summaryrefslogtreecommitdiffstats
path: root/mm/kasan/kasan_test_c.c
blob: e0ec5a6d15be134eea6361e85c236e5cf4bf9375 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
// SPDX-License-Identifier: GPL-2.0-only
/*
 *
 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
 * Author: Andrey Ryabinin <a.ryabinin@samsung.com>
 */

#define pr_fmt(fmt) "kasan: test: " fmt

#include <kunit/test.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/kasan.h>
#include <linux/kernel.h>
#include <linux/mempool.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/module.h>
#include <linux/printk.h>
#include <linux/random.h>
#include <linux/set_memory.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/tracepoint.h>
#include <linux/uaccess.h>
#include <linux/vmalloc.h>
#include <trace/events/printk.h>

#include <asm/page.h>

#include "kasan.h"

#define OOB_TAG_OFF (IS_ENABLED(CONFIG_KASAN_GENERIC) ? 0 : KASAN_GRANULE_SIZE)

MODULE_IMPORT_NS(EXPORTED_FOR_KUNIT_TESTING);

static bool multishot;

/* Fields set based on lines observed in the console. */
static struct {
	bool report_found;
	bool async_fault;
} test_status;

/*
 * Some tests use these global variables to store return values from function
 * calls that could otherwise be eliminated by the compiler as dead code.
 */
void *kasan_ptr_result;
int kasan_int_result;

/* Probe for console output: obtains test_status lines of interest. */
static void probe_console(void *ignore, const char *buf, size_t len)
{
	if (strnstr(buf, "BUG: KASAN: ", len))
		WRITE_ONCE(test_status.report_found, true);
	else if (strnstr(buf, "Asynchronous fault: ", len))
		WRITE_ONCE(test_status.async_fault, true);
}

static int kasan_suite_init(struct kunit_suite *suite)
{
	if (!kasan_enabled()) {
		pr_err("Can't run KASAN tests with KASAN disabled");
		return -1;
	}

	/* Stop failing KUnit tests on KASAN reports. */
	kasan_kunit_test_suite_start();

	/*
	 * Temporarily enable multi-shot mode. Otherwise, KASAN would only
	 * report the first detected bug and panic the kernel if panic_on_warn
	 * is enabled.
	 */
	multishot = kasan_save_enable_multi_shot();

	register_trace_console(probe_console, NULL);
	return 0;
}

static void kasan_suite_exit(struct kunit_suite *suite)
{
	kasan_kunit_test_suite_end();
	kasan_restore_multi_shot(multishot);
	unregister_trace_console(probe_console, NULL);
	tracepoint_synchronize_unregister();
}

static void kasan_test_exit(struct kunit *test)
{
	KUNIT_EXPECT_FALSE(test, READ_ONCE(test_status.report_found));
}

/**
 * KUNIT_EXPECT_KASAN_FAIL - check that the executed expression produces a
 * KASAN report; causes a KUnit test failure otherwise.
 *
 * @test: Currently executing KUnit test.
 * @expression: Expression that must produce a KASAN report.
 *
 * For hardware tag-based KASAN, when a synchronous tag fault happens, tag
 * checking is auto-disabled. When this happens, this test handler reenables
 * tag checking. As tag checking can be only disabled or enabled per CPU,
 * this handler disables migration (preemption).
 *
 * Since the compiler doesn't see that the expression can change the test_status
 * fields, it can reorder or optimize away the accesses to those fields.
 * Use READ/WRITE_ONCE() for the accesses and compiler barriers around the
 * expression to prevent that.
 *
 * In between KUNIT_EXPECT_KASAN_FAIL checks, test_status.report_found is kept
 * as false. This allows detecting KASAN reports that happen outside of the
 * checks by asserting !test_status.report_found at the start of
 * KUNIT_EXPECT_KASAN_FAIL and in kasan_test_exit.
 */
#define KUNIT_EXPECT_KASAN_FAIL(test, expression) do {			\
	if (IS_ENABLED(CONFIG_KASAN_HW_TAGS) &&				\
	    kasan_sync_fault_possible())				\
		migrate_disable();					\
	KUNIT_EXPECT_FALSE(test, READ_ONCE(test_status.report_found));	\
	barrier();							\
	expression;							\
	barrier();							\
	if (kasan_async_fault_possible())				\
		kasan_force_async_fault();				\
	if (!READ_ONCE(test_status.report_found)) {			\
		KUNIT_FAIL(test, KUNIT_SUBTEST_INDENT "KASAN failure "	\
				"expected in \"" #expression		\
				 "\", but none occurred");		\
	}								\
	if (IS_ENABLED(CONFIG_KASAN_HW_TAGS) &&				\
	    kasan_sync_fault_possible()) {				\
		if (READ_ONCE(test_status.report_found) &&		\
		    !READ_ONCE(test_status.async_fault))		\
			kasan_enable_hw_tags();				\
		migrate_enable();					\
	}								\
	WRITE_ONCE(test_status.report_found, false);			\
	WRITE_ONCE(test_status.async_fault, false);			\
} while (0)

#define KASAN_TEST_NEEDS_CONFIG_ON(test, config) do {			\
	if (!IS_ENABLED(config))					\
		kunit_skip((test), "Test requires " #config "=y");	\
} while (0)

#define KASAN_TEST_NEEDS_CONFIG_OFF(test, config) do {			\
	if (IS_ENABLED(config))						\
		kunit_skip((test), "Test requires " #config "=n");	\
} while (0)

#define KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test) do {		\
	if (IS_ENABLED(CONFIG_KASAN_HW_TAGS))				\
		break;  /* No compiler instrumentation. */		\
	if (IS_ENABLED(CONFIG_CC_HAS_KASAN_MEMINTRINSIC_PREFIX))	\
		break;  /* Should always be instrumented! */		\
	if (IS_ENABLED(CONFIG_GENERIC_ENTRY))				\
		kunit_skip((test), "Test requires checked mem*()");	\
} while (0)

static void kmalloc_oob_right(struct kunit *test)
{
	char *ptr;
	size_t size = 128 - KASAN_GRANULE_SIZE - 5;

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	OPTIMIZER_HIDE_VAR(ptr);
	/*
	 * An unaligned access past the requested kmalloc size.
	 * Only generic KASAN can precisely detect these.
	 */
	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
		KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 'x');

	/*
	 * An aligned access into the first out-of-bounds granule that falls
	 * within the aligned kmalloc object.
	 */
	KUNIT_EXPECT_KASAN_FAIL(test, ptr[size + 5] = 'y');

	/* Out-of-bounds access past the aligned kmalloc object. */
	KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] =
					ptr[size + KASAN_GRANULE_SIZE + 5]);

	kfree(ptr);
}

static void kmalloc_oob_left(struct kunit *test)
{
	char *ptr;
	size_t size = 15;

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	OPTIMIZER_HIDE_VAR(ptr);
	KUNIT_EXPECT_KASAN_FAIL(test, *ptr = *(ptr - 1));
	kfree(ptr);
}

static void kmalloc_node_oob_right(struct kunit *test)
{
	char *ptr;
	size_t size = 4096;

	ptr = kmalloc_node(size, GFP_KERNEL, 0);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	OPTIMIZER_HIDE_VAR(ptr);
	KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] = ptr[size]);
	kfree(ptr);
}

static void kmalloc_track_caller_oob_right(struct kunit *test)
{
	char *ptr;
	size_t size = 128 - KASAN_GRANULE_SIZE;

	/*
	 * Check that KASAN detects out-of-bounds access for object allocated via
	 * kmalloc_track_caller().
	 */
	ptr = kmalloc_track_caller(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	OPTIMIZER_HIDE_VAR(ptr);
	KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 'y');

	kfree(ptr);

	/*
	 * Check that KASAN detects out-of-bounds access for object allocated via
	 * kmalloc_node_track_caller().
	 */
	ptr = kmalloc_node_track_caller(size, GFP_KERNEL, 0);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	OPTIMIZER_HIDE_VAR(ptr);
	KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 'y');

	kfree(ptr);
}

/*
 * Check that KASAN detects an out-of-bounds access for a big object allocated
 * via kmalloc(). But not as big as to trigger the page_alloc fallback.
 */
static void kmalloc_big_oob_right(struct kunit *test)
{
	char *ptr;
	size_t size = KMALLOC_MAX_CACHE_SIZE - 256;

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	OPTIMIZER_HIDE_VAR(ptr);
	KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 0);
	kfree(ptr);
}

/*
 * The kmalloc_large_* tests below use kmalloc() to allocate a memory chunk
 * that does not fit into the largest slab cache and therefore is allocated via
 * the page_alloc fallback.
 */

static void kmalloc_large_oob_right(struct kunit *test)
{
	char *ptr;
	size_t size = KMALLOC_MAX_CACHE_SIZE + 10;

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	OPTIMIZER_HIDE_VAR(ptr);
	KUNIT_EXPECT_KASAN_FAIL(test, ptr[size + OOB_TAG_OFF] = 0);

	kfree(ptr);
}

static void kmalloc_large_uaf(struct kunit *test)
{
	char *ptr;
	size_t size = KMALLOC_MAX_CACHE_SIZE + 10;

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
	kfree(ptr);

	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]);
}

static void kmalloc_large_invalid_free(struct kunit *test)
{
	char *ptr;
	size_t size = KMALLOC_MAX_CACHE_SIZE + 10;

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	KUNIT_EXPECT_KASAN_FAIL(test, kfree(ptr + 1));
}

static void page_alloc_oob_right(struct kunit *test)
{
	char *ptr;
	struct page *pages;
	size_t order = 4;
	size_t size = (1UL << (PAGE_SHIFT + order));

	/*
	 * With generic KASAN page allocations have no redzones, thus
	 * out-of-bounds detection is not guaranteed.
	 * See https://bugzilla.kernel.org/show_bug.cgi?id=210503.
	 */
	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);

	pages = alloc_pages(GFP_KERNEL, order);
	ptr = page_address(pages);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] = ptr[size]);
	free_pages((unsigned long)ptr, order);
}

static void page_alloc_uaf(struct kunit *test)
{
	char *ptr;
	struct page *pages;
	size_t order = 4;

	pages = alloc_pages(GFP_KERNEL, order);
	ptr = page_address(pages);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
	free_pages((unsigned long)ptr, order);

	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]);
}

static void krealloc_more_oob_helper(struct kunit *test,
					size_t size1, size_t size2)
{
	char *ptr1, *ptr2;
	size_t middle;

	KUNIT_ASSERT_LT(test, size1, size2);
	middle = size1 + (size2 - size1) / 2;

	ptr1 = kmalloc(size1, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);

	ptr2 = krealloc(ptr1, size2, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);

	/* Suppress -Warray-bounds warnings. */
	OPTIMIZER_HIDE_VAR(ptr2);

	/* All offsets up to size2 must be accessible. */
	ptr2[size1 - 1] = 'x';
	ptr2[size1] = 'x';
	ptr2[middle] = 'x';
	ptr2[size2 - 1] = 'x';

	/* Generic mode is precise, so unaligned size2 must be inaccessible. */
	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
		KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size2] = 'x');

	/* For all modes first aligned offset after size2 must be inaccessible. */
	KUNIT_EXPECT_KASAN_FAIL(test,
		ptr2[round_up(size2, KASAN_GRANULE_SIZE)] = 'x');

	kfree(ptr2);
}

static void krealloc_less_oob_helper(struct kunit *test,
					size_t size1, size_t size2)
{
	char *ptr1, *ptr2;
	size_t middle;

	KUNIT_ASSERT_LT(test, size2, size1);
	middle = size2 + (size1 - size2) / 2;

	ptr1 = kmalloc(size1, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);

	ptr2 = krealloc(ptr1, size2, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);

	/* Suppress -Warray-bounds warnings. */
	OPTIMIZER_HIDE_VAR(ptr2);

	/* Must be accessible for all modes. */
	ptr2[size2 - 1] = 'x';

	/* Generic mode is precise, so unaligned size2 must be inaccessible. */
	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
		KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size2] = 'x');

	/* For all modes first aligned offset after size2 must be inaccessible. */
	KUNIT_EXPECT_KASAN_FAIL(test,
		ptr2[round_up(size2, KASAN_GRANULE_SIZE)] = 'x');

	/*
	 * For all modes all size2, middle, and size1 should land in separate
	 * granules and thus the latter two offsets should be inaccessible.
	 */
	KUNIT_EXPECT_LE(test, round_up(size2, KASAN_GRANULE_SIZE),
				round_down(middle, KASAN_GRANULE_SIZE));
	KUNIT_EXPECT_LE(test, round_up(middle, KASAN_GRANULE_SIZE),
				round_down(size1, KASAN_GRANULE_SIZE));
	KUNIT_EXPECT_KASAN_FAIL(test, ptr2[middle] = 'x');
	KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size1 - 1] = 'x');
	KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size1] = 'x');

	kfree(ptr2);
}

static void krealloc_more_oob(struct kunit *test)
{
	krealloc_more_oob_helper(test, 201, 235);
}

static void krealloc_less_oob(struct kunit *test)
{
	krealloc_less_oob_helper(test, 235, 201);
}

static void krealloc_large_more_oob(struct kunit *test)
{
	krealloc_more_oob_helper(test, KMALLOC_MAX_CACHE_SIZE + 201,
					KMALLOC_MAX_CACHE_SIZE + 235);
}

static void krealloc_large_less_oob(struct kunit *test)
{
	krealloc_less_oob_helper(test, KMALLOC_MAX_CACHE_SIZE + 235,
					KMALLOC_MAX_CACHE_SIZE + 201);
}

/*
 * Check that krealloc() detects a use-after-free, returns NULL,
 * and doesn't unpoison the freed object.
 */
static void krealloc_uaf(struct kunit *test)
{
	char *ptr1, *ptr2;
	int size1 = 201;
	int size2 = 235;

	ptr1 = kmalloc(size1, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
	kfree(ptr1);

	KUNIT_EXPECT_KASAN_FAIL(test, ptr2 = krealloc(ptr1, size2, GFP_KERNEL));
	KUNIT_ASSERT_NULL(test, ptr2);
	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)ptr1);
}

static void kmalloc_oob_16(struct kunit *test)
{
	struct {
		u64 words[2];
	} *ptr1, *ptr2;

	KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);

	/* This test is specifically crafted for the generic mode. */
	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);

	/* RELOC_HIDE to prevent gcc from warning about short alloc */
	ptr1 = RELOC_HIDE(kmalloc(sizeof(*ptr1) - 3, GFP_KERNEL), 0);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);

	ptr2 = kmalloc(sizeof(*ptr2), GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);

	OPTIMIZER_HIDE_VAR(ptr1);
	OPTIMIZER_HIDE_VAR(ptr2);
	KUNIT_EXPECT_KASAN_FAIL(test, *ptr1 = *ptr2);
	kfree(ptr1);
	kfree(ptr2);
}

static void kmalloc_uaf_16(struct kunit *test)
{
	struct {
		u64 words[2];
	} *ptr1, *ptr2;

	KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);

	ptr1 = kmalloc(sizeof(*ptr1), GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);

	ptr2 = kmalloc(sizeof(*ptr2), GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
	kfree(ptr2);

	KUNIT_EXPECT_KASAN_FAIL(test, *ptr1 = *ptr2);
	kfree(ptr1);
}

/*
 * Note: in the memset tests below, the written range touches both valid and
 * invalid memory. This makes sure that the instrumentation does not only check
 * the starting address but the whole range.
 */

static void kmalloc_oob_memset_2(struct kunit *test)
{
	char *ptr;
	size_t size = 128 - KASAN_GRANULE_SIZE;
	size_t memset_size = 2;

	KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	OPTIMIZER_HIDE_VAR(ptr);
	OPTIMIZER_HIDE_VAR(size);
	OPTIMIZER_HIDE_VAR(memset_size);
	KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 1, 0, memset_size));
	kfree(ptr);
}

static void kmalloc_oob_memset_4(struct kunit *test)
{
	char *ptr;
	size_t size = 128 - KASAN_GRANULE_SIZE;
	size_t memset_size = 4;

	KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	OPTIMIZER_HIDE_VAR(ptr);
	OPTIMIZER_HIDE_VAR(size);
	OPTIMIZER_HIDE_VAR(memset_size);
	KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 3, 0, memset_size));
	kfree(ptr);
}

static void kmalloc_oob_memset_8(struct kunit *test)
{
	char *ptr;
	size_t size = 128 - KASAN_GRANULE_SIZE;
	size_t memset_size = 8;

	KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	OPTIMIZER_HIDE_VAR(ptr);
	OPTIMIZER_HIDE_VAR(size);
	OPTIMIZER_HIDE_VAR(memset_size);
	KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 7, 0, memset_size));
	kfree(ptr);
}

static void kmalloc_oob_memset_16(struct kunit *test)
{
	char *ptr;
	size_t size = 128 - KASAN_GRANULE_SIZE;
	size_t memset_size = 16;

	KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	OPTIMIZER_HIDE_VAR(ptr);
	OPTIMIZER_HIDE_VAR(size);
	OPTIMIZER_HIDE_VAR(memset_size);
	KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 15, 0, memset_size));
	kfree(ptr);
}

static void kmalloc_oob_in_memset(struct kunit *test)
{
	char *ptr;
	size_t size = 128 - KASAN_GRANULE_SIZE;

	KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	OPTIMIZER_HIDE_VAR(ptr);
	OPTIMIZER_HIDE_VAR(size);
	KUNIT_EXPECT_KASAN_FAIL(test,
				memset(ptr, 0, size + KASAN_GRANULE_SIZE));
	kfree(ptr);
}

static void kmalloc_memmove_negative_size(struct kunit *test)
{
	char *ptr;
	size_t size = 64;
	size_t invalid_size = -2;

	KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);

	/*
	 * Hardware tag-based mode doesn't check memmove for negative size.
	 * As a result, this test introduces a side-effect memory corruption,
	 * which can result in a crash.
	 */
	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_HW_TAGS);

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	memset((char *)ptr, 0, 64);
	OPTIMIZER_HIDE_VAR(ptr);
	OPTIMIZER_HIDE_VAR(invalid_size);
	KUNIT_EXPECT_KASAN_FAIL(test,
		memmove((char *)ptr, (char *)ptr + 4, invalid_size));
	kfree(ptr);
}

static void kmalloc_memmove_invalid_size(struct kunit *test)
{
	char *ptr;
	size_t size = 64;
	size_t invalid_size = size;

	KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	memset((char *)ptr, 0, 64);
	OPTIMIZER_HIDE_VAR(ptr);
	OPTIMIZER_HIDE_VAR(invalid_size);
	KUNIT_EXPECT_KASAN_FAIL(test,
		memmove((char *)ptr, (char *)ptr + 4, invalid_size));
	kfree(ptr);
}

static void kmalloc_uaf(struct kunit *test)
{
	char *ptr;
	size_t size = 10;

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	kfree(ptr);
	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[8]);
}

static void kmalloc_uaf_memset(struct kunit *test)
{
	char *ptr;
	size_t size = 33;

	KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);

	/*
	 * Only generic KASAN uses quarantine, which is required to avoid a
	 * kernel memory corruption this test causes.
	 */
	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	kfree(ptr);
	KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr, 0, size));
}

static void kmalloc_uaf2(struct kunit *test)
{
	char *ptr1, *ptr2;
	size_t size = 43;
	int counter = 0;

again:
	ptr1 = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);

	kfree(ptr1);

	ptr2 = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);

	/*
	 * For tag-based KASAN ptr1 and ptr2 tags might happen to be the same.
	 * Allow up to 16 attempts at generating different tags.
	 */
	if (!IS_ENABLED(CONFIG_KASAN_GENERIC) && ptr1 == ptr2 && counter++ < 16) {
		kfree(ptr2);
		goto again;
	}

	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr1)[40]);
	KUNIT_EXPECT_PTR_NE(test, ptr1, ptr2);

	kfree(ptr2);
}

/*
 * Check that KASAN detects use-after-free when another object was allocated in
 * the same slot. Relevant for the tag-based modes, which do not use quarantine.
 */
static void kmalloc_uaf3(struct kunit *test)
{
	char *ptr1, *ptr2;
	size_t size = 100;

	/* This test is specifically crafted for tag-based modes. */
	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);

	ptr1 = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
	kfree(ptr1);

	ptr2 = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
	kfree(ptr2);

	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr1)[8]);
}

static void kasan_atomics_helper(struct kunit *test, void *unsafe, void *safe)
{
	int *i_unsafe = unsafe;

	KUNIT_EXPECT_KASAN_FAIL(test, READ_ONCE(*i_unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, WRITE_ONCE(*i_unsafe, 42));
	KUNIT_EXPECT_KASAN_FAIL(test, smp_load_acquire(i_unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, smp_store_release(i_unsafe, 42));

	KUNIT_EXPECT_KASAN_FAIL(test, atomic_read(unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_set(unsafe, 42));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_add(42, unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_sub(42, unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_inc(unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_dec(unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_and(42, unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_andnot(42, unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_or(42, unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_xor(42, unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_xchg(unsafe, 42));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_cmpxchg(unsafe, 21, 42));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_try_cmpxchg(unsafe, safe, 42));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_try_cmpxchg(safe, unsafe, 42));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_sub_and_test(42, unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_dec_and_test(unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_inc_and_test(unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_add_negative(42, unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_add_unless(unsafe, 21, 42));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_inc_not_zero(unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_inc_unless_negative(unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_dec_unless_positive(unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_dec_if_positive(unsafe));

	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_read(unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_set(unsafe, 42));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_add(42, unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_sub(42, unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_inc(unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_dec(unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_and(42, unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_andnot(42, unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_or(42, unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_xor(42, unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_xchg(unsafe, 42));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_cmpxchg(unsafe, 21, 42));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_try_cmpxchg(unsafe, safe, 42));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_try_cmpxchg(safe, unsafe, 42));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_sub_and_test(42, unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_dec_and_test(unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_inc_and_test(unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_add_negative(42, unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_add_unless(unsafe, 21, 42));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_inc_not_zero(unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_inc_unless_negative(unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_dec_unless_positive(unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_dec_if_positive(unsafe));
}

static void kasan_atomics(struct kunit *test)
{
	void *a1, *a2;

	/*
	 * Just as with kasan_bitops_tags(), we allocate 48 bytes of memory such
	 * that the following 16 bytes will make up the redzone.
	 */
	a1 = kzalloc(48, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, a1);
	a2 = kzalloc(sizeof(atomic_long_t), GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, a2);

	/* Use atomics to access the redzone. */
	kasan_atomics_helper(test, a1 + 48, a2);

	kfree(a1);
	kfree(a2);
}

static void kmalloc_double_kzfree(struct kunit *test)
{
	char *ptr;
	size_t size = 16;

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	kfree_sensitive(ptr);
	KUNIT_EXPECT_KASAN_FAIL(test, kfree_sensitive(ptr));
}

/* Check that ksize() does NOT unpoison whole object. */
static void ksize_unpoisons_memory(struct kunit *test)
{
	char *ptr;
	size_t size = 128 - KASAN_GRANULE_SIZE - 5;
	size_t real_size;

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	real_size = ksize(ptr);
	KUNIT_EXPECT_GT(test, real_size, size);

	OPTIMIZER_HIDE_VAR(ptr);

	/* These accesses shouldn't trigger a KASAN report. */
	ptr[0] = 'x';
	ptr[size - 1] = 'x';

	/* These must trigger a KASAN report. */
	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
		KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[size]);
	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[size + 5]);
	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[real_size - 1]);

	kfree(ptr);
}

/*
 * Check that a use-after-free is detected by ksize() and via normal accesses
 * after it.
 */
static void ksize_uaf(struct kunit *test)
{
	char *ptr;
	int size = 128 - KASAN_GRANULE_SIZE;

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
	kfree(ptr);

	OPTIMIZER_HIDE_VAR(ptr);
	KUNIT_EXPECT_KASAN_FAIL(test, ksize(ptr));
	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]);
	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[size]);
}

/*
 * The two tests below check that Generic KASAN prints auxiliary stack traces
 * for RCU callbacks and workqueues. The reports need to be inspected manually.
 *
 * These tests are still enabled for other KASAN modes to make sure that all
 * modes report bad accesses in tested scenarios.
 */

static struct kasan_rcu_info {
	int i;
	struct rcu_head rcu;
} *global_rcu_ptr;

static void rcu_uaf_reclaim(struct rcu_head *rp)
{
	struct kasan_rcu_info *fp =
		container_of(rp, struct kasan_rcu_info, rcu);

	kfree(fp);
	((volatile struct kasan_rcu_info *)fp)->i;
}

static void rcu_uaf(struct kunit *test)
{
	struct kasan_rcu_info *ptr;

	ptr = kmalloc(sizeof(struct kasan_rcu_info), GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	global_rcu_ptr = rcu_dereference_protected(
				(struct kasan_rcu_info __rcu *)ptr, NULL);

	KUNIT_EXPECT_KASAN_FAIL(test,
		call_rcu(&global_rcu_ptr->rcu, rcu_uaf_reclaim);
		rcu_barrier());
}

static void workqueue_uaf_work(struct work_struct *work)
{
	kfree(work);
}

static void workqueue_uaf(struct kunit *test)
{
	struct workqueue_struct *workqueue;
	struct work_struct *work;

	workqueue = create_workqueue("kasan_workqueue_test");
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, workqueue);

	work = kmalloc(sizeof(struct work_struct), GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, work);

	INIT_WORK(work, workqueue_uaf_work);
	queue_work(workqueue, work);
	destroy_workqueue(workqueue);

	KUNIT_EXPECT_KASAN_FAIL(test,
		((volatile struct work_struct *)work)->data);
}

static void kfree_via_page(struct kunit *test)
{
	char *ptr;
	size_t size = 8;
	struct page *page;
	unsigned long offset;

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	page = virt_to_page(ptr);
	offset = offset_in_page(ptr);
	kfree(page_address(page) + offset);
}

static void kfree_via_phys(struct kunit *test)
{
	char *ptr;
	size_t size = 8;
	phys_addr_t phys;

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	phys = virt_to_phys(ptr);
	kfree(phys_to_virt(phys));
}

static void kmem_cache_oob(struct kunit *test)
{
	char *p;
	size_t size = 200;
	struct kmem_cache *cache;

	cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);

	p = kmem_cache_alloc(cache, GFP_KERNEL);
	if (!p) {
		kunit_err(test, "Allocation failed: %s\n", __func__);
		kmem_cache_destroy(cache);
		return;
	}

	KUNIT_EXPECT_KASAN_FAIL(test, *p = p[size + OOB_TAG_OFF]);

	kmem_cache_free(cache, p);
	kmem_cache_destroy(cache);
}

static void kmem_cache_double_free(struct kunit *test)
{
	char *p;
	size_t size = 200;
	struct kmem_cache *cache;

	cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);

	p = kmem_cache_alloc(cache, GFP_KERNEL);
	if (!p) {
		kunit_err(test, "Allocation failed: %s\n", __func__);
		kmem_cache_destroy(cache);
		return;
	}

	kmem_cache_free(cache, p);
	KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_free(cache, p));
	kmem_cache_destroy(cache);
}

static void kmem_cache_invalid_free(struct kunit *test)
{
	char *p;
	size_t size = 200;
	struct kmem_cache *cache;

	cache = kmem_cache_create("test_cache", size, 0, SLAB_TYPESAFE_BY_RCU,
				  NULL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);

	p = kmem_cache_alloc(cache, GFP_KERNEL);
	if (!p) {
		kunit_err(test, "Allocation failed: %s\n", __func__);
		kmem_cache_destroy(cache);
		return;
	}

	/* Trigger invalid free, the object doesn't get freed. */
	KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_free(cache, p + 1));

	/*
	 * Properly free the object to prevent the "Objects remaining in
	 * test_cache on __kmem_cache_shutdown" BUG failure.
	 */
	kmem_cache_free(cache, p);

	kmem_cache_destroy(cache);
}

static void kmem_cache_rcu_uaf(struct kunit *test)
{
	char *p;
	size_t size = 200;
	struct kmem_cache *cache;

	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_SLUB_RCU_DEBUG);

	cache = kmem_cache_create("test_cache", size, 0, SLAB_TYPESAFE_BY_RCU,
				  NULL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);

	p = kmem_cache_alloc(cache, GFP_KERNEL);
	if (!p) {
		kunit_err(test, "Allocation failed: %s\n", __func__);
		kmem_cache_destroy(cache);
		return;
	}
	*p = 1;

	rcu_read_lock();

	/* Free the object - this will internally schedule an RCU callback. */
	kmem_cache_free(cache, p);

	/*
	 * We should still be allowed to access the object at this point because
	 * the cache is SLAB_TYPESAFE_BY_RCU and we've been in an RCU read-side
	 * critical section since before the kmem_cache_free().
	 */
	READ_ONCE(*p);

	rcu_read_unlock();

	/*
	 * Wait for the RCU callback to execute; after this, the object should
	 * have actually been freed from KASAN's perspective.
	 */
	rcu_barrier();

	KUNIT_EXPECT_KASAN_FAIL(test, READ_ONCE(*p));

	kmem_cache_destroy(cache);
}

static void empty_cache_ctor(void *object) { }

static void kmem_cache_double_destroy(struct kunit *test)
{
	struct kmem_cache *cache;

	/* Provide a constructor to prevent cache merging. */
	cache = kmem_cache_create("test_cache", 200, 0, 0, empty_cache_ctor);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
	kmem_cache_destroy(cache);
	KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_destroy(cache));
}

static void kmem_cache_accounted(struct kunit *test)
{
	int i;
	char *p;
	size_t size = 200;
	struct kmem_cache *cache;

	cache = kmem_cache_create("test_cache", size, 0, SLAB_ACCOUNT, NULL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);

	/*
	 * Several allocations with a delay to allow for lazy per memcg kmem
	 * cache creation.
	 */
	for (i = 0; i < 5; i++) {
		p = kmem_cache_alloc(cache, GFP_KERNEL);
		if (!p)
			goto free_cache;

		kmem_cache_free(cache, p);
		msleep(100);
	}

free_cache:
	kmem_cache_destroy(cache);
}

static void kmem_cache_bulk(struct kunit *test)
{
	struct kmem_cache *cache;
	size_t size = 200;
	char *p[10];
	bool ret;
	int i;

	cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);

	ret = kmem_cache_alloc_bulk(cache, GFP_KERNEL, ARRAY_SIZE(p), (void **)&p);
	if (!ret) {
		kunit_err(test, "Allocation failed: %s\n", __func__);
		kmem_cache_destroy(cache);
		return;
	}

	for (i = 0; i < ARRAY_SIZE(p); i++)
		p[i][0] = p[i][size - 1] = 42;

	kmem_cache_free_bulk(cache, ARRAY_SIZE(p), (void **)&p);
	kmem_cache_destroy(cache);
}

static void *mempool_prepare_kmalloc(struct kunit *test, mempool_t *pool, size_t size)
{
	int pool_size = 4;
	int ret;
	void *elem;

	memset(pool, 0, sizeof(*pool));
	ret = mempool_init_kmalloc_pool(pool, pool_size, size);
	KUNIT_ASSERT_EQ(test, ret, 0);

	/*
	 * Allocate one element to prevent mempool from freeing elements to the
	 * underlying allocator and instead make it add them to the element
	 * list when the tests trigger double-free and invalid-free bugs.
	 * This allows testing KASAN annotations in add_element().
	 */
	elem = mempool_alloc_preallocated(pool);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem);

	return elem;
}

static struct kmem_cache *mempool_prepare_slab(struct kunit *test, mempool_t *pool, size_t size)
{
	struct kmem_cache *cache;
	int pool_size = 4;
	int ret;

	cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);

	memset(pool, 0, sizeof(*pool));
	ret = mempool_init_slab_pool(pool, pool_size, cache);
	KUNIT_ASSERT_EQ(test, ret, 0);

	/*
	 * Do not allocate one preallocated element, as we skip the double-free
	 * and invalid-free tests for slab mempool for simplicity.
	 */

	return cache;
}

static void *mempool_prepare_page(struct kunit *test, mempool_t *pool, int order)
{
	int pool_size = 4;
	int ret;
	void *elem;

	memset(pool, 0, sizeof(*pool));
	ret = mempool_init_page_pool(pool, pool_size, order);
	KUNIT_ASSERT_EQ(test, ret, 0);

	elem = mempool_alloc_preallocated(pool);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem);

	return elem;
}

static void mempool_oob_right_helper(struct kunit *test, mempool_t *pool, size_t size)
{
	char *elem;

	elem = mempool_alloc_preallocated(pool);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem);

	OPTIMIZER_HIDE_VAR(elem);

	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
		KUNIT_EXPECT_KASAN_FAIL(test,
			((volatile char *)&elem[size])[0]);
	else
		KUNIT_EXPECT_KASAN_FAIL(test,
			((volatile char *)&elem[round_up(size, KASAN_GRANULE_SIZE)])[0]);

	mempool_free(elem, pool);
}

static void mempool_kmalloc_oob_right(struct kunit *test)
{
	mempool_t pool;
	size_t size = 128 - KASAN_GRANULE_SIZE - 5;
	void *extra_elem;

	extra_elem = mempool_prepare_kmalloc(test, &pool, size);

	mempool_oob_right_helper(test, &pool, size);

	mempool_free(extra_elem, &pool);
	mempool_exit(&pool);
}

static void mempool_kmalloc_large_oob_right(struct kunit *test)
{
	mempool_t pool;
	size_t size = KMALLOC_MAX_CACHE_SIZE + 1;
	void *extra_elem;

	extra_elem = mempool_prepare_kmalloc(test, &pool, size);

	mempool_oob_right_helper(test, &pool, size);

	mempool_free(extra_elem, &pool);
	mempool_exit(&pool);
}

static void mempool_slab_oob_right(struct kunit *test)
{
	mempool_t pool;
	size_t size = 123;
	struct kmem_cache *cache;

	cache = mempool_prepare_slab(test, &pool, size);

	mempool_oob_right_helper(test, &pool, size);

	mempool_exit(&pool);
	kmem_cache_destroy(cache);
}

/*
 * Skip the out-of-bounds test for page mempool. With Generic KASAN, page
 * allocations have no redzones, and thus the out-of-bounds detection is not
 * guaranteed; see https://bugzilla.kernel.org/show_bug.cgi?id=210503. With
 * the tag-based KASAN modes, the neighboring allocation might have the same
 * tag; see https://bugzilla.kernel.org/show_bug.cgi?id=203505.
 */

static void mempool_uaf_helper(struct kunit *test, mempool_t *pool, bool page)
{
	char *elem, *ptr;

	elem = mempool_alloc_preallocated(pool);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem);

	mempool_free(elem, pool);

	ptr = page ? page_address((struct page *)elem) : elem;
	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]);
}

static void mempool_kmalloc_uaf(struct kunit *test)
{
	mempool_t pool;
	size_t size = 128;
	void *extra_elem;

	extra_elem = mempool_prepare_kmalloc(test, &pool, size);

	mempool_uaf_helper(test, &pool, false);

	mempool_free(extra_elem, &pool);
	mempool_exit(&pool);
}

static void mempool_kmalloc_large_uaf(struct kunit *test)
{
	mempool_t pool;
	size_t size = KMALLOC_MAX_CACHE_SIZE + 1;
	void *extra_elem;

	extra_elem = mempool_prepare_kmalloc(test, &pool, size);

	mempool_uaf_helper(test, &pool, false);

	mempool_free(extra_elem, &pool);
	mempool_exit(&pool);
}

static void mempool_slab_uaf(struct kunit *test)
{
	mempool_t pool;
	size_t size = 123;
	struct kmem_cache *cache;

	cache = mempool_prepare_slab(test, &pool, size);

	mempool_uaf_helper(test, &pool, false);

	mempool_exit(&pool);
	kmem_cache_destroy(cache);
}

static void mempool_page_alloc_uaf(struct kunit *test)
{
	mempool_t pool;
	int order = 2;
	void *extra_elem;

	extra_elem = mempool_prepare_page(test, &pool, order);

	mempool_uaf_helper(test, &pool, true);

	mempool_free(extra_elem, &pool);
	mempool_exit(&pool);
}

static void mempool_double_free_helper(struct kunit *test, mempool_t *pool)
{
	char *elem;

	elem = mempool_alloc_preallocated(pool);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem);

	mempool_free(elem, pool);

	KUNIT_EXPECT_KASAN_FAIL(test, mempool_free(elem, pool));
}

static void mempool_kmalloc_double_free(struct kunit *test)
{
	mempool_t pool;
	size_t size = 128;
	char *extra_elem;

	extra_elem = mempool_prepare_kmalloc(test, &pool, size);

	mempool_double_free_helper(test, &pool);

	mempool_free(extra_elem, &pool);
	mempool_exit(&pool);
}

static void mempool_kmalloc_large_double_free(struct kunit *test)
{
	mempool_t pool;
	size_t size = KMALLOC_MAX_CACHE_SIZE + 1;
	char *extra_elem;

	extra_elem = mempool_prepare_kmalloc(test, &pool, size);

	mempool_double_free_helper(test, &pool);

	mempool_free(extra_elem, &pool);
	mempool_exit(&pool);
}

static void mempool_page_alloc_double_free(struct kunit *test)
{
	mempool_t pool;
	int order = 2;
	char *extra_elem;

	extra_elem = mempool_prepare_page(test, &pool, order);

	mempool_double_free_helper(test, &pool);

	mempool_free(extra_elem, &pool);
	mempool_exit(&pool);
}

static void mempool_kmalloc_invalid_free_helper(struct kunit *test, mempool_t *pool)
{
	char *elem;

	elem = mempool_alloc_preallocated(pool);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem);

	KUNIT_EXPECT_KASAN_FAIL(test, mempool_free(elem + 1, pool));

	mempool_free(elem, pool);
}

static void mempool_kmalloc_invalid_free(struct kunit *test)
{
	mempool_t pool;
	size_t size = 128;
	char *extra_elem;

	extra_elem = mempool_prepare_kmalloc(test, &pool, size);

	mempool_kmalloc_invalid_free_helper(test, &pool);

	mempool_free(extra_elem, &pool);
	mempool_exit(&pool);
}

static void mempool_kmalloc_large_invalid_free(struct kunit *test)
{
	mempool_t pool;
	size_t size = KMALLOC_MAX_CACHE_SIZE + 1;
	char *extra_elem;

	extra_elem = mempool_prepare_kmalloc(test, &pool, size);

	mempool_kmalloc_invalid_free_helper(test, &pool);

	mempool_free(extra_elem, &pool);
	mempool_exit(&pool);
}

/*
 * Skip the invalid-free test for page mempool. The invalid-free detection only
 * works for compound pages and mempool preallocates all page elements without
 * the __GFP_COMP flag.
 */

static char global_array[10];

static void kasan_global_oob_right(struct kunit *test)
{
	/*
	 * Deliberate out-of-bounds access. To prevent CONFIG_UBSAN_LOCAL_BOUNDS
	 * from failing here and panicking the kernel, access the array via a
	 * volatile pointer, which will prevent the compiler from being able to
	 * determine the array bounds.
	 *
	 * This access uses a volatile pointer to char (char *volatile) rather
	 * than the more conventional pointer to volatile char (volatile char *)
	 * because we want to prevent the compiler from making inferences about
	 * the pointer itself (i.e. its array bounds), not the data that it
	 * refers to.
	 */
	char *volatile array = global_array;
	char *p = &array[ARRAY_SIZE(global_array) + 3];

	/* Only generic mode instruments globals. */
	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);

	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
}

static void kasan_global_oob_left(struct kunit *test)
{
	char *volatile array = global_array;
	char *p = array - 3;

	/*
	 * GCC is known to fail this test, skip it.
	 * See https://bugzilla.kernel.org/show_bug.cgi?id=215051.
	 */
	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_CC_IS_CLANG);
	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
}

static void kasan_stack_oob(struct kunit *test)
{
	char stack_array[10];
	/* See comment in kasan_global_oob_right. */
	char *volatile array = stack_array;
	char *p = &array[ARRAY_SIZE(stack_array) + OOB_TAG_OFF];

	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK);

	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
}

static void kasan_alloca_oob_left(struct kunit *test)
{
	volatile int i = 10;
	char alloca_array[i];
	/* See comment in kasan_global_oob_right. */
	char *volatile array = alloca_array;
	char *p = array - 1;

	/* Only generic mode instruments dynamic allocas. */
	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK);

	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
}

static void kasan_alloca_oob_right(struct kunit *test)
{
	volatile int i = 10;
	char alloca_array[i];
	/* See comment in kasan_global_oob_right. */
	char *volatile array = alloca_array;
	char *p = array + i;

	/* Only generic mode instruments dynamic allocas. */
	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK);

	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
}

static void kasan_memchr(struct kunit *test)
{
	char *ptr;
	size_t size = 24;

	/*
	 * str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT.
	 * See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details.
	 */
	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT);

	if (OOB_TAG_OFF)
		size = round_up(size, OOB_TAG_OFF);

	ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	OPTIMIZER_HIDE_VAR(ptr);
	OPTIMIZER_HIDE_VAR(size);
	KUNIT_EXPECT_KASAN_FAIL(test,
		kasan_ptr_result = memchr(ptr, '1', size + 1));

	kfree(ptr);
}

static void kasan_memcmp(struct kunit *test)
{
	char *ptr;
	size_t size = 24;
	int arr[9];

	/*
	 * str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT.
	 * See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details.
	 */
	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT);

	if (OOB_TAG_OFF)
		size = round_up(size, OOB_TAG_OFF);

	ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
	memset(arr, 0, sizeof(arr));

	OPTIMIZER_HIDE_VAR(ptr);
	OPTIMIZER_HIDE_VAR(size);
	KUNIT_EXPECT_KASAN_FAIL(test,
		kasan_int_result = memcmp(ptr, arr, size+1));
	kfree(ptr);
}

static void kasan_strings(struct kunit *test)
{
	char *ptr;
	size_t size = 24;

	/*
	 * str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT.
	 * See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details.
	 */
	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT);

	ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	kfree(ptr);

	/*
	 * Try to cause only 1 invalid access (less spam in dmesg).
	 * For that we need ptr to point to zeroed byte.
	 * Skip metadata that could be stored in freed object so ptr
	 * will likely point to zeroed byte.
	 */
	ptr += 16;
	KUNIT_EXPECT_KASAN_FAIL(test, kasan_ptr_result = strchr(ptr, '1'));

	KUNIT_EXPECT_KASAN_FAIL(test, kasan_ptr_result = strrchr(ptr, '1'));

	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strcmp(ptr, "2"));

	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strncmp(ptr, "2", 1));

	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strlen(ptr));

	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strnlen(ptr, 1));
}

static void kasan_bitops_modify(struct kunit *test, int nr, void *addr)
{
	KUNIT_EXPECT_KASAN_FAIL(test, set_bit(nr, addr));
	KUNIT_EXPECT_KASAN_FAIL(test, __set_bit(nr, addr));
	KUNIT_EXPECT_KASAN_FAIL(test, clear_bit(nr, addr));
	KUNIT_EXPECT_KASAN_FAIL(test, __clear_bit(nr, addr));
	KUNIT_EXPECT_KASAN_FAIL(test, clear_bit_unlock(nr, addr));
	KUNIT_EXPECT_KASAN_FAIL(test, __clear_bit_unlock(nr, addr));
	KUNIT_EXPECT_KASAN_FAIL(test, change_bit(nr, addr));
	KUNIT_EXPECT_KASAN_FAIL(test, __change_bit(nr, addr));
}

static void kasan_bitops_test_and_modify(struct kunit *test, int nr, void *addr)
{
	KUNIT_EXPECT_KASAN_FAIL(test, test_and_set_bit(nr, addr));
	KUNIT_EXPECT_KASAN_FAIL(test, __test_and_set_bit(nr, addr));
	KUNIT_EXPECT_KASAN_FAIL(test, test_and_set_bit_lock(nr, addr));
	KUNIT_EXPECT_KASAN_FAIL(test, test_and_clear_bit(nr, addr));
	KUNIT_EXPECT_KASAN_FAIL(test, __test_and_clear_bit(nr, addr));
	KUNIT_EXPECT_KASAN_FAIL(test, test_and_change_bit(nr, addr));
	KUNIT_EXPECT_KASAN_FAIL(test, __test_and_change_bit(nr, addr));
	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = test_bit(nr, addr));
	if (nr < 7)
		KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result =
				xor_unlock_is_negative_byte(1 << nr, addr));
}

static void kasan_bitops_generic(struct kunit *test)
{
	long *bits;

	/* This test is specifically crafted for the generic mode. */
	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);

	/*
	 * Allocate 1 more byte, which causes kzalloc to round up to 16 bytes;
	 * this way we do not actually corrupt other memory.
	 */
	bits = kzalloc(sizeof(*bits) + 1, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, bits);

	/*
	 * Below calls try to access bit within allocated memory; however, the
	 * below accesses are still out-of-bounds, since bitops are defined to
	 * operate on the whole long the bit is in.
	 */
	kasan_bitops_modify(test, BITS_PER_LONG, bits);

	/*
	 * Below calls try to access bit beyond allocated memory.
	 */
	kasan_bitops_test_and_modify(test, BITS_PER_LONG + BITS_PER_BYTE, bits);

	kfree(bits);
}

static void kasan_bitops_tags(struct kunit *test)
{
	long *bits;

	/* This test is specifically crafted for tag-based modes. */
	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);

	/* kmalloc-64 cache will be used and the last 16 bytes will be the redzone. */
	bits = kzalloc(48, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, bits);

	/* Do the accesses past the 48 allocated bytes, but within the redone. */
	kasan_bitops_modify(test, BITS_PER_LONG, (void *)bits + 48);
	kasan_bitops_test_and_modify(test, BITS_PER_LONG + BITS_PER_BYTE, (void *)bits + 48);

	kfree(bits);
}

static void vmalloc_helpers_tags(struct kunit *test)
{
	void *ptr;

	/* This test is intended for tag-based modes. */
	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);

	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC);

	if (!kasan_vmalloc_enabled())
		kunit_skip(test, "Test requires kasan.vmalloc=on");

	ptr = vmalloc(PAGE_SIZE);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	/* Check that the returned pointer is tagged. */
	KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
	KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);

	/* Make sure exported vmalloc helpers handle tagged pointers. */
	KUNIT_ASSERT_TRUE(test, is_vmalloc_addr(ptr));
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, vmalloc_to_page(ptr));

#if !IS_MODULE(CONFIG_KASAN_KUNIT_TEST)
	{
		int rv;

		/* Make sure vmalloc'ed memory permissions can be changed. */
		rv = set_memory_ro((unsigned long)ptr, 1);
		KUNIT_ASSERT_GE(test, rv, 0);
		rv = set_memory_rw((unsigned long)ptr, 1);
		KUNIT_ASSERT_GE(test, rv, 0);
	}
#endif

	vfree(ptr);
}

static void vmalloc_oob(struct kunit *test)
{
	char *v_ptr, *p_ptr;
	struct page *page;
	size_t size = PAGE_SIZE / 2 - KASAN_GRANULE_SIZE - 5;

	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC);

	if (!kasan_vmalloc_enabled())
		kunit_skip(test, "Test requires kasan.vmalloc=on");

	v_ptr = vmalloc(size);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_ptr);

	OPTIMIZER_HIDE_VAR(v_ptr);

	/*
	 * We have to be careful not to hit the guard page in vmalloc tests.
	 * The MMU will catch that and crash us.
	 */

	/* Make sure in-bounds accesses are valid. */
	v_ptr[0] = 0;
	v_ptr[size - 1] = 0;

	/*
	 * An unaligned access past the requested vmalloc size.
	 * Only generic KASAN can precisely detect these.
	 */
	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
		KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)v_ptr)[size]);

	/* An aligned access into the first out-of-bounds granule. */
	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)v_ptr)[size + 5]);

	/* Check that in-bounds accesses to the physical page are valid. */
	page = vmalloc_to_page(v_ptr);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, page);
	p_ptr = page_address(page);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_ptr);
	p_ptr[0] = 0;

	vfree(v_ptr);

	/*
	 * We can't check for use-after-unmap bugs in this nor in the following
	 * vmalloc tests, as the page might be fully unmapped and accessing it
	 * will crash the kernel.
	 */
}

static void vmap_tags(struct kunit *test)
{
	char *p_ptr, *v_ptr;
	struct page *p_page, *v_page;

	/*
	 * This test is specifically crafted for the software tag-based mode,
	 * the only tag-based mode that poisons vmap mappings.
	 */
	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_SW_TAGS);

	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC);

	if (!kasan_vmalloc_enabled())
		kunit_skip(test, "Test requires kasan.vmalloc=on");

	p_page = alloc_pages(GFP_KERNEL, 1);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_page);
	p_ptr = page_address(p_page);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_ptr);

	v_ptr = vmap(&p_page, 1, VM_MAP, PAGE_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_ptr);

	/*
	 * We can't check for out-of-bounds bugs in this nor in the following
	 * vmalloc tests, as allocations have page granularity and accessing
	 * the guard page will crash the kernel.
	 */

	KUNIT_EXPECT_GE(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_MIN);
	KUNIT_EXPECT_LT(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_KERNEL);

	/* Make sure that in-bounds accesses through both pointers work. */
	*p_ptr = 0;
	*v_ptr = 0;

	/* Make sure vmalloc_to_page() correctly recovers the page pointer. */
	v_page = vmalloc_to_page(v_ptr);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_page);
	KUNIT_EXPECT_PTR_EQ(test, p_page, v_page);

	vunmap(v_ptr);
	free_pages((unsigned long)p_ptr, 1);
}

static void vm_map_ram_tags(struct kunit *test)
{
	char *p_ptr, *v_ptr;
	struct page *page;

	/*
	 * This test is specifically crafted for the software tag-based mode,
	 * the only tag-based mode that poisons vm_map_ram mappings.
	 */
	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_SW_TAGS);

	page = alloc_pages(GFP_KERNEL, 1);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, page);
	p_ptr = page_address(page);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_ptr);

	v_ptr = vm_map_ram(&page, 1, -1);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_ptr);

	KUNIT_EXPECT_GE(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_MIN);
	KUNIT_EXPECT_LT(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_KERNEL);

	/* Make sure that in-bounds accesses through both pointers work. */
	*p_ptr = 0;
	*v_ptr = 0;

	vm_unmap_ram(v_ptr, 1);
	free_pages((unsigned long)p_ptr, 1);
}

/*
 * Check that the assigned pointer tag falls within the [KASAN_TAG_MIN,
 * KASAN_TAG_KERNEL) range (note: excluding the match-all tag) for tag-based
 * modes.
 */
static void match_all_not_assigned(struct kunit *test)
{
	char *ptr;
	struct page *pages;
	int i, size, order;

	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);

	for (i = 0; i < 256; i++) {
		size = get_random_u32_inclusive(1, 1024);
		ptr = kmalloc(size, GFP_KERNEL);
		KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
		KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
		KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
		kfree(ptr);
	}

	for (i = 0; i < 256; i++) {
		order = get_random_u32_inclusive(1, 4);
		pages = alloc_pages(GFP_KERNEL, order);
		ptr = page_address(pages);
		KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
		KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
		KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
		free_pages((unsigned long)ptr, order);
	}

	if (!kasan_vmalloc_enabled())
		return;

	for (i = 0; i < 256; i++) {
		size = get_random_u32_inclusive(1, 1024);
		ptr = vmalloc(size);
		KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
		KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
		KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
		vfree(ptr);
	}
}

/* Check that 0xff works as a match-all pointer tag for tag-based modes. */
static void match_all_ptr_tag(struct kunit *test)
{
	char *ptr;
	u8 tag;

	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);

	ptr = kmalloc(128, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	/* Backup the assigned tag. */
	tag = get_tag(ptr);
	KUNIT_EXPECT_NE(test, tag, (u8)KASAN_TAG_KERNEL);

	/* Reset the tag to 0xff.*/
	ptr = set_tag(ptr, KASAN_TAG_KERNEL);

	/* This access shouldn't trigger a KASAN report. */
	*ptr = 0;

	/* Recover the pointer tag and free. */
	ptr = set_tag(ptr, tag);
	kfree(ptr);
}

/* Check that there are no match-all memory tags for tag-based modes. */
static void match_all_mem_tag(struct kunit *test)
{
	char *ptr;
	int tag;

	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);

	ptr = kmalloc(128, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
	KUNIT_EXPECT_NE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);

	/* For each possible tag value not matching the pointer tag. */
	for (tag = KASAN_TAG_MIN; tag <= KASAN_TAG_KERNEL; tag++) {
		/*
		 * For Software Tag-Based KASAN, skip the majority of tag
		 * values to avoid the test printing too many reports.
		 */
		if (IS_ENABLED(CONFIG_KASAN_SW_TAGS) &&
		    tag >= KASAN_TAG_MIN + 8 && tag <= KASAN_TAG_KERNEL - 8)
			continue;

		if (tag == get_tag(ptr))
			continue;

		/* Mark the first memory granule with the chosen memory tag. */
		kasan_poison(ptr, KASAN_GRANULE_SIZE, (u8)tag, false);

		/* This access must cause a KASAN report. */
		KUNIT_EXPECT_KASAN_FAIL(test, *ptr = 0);
	}

	/* Recover the memory tag and free. */
	kasan_poison(ptr, KASAN_GRANULE_SIZE, get_tag(ptr), false);
	kfree(ptr);
}

/*
 * Check that Rust performing a use-after-free using `unsafe` is detected.
 * This is a smoke test to make sure that Rust is being sanitized properly.
 */
static void rust_uaf(struct kunit *test)
{
	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_RUST);
	KUNIT_EXPECT_KASAN_FAIL(test, kasan_test_rust_uaf());
}

static void copy_to_kernel_nofault_oob(struct kunit *test)
{
	char *ptr;
	char buf[128];
	size_t size = sizeof(buf);

	/*
	 * This test currently fails with the HW_TAGS mode. The reason is
	 * unknown and needs to be investigated.
	 */
	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_HW_TAGS);

	ptr = kmalloc(size - KASAN_GRANULE_SIZE, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
	OPTIMIZER_HIDE_VAR(ptr);

	/*
	 * We test copy_to_kernel_nofault() to detect corrupted memory that is
	 * being written into the kernel. In contrast,
	 * copy_from_kernel_nofault() is primarily used in kernel helper
	 * functions where the source address might be random or uninitialized.
	 * Applying KASAN instrumentation to copy_from_kernel_nofault() could
	 * lead to false positives.  By focusing KASAN checks only on
	 * copy_to_kernel_nofault(), we ensure that only valid memory is
	 * written to the kernel, minimizing the risk of kernel corruption
	 * while avoiding false positives in the reverse case.
	 */
	KUNIT_EXPECT_KASAN_FAIL(test,
		copy_to_kernel_nofault(&buf[0], ptr, size));
	KUNIT_EXPECT_KASAN_FAIL(test,
		copy_to_kernel_nofault(ptr, &buf[0], size));

	kfree(ptr);
}

static void copy_user_test_oob(struct kunit *test)
{
	char *kmem;
	char __user *usermem;
	unsigned long useraddr;
	size_t size = 128 - KASAN_GRANULE_SIZE;
	int __maybe_unused unused;

	kmem = kunit_kmalloc(test, size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, kmem);

	useraddr = kunit_vm_mmap(test, NULL, 0, PAGE_SIZE,
					PROT_READ | PROT_WRITE | PROT_EXEC,
					MAP_ANONYMOUS | MAP_PRIVATE, 0);
	KUNIT_ASSERT_NE_MSG(test, useraddr, 0,
		"Could not create userspace mm");
	KUNIT_ASSERT_LT_MSG(test, useraddr, (unsigned long)TASK_SIZE,
		"Failed to allocate user memory");

	OPTIMIZER_HIDE_VAR(size);
	usermem = (char __user *)useraddr;

	KUNIT_EXPECT_KASAN_FAIL(test,
		unused = copy_from_user(kmem, usermem, size + 1));
	KUNIT_EXPECT_KASAN_FAIL(test,
		unused = copy_to_user(usermem, kmem, size + 1));
	KUNIT_EXPECT_KASAN_FAIL(test,
		unused = __copy_from_user(kmem, usermem, size + 1));
	KUNIT_EXPECT_KASAN_FAIL(test,
		unused = __copy_to_user(usermem, kmem, size + 1));
	KUNIT_EXPECT_KASAN_FAIL(test,
		unused = __copy_from_user_inatomic(kmem, usermem, size + 1));
	KUNIT_EXPECT_KASAN_FAIL(test,
		unused = __copy_to_user_inatomic(usermem, kmem, size + 1));

	/*
	* Prepare a long string in usermem to avoid the strncpy_from_user test
	* bailing out on '\0' before it reaches out-of-bounds.
	*/
	memset(kmem, 'a', size);
	KUNIT_EXPECT_EQ(test, copy_to_user(usermem, kmem, size), 0);

	KUNIT_EXPECT_KASAN_FAIL(test,
		unused = strncpy_from_user(kmem, usermem, size + 1));
}

static struct kunit_case kasan_kunit_test_cases[] = {
	KUNIT_CASE(kmalloc_oob_right),
	KUNIT_CASE(kmalloc_oob_left),
	KUNIT_CASE(kmalloc_node_oob_right),
	KUNIT_CASE(kmalloc_track_caller_oob_right),
	KUNIT_CASE(kmalloc_big_oob_right),
	KUNIT_CASE(kmalloc_large_oob_right),
	KUNIT_CASE(kmalloc_large_uaf),
	KUNIT_CASE(kmalloc_large_invalid_free),
	KUNIT_CASE(page_alloc_oob_right),
	KUNIT_CASE(page_alloc_uaf),
	KUNIT_CASE(krealloc_more_oob),
	KUNIT_CASE(krealloc_less_oob),
	KUNIT_CASE(krealloc_large_more_oob),
	KUNIT_CASE(krealloc_large_less_oob),
	KUNIT_CASE(krealloc_uaf),
	KUNIT_CASE(kmalloc_oob_16),
	KUNIT_CASE(kmalloc_uaf_16),
	KUNIT_CASE(kmalloc_oob_in_memset),
	KUNIT_CASE(kmalloc_oob_memset_2),
	KUNIT_CASE(kmalloc_oob_memset_4),
	KUNIT_CASE(kmalloc_oob_memset_8),
	KUNIT_CASE(kmalloc_oob_memset_16),
	KUNIT_CASE(kmalloc_memmove_negative_size),
	KUNIT_CASE(kmalloc_memmove_invalid_size),
	KUNIT_CASE(kmalloc_uaf),
	KUNIT_CASE(kmalloc_uaf_memset),
	KUNIT_CASE(kmalloc_uaf2),
	KUNIT_CASE(kmalloc_uaf3),
	KUNIT_CASE(kmalloc_double_kzfree),
	KUNIT_CASE(ksize_unpoisons_memory),
	KUNIT_CASE(ksize_uaf),
	KUNIT_CASE(rcu_uaf),
	KUNIT_CASE(workqueue_uaf),
	KUNIT_CASE(kfree_via_page),
	KUNIT_CASE(kfree_via_phys),
	KUNIT_CASE(kmem_cache_oob),
	KUNIT_CASE(kmem_cache_double_free),
	KUNIT_CASE(kmem_cache_invalid_free),
	KUNIT_CASE(kmem_cache_rcu_uaf),
	KUNIT_CASE(kmem_cache_double_destroy),
	KUNIT_CASE(kmem_cache_accounted),
	KUNIT_CASE(kmem_cache_bulk),
	KUNIT_CASE(mempool_kmalloc_oob_right),
	KUNIT_CASE(mempool_kmalloc_large_oob_right),
	KUNIT_CASE(mempool_slab_oob_right),
	KUNIT_CASE(mempool_kmalloc_uaf),
	KUNIT_CASE(mempool_kmalloc_large_uaf),
	KUNIT_CASE(mempool_slab_uaf),
	KUNIT_CASE(mempool_page_alloc_uaf),
	KUNIT_CASE(mempool_kmalloc_double_free),
	KUNIT_CASE(mempool_kmalloc_large_double_free),
	KUNIT_CASE(mempool_page_alloc_double_free),
	KUNIT_CASE(mempool_kmalloc_invalid_free),
	KUNIT_CASE(mempool_kmalloc_large_invalid_free),
	KUNIT_CASE(kasan_global_oob_right),
	KUNIT_CASE(kasan_global_oob_left),
	KUNIT_CASE(kasan_stack_oob),
	KUNIT_CASE(kasan_alloca_oob_left),
	KUNIT_CASE(kasan_alloca_oob_right),
	KUNIT_CASE(kasan_memchr),
	KUNIT_CASE(kasan_memcmp),
	KUNIT_CASE(kasan_strings),
	KUNIT_CASE(kasan_bitops_generic),
	KUNIT_CASE(kasan_bitops_tags),
	KUNIT_CASE_SLOW(kasan_atomics),
	KUNIT_CASE(vmalloc_helpers_tags),
	KUNIT_CASE(vmalloc_oob),
	KUNIT_CASE(vmap_tags),
	KUNIT_CASE(vm_map_ram_tags),
	KUNIT_CASE(match_all_not_assigned),
	KUNIT_CASE(match_all_ptr_tag),
	KUNIT_CASE(match_all_mem_tag),
	KUNIT_CASE(copy_to_kernel_nofault_oob),
	KUNIT_CASE(rust_uaf),
	KUNIT_CASE(copy_user_test_oob),
	{}
};

static struct kunit_suite kasan_kunit_test_suite = {
	.name = "kasan",
	.test_cases = kasan_kunit_test_cases,
	.exit = kasan_test_exit,
	.suite_init = kasan_suite_init,
	.suite_exit = kasan_suite_exit,
};

kunit_test_suite(kasan_kunit_test_suite);

MODULE_LICENSE("GPL");