_offsets[i];
		offset = subreg->offset[0];
		reg = base_reg + offset;
	}

	return reg;
}

static inline const
struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
				     int irq)
{
	return &data->chip->irqs[irq];
}

static void regmap_irq_lock(struct irq_data *data)
{
	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);

	mutex_lock(&d->lock);
}

static int regmap_irq_update_bits(struct regmap_irq_chip_data *d,
				  unsigned int reg, unsigned int mask,
				  unsigned int val)
{
	if (d->chip->mask_writeonly)
		return regmap_write_bits(d->map, reg, mask, val);
	else
		return regmap_update_bits(d->map, reg, mask, val);
}

static void regmap_irq_sync_unlock(struct irq_data *data)
{
	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
	struct regmap *map = d->map;
	int i, j, ret;
	u32 reg;
	u32 unmask_offset;
	u32 val;

	if (d->chip->runtime_pm) {
		ret = pm_runtime_get_sync(map->dev);
		if (ret < 0)
			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
				ret);
	}

	if (d->clear_status) {
		for (i = 0; i < d->chip->num_regs; i++) {
			reg = sub_irq_reg(d, d->chip->status_base, i);

			ret = regmap_read(map, reg, &val);
			if (ret)
				dev_err(d->map->dev,
					"Failed to clear the interrupt status bits\n");
		}

		d->clear_status = false;
	}

	/*
	 * If there's been a change in the mask write it back to the
	 * hardware.  We rely on the use of the regmap core cache to
	 * suppress pointless writes.
	 */
	for (i = 0; i < d->chip->num_regs; i++) {
		if (!d->chip->mask_base)
			continue;

		reg = sub_irq_reg(d, d->chip->mask_base, i);
		if (d->chip->mask_invert) {
			ret = regmap_irq_update_bits(d, reg,
					 d->mask_buf_def[i], ~d->mask_buf[i]);
		} else if (d->chip->unmask_base) {
			/* set mask with mask_base register */
			ret = regmap_irq_update_bits(d, reg,
					d->mask_buf_def[i], ~d->mask_buf[i]);
			if (ret < 0)
				dev_err(d->map->dev,
					"Failed to sync unmasks in %x\n",
					reg);
			unmask_offset = d->chip->unmask_base -
							d->chip->mask_base;
			/* clear mask with unmask_base register */
			ret = regmap_irq_update_bits(d,
					reg + unmask_offset,
					d->mask_buf_def[i],
					d->mask_buf[i]);
		} else {
			ret = regmap_irq_update_bits(d, reg,
					 d->mask_buf_def[i], d->mask_buf[i]);
		}
		if (ret != 0)
			dev_err(d->map->dev, "Failed to sync masks in %x\n",
				reg);

		reg = sub_irq_reg(d, d->chip->wake_base, i);
		if (d->wake_buf) {
			if (d->chip->wake_invert)
				ret = regmap_irq_update_bits(d, reg,
							 d->mask_buf_def[i],
							 ~d->wake_buf[i]);
			else
				ret = regmap_irq_update_bits(d, reg,
							 d->mask_buf_def[i],
							 d->wake_buf[i]);
			if (ret != 0)
				dev_err(d->map->dev,
					"Failed to sync wakes in %x: %d\n",
					reg, ret);
		}

		if (!d->chip->init_ack_masked)
			continue;
		/*
		 * Ack all the masked interrupts unconditionally,
		 * OR if there is masked interrupt which hasn't been Acked,
		 * it'll be ignored in irq handler, then may introduce irq storm
		 */
		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
			reg = sub_irq_reg(d, d->chip->ack_base, i);

			/* some chips ack by write 0 */
			if (d->chip->ack_invert)
				ret = regmap_write(map, reg, ~d->mask_buf[i]);
			else
				ret = regmap_write(map, reg, d->mask_buf[i]);
			if (d->chip->clear_ack) {
				if (d->chip->ack_invert && !ret)
					ret = regmap_write(map, reg,
							   d->mask_buf[i]);
				else if (!ret)
					ret = regmap_write(map, reg,
							   ~d->mask_buf[i]);
			}
			if (ret != 0)
				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
					reg, ret);
		}
	}

	/* Don't update the type bits if we're using mask bits for irq type. */
	if (!d->chip->type_in_mask) {
		for (i = 0; i < d->chip->num_type_reg; i++) {
			if (!d->type_buf_def[i])
				continue;
			reg = sub_irq_reg(d, d->chip->type_base, i);
			if (d->chip->type_invert)
				ret = regmap_irq_update_bits(d, reg,
					d->type_buf_def[i], ~d->type_buf[i]);
			else
				ret = regmap_irq_update_bits(d, reg,
					d->type_buf_def[i], d->type_buf[i]);
			if (ret != 0)
				dev_err(d->map->dev, "Failed to sync type in %x\n",
					reg);
		}
	}

	if (d->chip->num_virt_regs) {
		for (i = 0; i < d->chip->num_virt_regs; i++) {
			for (j = 0; j < d->chip->num_regs; j++) {
				reg = sub_irq_reg(d, d->chip->virt_reg_base[i],
						  j);
				ret = regmap_write(map, reg, d->virt_buf[i][j]);
				if (ret != 0)
					dev_err(d->map->dev,
						"Failed to write virt 0x%x: %d\n",
						reg, ret);
			}
		}
	}

	if (d->chip->runtime_pm)
		pm_runtime_put(map->dev);

	/* If we've changed our wakeup count propagate it to the parent */
	if (d->wake_count < 0)
		for (i = d->wake_count; i < 0; i++)
			irq_set_irq_wake(d->irq, 0);
	else if (d->wake_count > 0)
		for (i = 0; i < d->wake_count; i++)
			irq_set_irq_wake(d->irq, 1);

	d->wake_count = 0;

	mutex_unlock(&d->lock);
}

static void regmap_irq_enable(struct irq_data *data)
{
	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
	struct regmap *map = d->map;
	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
	unsigned int mask, type;

	type = irq_data->type.type_falling_val | irq_data->type.type_rising_val;

	/*
	 * The type_in_mask flag means that the underlying hardware uses
	 * separate mask bits for rising and falling edge interrupts, but
	 * we want to make them into a single virtual interrupt with
	 * configurable edge.
	 *
	 * If the interrupt we're enabling defines the falling or rising
	 * masks then instead of using the regular mask bits for this
	 * interrupt, use the value previously written to the type buffer
	 * at the corresponding offset in regmap_irq_set_type().
	 */
	if (d->chip->type_in_mask && type)
		mask = d->type_buf[irq_data->reg_offset / map->reg_stride];
	else
		mask = irq_data->mask;

	if (d->chip->clear_on_unmask)
		d->clear_status = true;

	d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~mask;
}

static void regmap_irq_disable(struct irq_data *data)
{
	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
	struct regmap *map = d->map;
	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);

	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
}

static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
{
	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
	struct regmap *map = d->map;
	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
	int reg;
	const struct regmap_irq_type *t = &irq_data->type;

	if ((t->types_supported & type) != type)
		return 0;

	reg = t->type_reg_offset / map->reg_stride;

	if (t->type_reg_mask)
		d->type_buf[reg] &= ~t->type_reg_mask;
	else
		d->type_buf[reg] &= ~(t->type_falling_val |
				      t->type_rising_val |
				      t->type_level_low_val |
				      t->type_level_high_val);
	switch (type) {
	case IRQ_TYPE_EDGE_FALLING:
		d->type_buf[reg] |= t->type_falling_val;
		break;

	case IRQ_TYPE_EDGE_RISING:
		d->type_buf[reg] |= t->type_rising_val;
		break;

	case IRQ_TYPE_EDGE_BOTH:
		d->type_buf[reg] |= (t->type_falling_val |
					t->type_rising_val);
		break;

	case IRQ_TYPE_LEVEL_HIGH:
		d->type_buf[reg] |= t->type_level_high_val;
		break;

	case IRQ_TYPE_LEVEL_LOW:
		d->type_buf[reg] |= t->type_level_low_val;
		break;
	default:
		return -EINVAL;
	}

	if (d->chip->set_type_virt)
		return d->chip->set_type_virt(d->virt_buf, type, data->hwirq,
					      reg);

	return 0;
}

static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
{
	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
	struct regmap *map = d->map;
	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);

	if (on) {
		if (d->wake_buf)
			d->wake_buf[irq_data->reg_offset / map->reg_stride]
				&= ~irq_data->mask;
		d->wake_count++;
	} else {
		if (d->wake_buf)
			d->wake_buf[irq_data->reg_offset / map->reg_stride]
				|= irq_data->mask;
		d->wake_count--;
	}

	return 0;
}

static const struct irq_chip regmap_irq_chip = {
	.irq_bus_lock		= regmap_irq_lock,
	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
	.irq_disable		= regmap_irq_disable,
	.irq_enable		= regmap_irq_enable,
	.irq_set_type		= regmap_irq_set_type,
	.irq_set_wake		= regmap_irq_set_wake,
};

static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
					   unsigned int b)
{
	const struct regmap_irq_chip *chip = data->chip;
	struct regmap *map = data->map;
	struct regmap_irq_sub_irq_map *subreg;
	int i, ret = 0;

	if (!chip->sub_reg_offsets) {
		/* Assume linear mapping */
		ret = regmap_read(map, chip->status_base +
				  (b * map->reg_stride * data->irq_reg_stride),
				   &data->status_buf[b]);
	} else {
		subreg = &chip->sub_reg_offsets[b];
		for (i = 0; i < subreg->num_regs; i++) {
			unsigned int offset = subreg->offset[i];

			if (chip->not_fixed_stride)
				ret = regmap_read(map,
						chip->status_base + offset,
						&data->status_buf[b]);
			else
				ret = regmap_read(map,
						chip->status_base + offset,
						&data->status_buf[offset]);

			if (ret)
				break;
		}
	}
	return ret;
}

static irqreturn_t regmap_irq_thread(int irq, void *d)
{
	struct regmap_irq_chip_data *data = d;
	const struct regmap_irq_chip *chip = data->chip;
	struct regmap *map = data->map;
	int ret, i;
	bool handled = false;
	u32 reg;

	if (chip->handle_pre_irq)
		chip->handle_pre_irq(chip->irq_drv_data);

	if (chip->runtime_pm) {
		ret = pm_runtime_get_sync(map->dev);
		if (ret < 0) {
			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
				ret);
			goto exit;
		}
	}

	/*
	 * Read only registers with active IRQs if the chip has 'main status
	 * register'. Else read in the statuses, using a single bulk read if
	 * possible in order to reduce the I/O overheads.
	 */

	if (chip->num_main_regs) {
		unsigned int max_main_bits;
		unsigned long size;

		size = chip->num_regs * sizeof(unsigned int);

		max_main_bits = (chip->num_main_status_bits) ?
				 chip->num_main_status_bits : chip->num_regs;
		/* Clear the status buf as we don't read all status regs */
		memset(data->status_buf, 0, size);

		/* We could support bulk read for main status registers
		 * but I don't expect to see devices with really many main
		 * status registers so let's only support single reads for the
		 * sake of simplicity. and add bulk reads only if needed
		 */
		for (i = 0; i < chip->num_main_regs; i++) {
			ret = regmap_read(map, chip->main_status +
				  (i * map->reg_stride
				   * data->irq_reg_stride),
				  &data->main_status_buf[i]);
			if (ret) {
				dev_err(map->dev,
					"Failed to read IRQ status %d\n",
					ret);
				goto exit;
			}
		}

		/* Read sub registers with active IRQs */
		for (i = 0; i < chip->num_main_regs; i++) {
			unsigned int b;
			const unsigned long mreg = data->main_status_buf[i];

			for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
				if (i * map->format.val_bytes * 8 + b >
				    max_main_bits)
					break;
				ret = read_sub_irq_data(data, b);

				if (ret != 0) {
					dev_err(map->dev,
						"Failed to read IRQ status %d\n",
						ret);
					goto exit;
				}
			}

		}
	} else if (!map->use_single_read && map->reg_stride == 1 &&
		   data->irq_reg_stride == 1) {

		u8 *buf8 = data->status_reg_buf;
		u16 *buf16 = data->status_reg_buf;
		u32 *buf32 = data->status_reg_buf;

		BUG_ON(!data->status_reg_buf);

		ret = regmap_bulk_read(map, chip->status_base,
				       data->status_reg_buf,
				       chip->num_regs);
		if (ret != 0) {
			dev_err(map->dev, "Failed to read IRQ status: %d\n",
				ret);
			goto exit;
		}

		for (i = 0; i < data->chip->num_regs; i++) {
			switch (map->format.val_bytes) {
			case 1:
				data->status_buf[i] = buf8[i];
				break;
			case 2:
				data->status_buf[i] = buf16[i];
				break;
			case 4:
				data->status_buf[i] = buf32[i];
				break;
			default:
				BUG();
				goto exit;
			}
		}

	} else {
		for (i = 0; i < data->chip->num_regs; i++) {
			unsigned int reg = sub_irq_reg(data,
					data->chip->status_base, i);
			ret = regmap_read(map, reg, &data->status_buf[i]);

			if (ret != 0) {
				dev_err(map->dev,
					"Failed to read IRQ status: %d\n",
					ret);
				goto exit;
			}
		}
	}

	/*
	 * Ignore masked IRQs and ack if we need to; we ack early so
	 * there is no race between handling and acknowleding the
	 * interrupt.  We assume that typically few of the interrupts
	 * will fire simultaneously so don't worry about overhead from
	 * doing a write per register.
	 */
	for (i = 0; i < data->chip->num_regs; i++) {
		data->status_buf[i] &= ~data->mask_buf[i];

		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
			reg = sub_irq_reg(data, data->chip->ack_base, i);

			if (chip->ack_invert)
				ret = regmap_write(map, reg,
						~data->status_buf[i]);
			else
				ret = regmap_write(map, reg,
						data->status_buf[i]);
			if (chip->clear_ack) {
				if (chip->ack_invert && !ret)
					ret = regmap_write(map, reg,
							data->status_buf[i]);
				else if (!ret)
					ret = regmap_write(map, reg,
							~data->status_buf[i]);
			}
			if (ret != 0)
				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
					reg, ret);
		}
	}

	for (i = 0; i < chip->num_irqs; i++) {
		if (data->status_buf[chip->irqs[i].reg_offset /
				     map->reg_stride] & chip->irqs[i].mask) {
			handle_nested_irq(irq_find_mapping(data->domain, i));
			handled = true;
		}
	}

exit:
	if (chip->runtime_pm)
		pm_runtime_put(map->dev);

	if (chip->handle_post_irq)
		chip->handle_post_irq(chip->irq_drv_data);

	if (handled)
		return IRQ_HANDLED;
	else
		return IRQ_NONE;
}

static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
			  irq_hw_number_t hw)
{
	struct regmap_irq_chip_data *data = h->host_data;

	irq_set_chip_data(virq, data);
	irq_set_chip(virq, &data->irq_chip);
	irq_set_nested_thread(virq, 1);
	irq_set_parent(virq, data->irq);
	irq_set_noprobe(virq);

	return 0;
}

static const struct irq_domain_ops regmap_domain_ops = {
	.map	= regmap_irq_map,
	.xlate	= irq_domain_xlate_onetwocell,
};

/**
 * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
 *
 * @fwnode: The firmware node where the IRQ domain should be added to.
 * @map: The regmap for the device.
 * @irq: The IRQ the device uses to signal interrupts.
 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
 * @chip: Configuration for the interrupt controller.
 * @data: Runtime data structure for the controller, allocated on success.
 *
 * Returns 0 on success or an errno on failure.
 *
 * In order for this to be efficient the chip really should use a
 * register cache.  The chip driver is responsible for restoring the
 * register values used by the IRQ controller over suspend and resume.
 */
int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
			       struct regmap *map, int irq,
			       int irq_flags, int irq_base,
			       const struct regmap_irq_chip *chip,
			       struct regmap_irq_chip_data **data)
{
	struct regmap_irq_chip_data *d;
	int i;
	int ret = -ENOMEM;
	int num_type_reg;
	u32 reg;
	u32 unmask_offset;

	if (chip->num_regs <= 0)
		return -EINVAL;

	if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
		return -EINVAL;

	for (i = 0; i < chip->num_irqs; i++) {
		if (chip->irqs[i].reg_offset % map->reg_stride)
			return -EINVAL;
		if (chip->irqs[i].reg_offset / map->reg_stride >=
		    chip->num_regs)
			return -EINVAL;
	}

	if (chip->not_fixed_stride) {
		for (i = 0; i < chip->num_regs; i++)
			if (chip->sub_reg_offsets[i].num_regs != 1)
				return -EINVAL;
	}

	if (irq_base) {
		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
		if (irq_base < 0) {
			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
				 irq_base);
			return irq_base;
		}
	}

	d = kzalloc(sizeof(*d), GFP_KERNEL);
	if (!d)
		return -ENOMEM;

	if (chip->num_main_regs) {
		d->main_status_buf = kcalloc(chip->num_main_regs,
					     sizeof(unsigned int),
					     GFP_KERNEL);

		if (!d->main_status_buf)
			goto err_alloc;
	}

	d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
				GFP_KERNEL);
	if (!d->status_buf)
		goto err_alloc;

	d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
			      GFP_KERNEL);
	if (!d->mask_buf)
		goto err_alloc;

	d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
				  GFP_KERNEL);
	if (!d->mask_buf_def)
		goto err_alloc;

	if (chip->wake_base) {
		d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
				      GFP_KERNEL);
		if (!d->wake_buf)
			goto err_alloc;
	}

	num_type_reg = chip->type_in_mask ? chip->num_regs : chip->num_type_reg;
	if (num_type_reg) {
		d->type_buf_def = kcalloc(num_type_reg,
					  sizeof(unsigned int), GFP_KERNEL);
		if (!d->type_buf_def)
			goto err_alloc;

		d->type_buf = kcalloc(num_type_reg, sizeof(unsigned int),
				      GFP_KERNEL);
		if (!d->type_buf)
			goto err_alloc;
	}

	if (chip->num_virt_regs) {
		/*
		 * Create virt_buf[chip->num_extra_config_regs][chip->num_regs]
		 */
		d->virt_buf = kcalloc(chip->num_virt_regs, sizeof(*d->virt_buf),
				      GFP_KERNEL);
		if (!d->virt_buf)
			goto err_alloc;

		for (i = 0; i < chip->num_virt_regs; i++) {
			d->virt_buf[i] = kcalloc(chip->num_regs,
						 sizeof(unsigned int),
						 GFP_KERNEL);
			if (!d->virt_buf[i])
				goto err_alloc;
		}
	}

	d->irq_chip = regmap_irq_chip;
	d->irq_chip.name = chip->name;
	d->irq = irq;
	d->map = map;
	d->chip = chip;
	d->irq_base = irq_base;

	if (chip->irq_reg_stride)
		d->irq_reg_stride = chip->irq_reg_stride;
	else
		d->irq_reg_stride = 1;

	if (chip->type_reg_stride)
		d->type_reg_stride = chip->type_reg_stride;
	else
		d->type_reg_stride = 1;

	if (!map->use_single_read && map->reg_stride == 1 &&
	    d->irq_reg_stride == 1) {
		d->status_reg_buf = kmalloc_array(chip->num_regs,
						  map->format.val_bytes,
						  GFP_KERNEL);
		if (!d->status_reg_buf)
			goto err_alloc;
	}

	mutex_init(&d->lock);

	for (i = 0; i < chip->num_irqs; i++)
		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
			|= chip->irqs[i].mask;

	/* Mask all the interrupts by default */
	for (i = 0; i < chip->num_regs; i++) {
		d->mask_buf[i] = d->mask_buf_def[i];
		if (!chip->mask_base)
			continue;

		reg = sub_irq_reg(d, d->chip->mask_base, i);

		if (chip->mask_invert)
			ret = regmap_irq_update_bits(d, reg,
					 d->mask_buf[i], ~d->mask_buf[i]);
		else if (d->chip->unmask_base) {
			unmask_offset = d->chip->unmask_base -
					d->chip->mask_base;
			ret = regmap_irq_update_bits(d,
					reg + unmask_offset,
					d->mask_buf[i],
					d->mask_buf[i]);
		} else
			ret = regmap_irq_update_bits(d, reg,
					 d->mask_buf[i], d->mask_buf[i]);
		if (ret != 0) {
			dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
				reg, ret);
			goto err_alloc;
		}

		if (!chip->init_ack_masked)
			continue;

		/* Ack masked but set interrupts */
		reg = sub_irq_reg(d, d->chip->status_base, i);
		ret = regmap_read(map, reg, &d->status_buf[i]);
		if (ret != 0) {
			dev_err(map->dev, "Failed to read IRQ status: %d\n",
				ret);
			goto err_alloc;
		}

		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
			reg = sub_irq_reg(d, d->chip->ack_base, i);
			if (chip->ack_invert)
				ret = regmap_write(map, reg,
					~(d->status_buf[i] & d->mask_buf[i]));
			else
				ret = regmap_write(map, reg,
					d->status_buf[i] & d->mask_buf[i]);
			if (chip->clear_ack) {
				if (chip->ack_invert && !ret)
					ret = regmap_write(map, reg,
						(d->status_buf[i] &
						 d->mask_buf[i]));
				else if (!ret)
					ret = regmap_write(map, reg,
						~(d->status_buf[i] &
						  d->mask_buf[i]));
			}
			if (ret != 0) {
				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
					reg, ret);
				goto err_alloc;
			}
		}
	}

	/* Wake is disabled by default */
	if (d->wake_buf) {
		for (i = 0; i < chip->num_regs; i++) {
			d->wake_buf[i] = d->mask_buf_def[i];
			reg = sub_irq_reg(d, d->chip->wake_base, i);

			if (chip->wake_invert)
				ret = regmap_irq_update_bits(d, reg,
							 d->mask_buf_def[i],
							 0);
			else
				ret = regmap_irq_update_bits(d, reg,
							 d->mask_buf_def[i],
							 d->wake_buf[i]);
			if (ret != 0) {
				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
					reg, ret);
				goto err_alloc;
			}
		}
	}

	if (chip->num_type_reg && !chip->type_in_mask) {
		for (i = 0; i < chip->num_type_reg; ++i) {
			reg = sub_irq_reg(d, d->chip->type_base, i);

			ret = regmap_read(map, reg, &d->type_buf_def[i]);

			if (d->chip->type_invert)
				d->type_buf_def[i] = ~d->type_buf_def[i];

			if (ret) {
				dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n",
					reg, ret);
				goto err_alloc;
			}
		}
	}

	if (irq_base)
		d->domain = irq_domain_create_legacy(fwnode, chip->num_irqs,
						     irq_base, 0,
						     &regmap_domain_ops, d);
	else
		d->domain = irq_domain_create_linear(fwnode, chip->num_irqs,
						     &regmap_domain_ops, d);
	if (!d->domain) {
		dev_err(map->dev, "Failed to create IRQ domain\n");
		ret = -ENOMEM;
		goto err_alloc;
	}

	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
				   irq_flags | IRQF_ONESHOT,
				   chip->name, d);
	if (ret != 0) {
		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
			irq, chip->name, ret);
		goto err_domain;
	}

	*data = d;

	return 0;

err_domain:
	/* Should really dispose of the domain but... */
err_alloc:
	kfree(d->type_buf);
	kfree(d->type_buf_def);
	kfree(d->wake_buf);
	kfree(d->mask_buf_def);
	kfree(d->mask_buf);
	kfree(d->status_buf);
	kfree(d->status_reg_buf);
	if (d->virt_buf) {
		for (i = 0; i < chip->num_virt_regs; i++)
			kfree(d->virt_buf[i]);
		kfree(d->virt_buf);
	}
	kfree(d);
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);

/**
 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
 *
 * @map: The regmap for the device.
 * @irq: The IRQ the device uses to signal interrupts.
 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
 * @chip: Configuration for the interrupt controller.
 * @data: Runtime data structure for the controller, allocated on success.
 *
 * Returns 0 on success or an errno on failure.
 *
 * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
 * node of the regmap is used.
 */
int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
			int irq_base, const struct regmap_irq_chip *chip,
			struct regmap_irq_chip_data **data)
{
	return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
					  irq_flags, irq_base, chip, data);
}
EXPORT_SYMBOL_GPL(regmap_add_irq_chip);

/**
 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
 *
 * @irq: Primary IRQ for the device
 * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
 *
 * This function also disposes of all mapped IRQs on the chip.
 */
void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
{
	unsigned int virq;
	int hwirq;

	if (!d)
		return;

	free_irq(irq, d);

	/* Dispose all virtual irq from irq domain before removing it */
	for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
		/* Ignore hwirq if holes in the IRQ list */
		if (!d->chip->irqs[hwirq].mask)
			continue;

		/*
		 * Find the virtual irq of hwirq on chip and if it is
		 * there then dispose it
		 */
		virq = irq_find_mapping(d->domain, hwirq);
		if (virq)
			irq_dispose_mapping(virq);
	}

	irq_domain_remove(d->domain);
	kfree(d->type_buf);
	kfree(d->type_buf_def);
	kfree(d->wake_buf);
	kfree(d->mask_buf_def);
	kfree(d->mask_buf);
	kfree(d->status_reg_buf);
	kfree(d->status_buf);
	kfree(d);
}
EXPORT_SYMBOL_GPL(regmap_del_irq_chip);

static void devm_regmap_irq_chip_release(struct device *dev, void *res)
{
	struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;

	regmap_del_irq_chip(d->irq, d);
}

static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)

{
	struct regmap_irq_chip_data **r = res;

	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}
	return *r == data;
}

/**
 * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
 *
 * @dev: The device pointer on which irq_chip belongs to.
 * @fwnode: The firmware node where the IRQ domain should be added to.
 * @map: The regmap for the device.
 * @irq: The IRQ the device uses to signal interrupts
 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
 * @chip: Configuration for the interrupt controller.
 * @data: Runtime data structure for the controller, allocated on success
 *
 * Returns 0 on success or an errno on failure.
 *
 * The &regmap_irq_chip_data will be automatically released when the device is
 * unbound.
 */
int devm_regmap_add_irq_chip_fwnode(struct device *dev,
				    struct fwnode_handle *fwnode,
				    struct regmap *map, int irq,
				    int irq_flags, int irq_base,
				    const struct regmap_irq_chip *chip,
				    struct regmap_irq_chip_data **data)
{
	struct regmap_irq_chip_data **ptr, *d;
	int ret;

	ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
			   GFP_KERNEL);
	if (!ptr)
		return -ENOMEM;

	ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
					 chip, &d);
	if (ret < 0) {
		devres_free(ptr);
		return ret;
	}

	*ptr = d;
	devres_add(dev, ptr);
	*data = d;
	return 0;
}
EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);

/**
 * devm_regmap_add_irq_chip() - Resource manager regmap_add_irq_chip()
 *
 * @dev: The device pointer on which irq_chip belongs to.
 * @map: The regmap for the device.
 * @irq: The IRQ the device uses to signal interrupts
 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
 * @chip: Configuration for the interrupt controller.
 * @data: Runtime data structure for the controller, allocated on success
 *
 * Returns 0 on success or an errno on failure.
 *
 * The &regmap_irq_chip_data will be automatically released when the device is
 * unbound.
 */
int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
			     int irq_flags, int irq_base,
			     const struct regmap_irq_chip *chip,
			     struct regmap_irq_chip_data **data)
{
	return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
					       irq, irq_flags, irq_base, chip,
					       data);
}
EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);

/**
 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
 *
 * @dev: Device for which which resource was allocated.
 * @irq: Primary IRQ for the device.
 * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
 *
 * A resource managed version of regmap_del_irq_chip().
 */
void devm_regmap_del_irq_chip(struct device *dev, int irq,
			      struct regmap_irq_chip_data *data)
{
	int rc;

	WARN_ON(irq != data->irq);
	rc = devres_release(dev, devm_regmap_irq_chip_release,
			    devm_regmap_irq_chip_match, data);

	if (rc != 0)
		WARN_ON(rc);
}
EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);

/**
 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
 *
 * @data: regmap irq controller to operate on.
 *
 * Useful for drivers to request their own IRQs.
 */
int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
{
	WARN_ON(!data->irq_base);
	return data->irq_base;
}
EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);

/**
 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
 *
 * @data: regmap irq controller to operate on.
 * @irq: index of the interrupt requested in the chip IRQs.
 *
 * Useful for drivers to request their own IRQs.
 */
int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
{
	/* Handle holes in the IRQ list */
	if (!data->chip->irqs[irq].mask)
		return -EINVAL;

	return irq_create_mapping(data->domain, irq);
}
EXPORT_SYMBOL_GPL(regmap_irq_get_virq);

/**
 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
 *
 * @data: regmap_irq controller to operate on.
 *
 * Useful for drivers to request their own IRQs and for integration
 * with subsystems.  For ease of integration NULL is accepted as a
 * domain, allowing devices to just call this even if no domain is
 * allocated.
 */
struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
{
	if (data)
		return data->domain;
	else
		return NULL;
}
EXPORT_SYMBOL_GPL(regmap_irq_get_domain);