| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
| |
This follows what the kernel is doing, c.f.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5fd54ace4721fc5ce2bb5aef6318fcf17f421460.
|
|
|
|
| |
And make use of them at a few places.
|
|
|
|
|
| |
This should be handled fine now by .dir-locals.el, so need to carry that
stuff in every file.
|
|
|
|
|
|
| |
Let's avoid thinking that a CNAME/DNAME chain traversal could be a good idea if QTYPE is already CNAME/DNAME.
(Also, let's bail out early when trying to see if some RR is a suitable CNAME/DNAME for some other RR).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Move IDNA logic out of the normal domain name processing, and into the bus frontend calls. Previously whenever
comparing two domain names we'd implicitly do IDNA conversion so that "pöttering.de" and "xn--pttering-n4a.de" would be
considered equal. This is problematic not only for DNSSEC, but actually also against he IDNA specs.
Moreover it creates problems when encoding DNS-SD services in classic DNS. There, the specification suggests using
UTF8 encoding for the actual service name, but apply IDNA encoding to the domain suffix.
With this change IDNA conversion is done only:
- When the user passes a non-ASCII hostname when resolving a host name using ResolveHostname()
- When the user passes a non-ASCII domain suffix when resolving a service using ResolveService()
No IDNA encoding is done anymore:
- When the user does raw ResolveRecord() RR resolving
- On the service part of a DNS-SD service name
Previously, IDNA encoding was done when serializing names into packets, at a point where information whether something
is a label that needs IDNA encoding or not was not available, but at a point whether it was known whether to generate a
classic DNS packet (where IDNA applies), or an mDNS/LLMNR packet (where IDNA does not apply, and UTF8 is used instead
for all host names). With this change each DnsQuery object will now maintain two copies of the DnsQuestion to ask: one
encoded in IDNA for use with classic DNS, and one encoded in UTF8 for use with LLMNR and MulticastDNS.
|
| |
|
|
|
|
|
| |
Change the iterator counter so that a different varable is used for each
invocation of the macro, so that it may be nested.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds support for searching single-label hostnames in a set of
configured search domains.
A new object DnsQueryCandidate is added that links queries to scopes.
It keeps track of the search domain last used for a query on a specific
link. Whenever a host name was unsuccessfuly resolved on a scope all its
transactions are flushed out and replaced by a new set, with the next
search domain appended.
This also adds a new flag SD_RESOLVED_NO_SEARCH to disable search domain
behaviour. The "systemd-resolve-host" tool is updated to make this
configurable via --search=.
Fixes #1697
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Wen DnsQuestion objects are used for DnsQuery objects all contained keys
have to share the same name, but otherwise they generally don't have to,
and this can actually happen in real-life because DnsPacket objects for
mDNS use DnsQuestion for the question section.
Hence, rename:
dns_question_is_valid() to dns_question_is_valid_for_query(), since the
name uniqueness check it does is only relevant when used for a query.
Similar, rename dns_question_name() to dns_question_first_name(),
to be more accurate, as this difference matters if we keys don#t have to
share the same name.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This also adds client-side support for this to systemd-resolve-host.
Note that the ResolveService() API can deal both with DNS-SD service
(consisting of service name, type and domain), as well as classic SRV
services (consisting just of a type and a domain), all exposed in the
same call.
This patch also reworks CNAME handling in order to reuse it between
hostname, RR and service lookups.
In contrast to Avahi and Bonjour, this new API will actually reolve the
A/AAAA RRs the SRV RRs point to in one go (unless this is explicitly
disabled). This normally comes for free, as these RRs are sent along
the SRV responses anyway, hence let's make use of that. This makes the
API considerably easier to use, as a single ResolveService() invocation
will return all necessary data to pick a server and connect() to it.
Note that this only implements the DNS-SD resolving step, it does not
implement DNS-SD browsing, as that makes sense primarily on mDNS, due to
its continuous nature.
|
|
|
|
|
| |
Takes a key and CNAME RR and returns the canonical RR of the right
type. Make use of this in dns_question_redirect().
|
|
|
|
|
|
|
| |
Let's simplify things and only maintain a single RR key per transaction
object, instead of a full DnsQuestion. Unicast DNS and LLMNR don't
support multiple questions per packet anway, and Multicast DNS suggests
coalescing questions beyond a single dns query, across the whole system.
|
|
|
|
|
|
| |
Let's optimize things a bit and properly compare DNS question arrays,
instead of checking if they are mutual supersets. This also makes ANY
query handling more accurate.
|
|
|
|
| |
connection by default
|
|
different clients
|