/* SPDX-License-Identifier: LGPL-2.1-or-later */ #include #include #include #include #include #include #include #include #include #include #include #include "sd-id128.h" #include "alloc-util.h" #include "apparmor-util.h" #include "architecture.h" #include "audit-util.h" #include "battery-util.h" #include "bitfield.h" #include "blockdev-util.h" #include "cap-list.h" #include "capability-util.h" #include "cgroup-util.h" #include "compare-operator.h" #include "condition.h" #include "confidential-virt.h" #include "cpu-set-util.h" #include "creds-util.h" #include "efi-api.h" #include "efi-loader.h" #include "env-file.h" #include "env-util.h" #include "extract-word.h" #include "fd-util.h" #include "fileio.h" #include "fs-util.h" #include "glob-util.h" #include "hostname-util.h" #include "ima-util.h" #include "initrd-util.h" #include "limits-util.h" #include "list.h" #include "macro.h" #include "mountpoint-util.h" #include "nulstr-util.h" #include "os-util.h" #include "parse-util.h" #include "path-util.h" #include "percent-util.h" #include "proc-cmdline.h" #include "process-util.h" #include "psi-util.h" #include "selinux-util.h" #include "smack-util.h" #include "special.h" #include "stat-util.h" #include "string-table.h" #include "string-util.h" #include "tomoyo-util.h" #include "tpm2-util.h" #include "uid-classification.h" #include "user-util.h" #include "virt.h" Condition* condition_new(ConditionType type, const char *parameter, bool trigger, bool negate) { Condition *c; assert(type >= 0); assert(type < _CONDITION_TYPE_MAX); assert(parameter); c = new(Condition, 1); if (!c) return NULL; *c = (Condition) { .type = type, .trigger = trigger, .negate = negate, }; if (parameter) { c->parameter = strdup(parameter); if (!c->parameter) return mfree(c); } return c; } Condition* condition_free(Condition *c) { assert(c); free(c->parameter); return mfree(c); } Condition* condition_free_list_type(Condition *head, ConditionType type) { LIST_FOREACH(conditions, c, head) if (type < 0 || c->type == type) { LIST_REMOVE(conditions, head, c); condition_free(c); } assert(type >= 0 || !head); return head; } static int condition_test_kernel_command_line(Condition *c, char **env) { _cleanup_strv_free_ char **args = NULL; int r; assert(c); assert(c->parameter); assert(c->type == CONDITION_KERNEL_COMMAND_LINE); r = proc_cmdline_strv(&args); if (r < 0) return r; bool equal = strchr(c->parameter, '='); STRV_FOREACH(word, args) { bool found; if (equal) found = streq(*word, c->parameter); else { const char *f; f = startswith(*word, c->parameter); found = f && IN_SET(*f, 0, '='); } if (found) return true; } return false; } static int condition_test_credential(Condition *c, char **env) { int r; assert(c); assert(c->parameter); assert(c->type == CONDITION_CREDENTIAL); /* For now we'll do a very simple existence check and are happy with either a regular or an encrypted * credential. Given that we check the syntax of the argument we have the option to later maybe allow * contents checks too without breaking compatibility, but for now let's be minimalistic. */ if (!credential_name_valid(c->parameter)) /* credentials with invalid names do not exist */ return false; int (*gd)(const char **ret); FOREACH_ARGUMENT(gd, get_credentials_dir, get_encrypted_credentials_dir) { _cleanup_free_ char *j = NULL; const char *cd; r = gd(&cd); if (r == -ENXIO) /* no env var set */ continue; if (r < 0) return r; j = path_join(cd, c->parameter); if (!j) return -ENOMEM; r = access_nofollow(j, F_OK); if (r >= 0) return true; /* yay! */ if (r != -ENOENT) return r; /* not found in this dir */ } return false; } static int condition_test_kernel_version(Condition *c, char **env) { CompareOperator operator; struct utsname u; bool first = true; assert(c); assert(c->parameter); assert(c->type == CONDITION_KERNEL_VERSION); assert_se(uname(&u) >= 0); for (const char *p = c->parameter;;) { _cleanup_free_ char *word = NULL; const char *s; int r; r = extract_first_word(&p, &word, NULL, EXTRACT_UNQUOTE); if (r < 0) return log_debug_errno(r, "Failed to parse condition string \"%s\": %m", p); if (r == 0) break; s = strstrip(word); operator = parse_compare_operator(&s, COMPARE_ALLOW_FNMATCH|COMPARE_EQUAL_BY_STRING); if (operator < 0) /* No prefix? Then treat as glob string */ operator = COMPARE_FNMATCH_EQUAL; s += strspn(s, WHITESPACE); if (isempty(s)) { if (first) { /* For backwards compatibility, allow whitespace between the operator and * value, without quoting, but only in the first expression. */ word = mfree(word); r = extract_first_word(&p, &word, NULL, 0); if (r < 0) return log_debug_errno(r, "Failed to parse condition string \"%s\": %m", p); if (r == 0) return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Unexpected end of expression: %s", p); s = word; } else return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Unexpected end of expression: %s", p); } r = version_or_fnmatch_compare(operator, u.release, s); if (r < 0) return r; if (!r) return false; first = false; } return true; } static int condition_test_osrelease(Condition *c, char **env) { int r; assert(c); assert(c->type == CONDITION_OS_RELEASE); for (const char *parameter = ASSERT_PTR(c->parameter);;) { _cleanup_free_ char *key = NULL, *condition = NULL, *actual_value = NULL; CompareOperator operator; const char *word; r = extract_first_word(¶meter, &condition, NULL, EXTRACT_UNQUOTE); if (r < 0) return log_debug_errno(r, "Failed to parse parameter: %m"); if (r == 0) break; /* parse_compare_operator() needs the string to start with the comparators */ word = condition; r = extract_first_word(&word, &key, COMPARE_OPERATOR_WITH_FNMATCH_CHARS, EXTRACT_RETAIN_SEPARATORS); if (r < 0) return log_debug_errno(r, "Failed to parse parameter: %m"); /* The os-release spec mandates env-var-like key names */ if (r == 0 || isempty(word) || !env_name_is_valid(key)) return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Failed to parse parameter, key/value format expected."); /* Do not allow whitespace after the separator, as that's not a valid os-release format */ operator = parse_compare_operator(&word, COMPARE_ALLOW_FNMATCH|COMPARE_EQUAL_BY_STRING); if (operator < 0 || isempty(word) || strchr(WHITESPACE, *word) != NULL) return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Failed to parse parameter, key/value format expected."); r = parse_os_release(NULL, key, &actual_value); if (r < 0) return log_debug_errno(r, "Failed to parse os-release: %m"); r = version_or_fnmatch_compare(operator, actual_value, word); if (r < 0) return r; if (!r) return false; } return true; } static int condition_test_memory(Condition *c, char **env) { CompareOperator operator; uint64_t m, k; const char *p; int r; assert(c); assert(c->parameter); assert(c->type == CONDITION_MEMORY); m = physical_memory(); p = c->parameter; operator = parse_compare_operator(&p, 0); if (operator < 0) operator = COMPARE_GREATER_OR_EQUAL; /* default to >= check, if nothing is specified. */ r = parse_size(p, 1024, &k); if (r < 0) return log_debug_errno(r, "Failed to parse size '%s': %m", p); return test_order(CMP(m, k), operator); } static int condition_test_cpus(Condition *c, char **env) { CompareOperator operator; const char *p; unsigned k; int r, n; assert(c); assert(c->parameter); assert(c->type == CONDITION_CPUS); n = cpus_in_affinity_mask(); if (n < 0) return log_debug_errno(n, "Failed to determine CPUs in affinity mask: %m"); p = c->parameter; operator = parse_compare_operator(&p, 0); if (operator < 0) operator = COMPARE_GREATER_OR_EQUAL; /* default to >= check, if nothing is specified. */ r = safe_atou(p, &k); if (r < 0) return log_debug_errno(r, "Failed to parse number of CPUs: %m"); return test_order(CMP((unsigned) n, k), operator); } static int condition_test_user(Condition *c, char **env) { uid_t id; int r; assert(c); assert(c->parameter); assert(c->type == CONDITION_USER); /* Do the quick&easy comparisons first, and only parse the UID later. */ if (streq(c->parameter, "root")) return getuid() == 0 || geteuid() == 0; if (streq(c->parameter, NOBODY_USER_NAME)) return getuid() == UID_NOBODY || geteuid() == UID_NOBODY; if (streq(c->parameter, "@system")) return uid_is_system(getuid()) || uid_is_system(geteuid()); r = parse_uid(c->parameter, &id); if (r >= 0) return id == getuid() || id == geteuid(); if (getpid_cached() == 1) /* We already checked for "root" above, and we know that * PID 1 is running as root, hence we know it cannot match. */ return false; /* getusername_malloc() may do an nss lookup, which is not allowed in PID 1. */ _cleanup_free_ char *username = getusername_malloc(); if (!username) return -ENOMEM; if (streq(username, c->parameter)) return 1; const char *u = c->parameter; r = get_user_creds(&u, &id, NULL, NULL, NULL, USER_CREDS_ALLOW_MISSING); if (r < 0) return 0; return id == getuid() || id == geteuid(); } static int condition_test_control_group_controller(Condition *c, char **env) { int r; CGroupMask system_mask, wanted_mask = 0; assert(c); assert(c->parameter); assert(c->type == CONDITION_CONTROL_GROUP_CONTROLLER); if (streq(c->parameter, "v2")) return cg_all_unified(); if (streq(c->parameter, "v1")) { r = cg_all_unified(); if (r < 0) return r; return !r; } r = cg_mask_supported(&system_mask); if (r < 0) return log_debug_errno(r, "Failed to determine supported controllers: %m"); r = cg_mask_from_string(c->parameter, &wanted_mask); if (r < 0 || wanted_mask <= 0) { /* This won't catch the case that we have an unknown controller * mixed in with valid ones -- these are only assessed on the * validity of the valid controllers found. */ log_debug("Failed to parse cgroup string: %s", c->parameter); return 1; } return FLAGS_SET(system_mask, wanted_mask); } static int condition_test_group(Condition *c, char **env) { gid_t id; int r; assert(c); assert(c->parameter); assert(c->type == CONDITION_GROUP); r = parse_gid(c->parameter, &id); if (r >= 0) return in_gid(id); /* Avoid any NSS lookups if we are PID1 */ if (getpid_cached() == 1) return streq(c->parameter, "root"); return in_group(c->parameter) > 0; } static int condition_test_virtualization(Condition *c, char **env) { Virtualization v; int b; assert(c); assert(c->parameter); assert(c->type == CONDITION_VIRTUALIZATION); if (streq(c->parameter, "private-users")) return running_in_userns(); v = detect_virtualization(); if (v < 0) return v; /* First, compare with yes/no */ b = parse_boolean(c->parameter); if (b >= 0) return b == (v != VIRTUALIZATION_NONE); /* Then, compare categorization */ if (streq(c->parameter, "vm")) return VIRTUALIZATION_IS_VM(v); if (streq(c->parameter, "container")) return VIRTUALIZATION_IS_CONTAINER(v); /* Finally compare id */ return v != VIRTUALIZATION_NONE && streq(c->parameter, virtualization_to_string(v)); } static int condition_test_architecture(Condition *c, char **env) { Architecture a, b; assert(c); assert(c->parameter); assert(c->type == CONDITION_ARCHITECTURE); a = uname_architecture(); if (a < 0) return a; if (streq(c->parameter, "native")) b = native_architecture(); else { b = architecture_from_string(c->parameter); if (b < 0) /* unknown architecture? Then it's definitely not ours */ return false; } return a == b; } #define DTCOMPAT_FILE "/proc/device-tree/compatible" static int condition_test_firmware_devicetree_compatible(const char *dtcarg) { int r; _cleanup_free_ char *dtcompat = NULL; _cleanup_strv_free_ char **dtcompatlist = NULL; size_t size; r = read_full_virtual_file(DTCOMPAT_FILE, &dtcompat, &size); if (r < 0) { /* if the path doesn't exist it is incompatible */ if (r != -ENOENT) log_debug_errno(r, "Failed to open() '%s', assuming machine is incompatible: %m", DTCOMPAT_FILE); return false; } /* Not sure this can happen, but play safe. */ if (size == 0) { log_debug("%s has zero length, assuming machine is incompatible", DTCOMPAT_FILE); return false; } /* /proc/device-tree/compatible consists of one or more strings, each ending in '\0'. * So the last character in dtcompat must be a '\0'. */ if (dtcompat[size - 1] != '\0') { log_debug("%s is in an unknown format, assuming machine is incompatible", DTCOMPAT_FILE); return false; } dtcompatlist = strv_parse_nulstr(dtcompat, size); if (!dtcompatlist) return -ENOMEM; return strv_contains(dtcompatlist, dtcarg); } static int condition_test_firmware_smbios_field(const char *expression) { _cleanup_free_ char *field = NULL, *expected_value = NULL, *actual_value = NULL; CompareOperator operator; int r; assert(expression); /* Parse SMBIOS field */ r = extract_first_word(&expression, &field, COMPARE_OPERATOR_WITH_FNMATCH_CHARS, EXTRACT_RETAIN_SEPARATORS); if (r < 0) return r; if (r == 0 || isempty(expression)) return -EINVAL; /* Remove trailing spaces from SMBIOS field */ delete_trailing_chars(field, WHITESPACE); /* Parse operator */ operator = parse_compare_operator(&expression, COMPARE_ALLOW_FNMATCH|COMPARE_EQUAL_BY_STRING); if (operator < 0) return operator; /* Parse expected value */ r = extract_first_word(&expression, &expected_value, NULL, EXTRACT_UNQUOTE); if (r < 0) return r; if (r == 0 || !isempty(expression)) return -EINVAL; /* Read actual value from sysfs */ if (!filename_is_valid(field)) return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Invalid SMBIOS field name."); const char *p = strjoina("/sys/class/dmi/id/", field); r = read_virtual_file(p, SIZE_MAX, &actual_value, NULL); if (r < 0) { log_debug_errno(r, "Failed to read %s: %m", p); if (r == -ENOENT) return false; return r; } /* Remove trailing newline */ delete_trailing_chars(actual_value, WHITESPACE); /* Finally compare actual and expected value */ return version_or_fnmatch_compare(operator, actual_value, expected_value); } static int condition_test_firmware(Condition *c, char **env) { sd_char *arg; int r; assert(c); assert(c->parameter); assert(c->type == CONDITION_FIRMWARE); if (streq(c->parameter, "device-tree")) { if (access("/sys/firmware/devicetree/", F_OK) < 0) { if (errno != ENOENT) log_debug_errno(errno, "Unexpected error when checking for /sys/firmware/devicetree/: %m"); return false; } else return true; } else if ((arg = startswith(c->parameter, "device-tree-compatible("))) { _cleanup_free_ char *dtc_arg = NULL; char *end; end = strrchr(arg, ')'); if (!end || *(end + 1) != '\0') { log_debug("Malformed ConditionFirmware=%s", c->parameter); return false; } dtc_arg = strndup(arg, end - arg); if (!dtc_arg) return -ENOMEM; return condition_test_firmware_devicetree_compatible(dtc_arg); } else if (streq(c->parameter, "uefi")) return is_efi_boot(); else if ((arg = startswith(c->parameter, "smbios-field("))) { _cleanup_free_ char *smbios_arg = NULL; char *end; end = strrchr(arg, ')'); if (!end || *(end + 1) != '\0') return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Malformed ConditionFirmware=%s.", c->parameter); smbios_arg = strndup(arg, end - arg); if (!smbios_arg) return log_oom_debug(); r = condition_test_firmware_smbios_field(smbios_arg); if (r < 0) return log_debug_errno(r, "Malformed ConditionFirmware=%s: %m", c->parameter); return r; } else { log_debug("Unsupported Firmware condition \"%s\"", c->parameter); return false; } } static int condition_test_host(Condition *c, char **env) { _cleanup_free_ char *h = NULL; sd_id128_t x, y; int r; assert(c); assert(c->parameter); assert(c->type == CONDITION_HOST); if (sd_id128_from_string(c->parameter, &x) >= 0) { r = sd_id128_get_machine(&y); if (r < 0) return r; return sd_id128_equal(x, y); } h = gethostname_malloc(); if (!h) return -ENOMEM; r = fnmatch(c->parameter, h, FNM_CASEFOLD); if (r == FNM_NOMATCH) return false; if (r != 0) return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "fnmatch() failed."); return true; } static int condition_test_ac_power(Condition *c, char **env) { int r; assert(c); assert(c->parameter); assert(c->type == CONDITION_AC_POWER); r = parse_boolean(c->parameter); if (r < 0) return r; return (on_ac_power() != 0) == !!r; } static int has_tpm2(void) { /* Checks whether the kernel has the TPM subsystem enabled and the firmware reports support. Note * we don't check for actual TPM devices, since we might not have loaded the driver for it yet, i.e. * during early boot where we very likely want to use this condition check). * * Note that we don't check if we ourselves are built with TPM2 support here! */ return FLAGS_SET(tpm2_support_full(TPM2_SUPPORT_SUBSYSTEM|TPM2_SUPPORT_FIRMWARE), TPM2_SUPPORT_SUBSYSTEM|TPM2_SUPPORT_FIRMWARE); } static int condition_test_security(Condition *c, char **env) { assert(c); assert(c->parameter); assert(c->type == CONDITION_SECURITY); if (streq(c->parameter, "selinux")) return mac_selinux_use(); if (streq(c->parameter, "smack")) return mac_smack_use(); if (streq(c->parameter, "apparmor")) return mac_apparmor_use(); if (streq(c->parameter, "audit")) return use_audit(); if (streq(c->parameter, "ima")) return use_ima(); if (streq(c->parameter, "tomoyo")) return mac_tomoyo_use(); if (streq(c->parameter, "uefi-secureboot")) return is_efi_secure_boot(); if (streq(c->parameter, "tpm2")) return has_tpm2(); if (streq(c->parameter, "cvm")) return detect_confidential_virtualization() > 0; if (streq(c->parameter, "measured-uki")) return efi_measured_uki(LOG_DEBUG); return false; } static int condition_test_capability(Condition *c, char **env) { int r; assert(c); assert(c->parameter); assert(c->type == CONDITION_CAPABILITY); /* If it's an invalid capability, we don't have it */ int value = capability_from_name(c->parameter); if (value < 0) return -EINVAL; CapabilityQuintet q; r = pidref_get_capability(&PIDREF_MAKE_FROM_PID(getpid_cached()), &q); if (r < 0) return r; return BIT_SET(q.bounding, value); } static int condition_test_needs_update(Condition *c, char **env) { struct stat usr, other; const char *p; bool b; int r; assert(c); assert(c->parameter); assert(c->type == CONDITION_NEEDS_UPDATE); r = proc_cmdline_get_bool("systemd.condition_needs_update", /* flags = */ 0, &b); if (r < 0) log_debug_errno(r, "Failed to parse systemd.condition_needs_update= kernel command line argument, ignoring: %m"); if (r > 0) return b; if (in_initrd()) { log_debug("We are in an initrd, not doing any updates."); return false; } if (!path_is_absolute(c->parameter)) { log_debug("Specified condition parameter '%s' is not absolute, assuming an update is needed.", c->parameter); return true; } /* If the file system is read-only we shouldn't suggest an update */ r = path_is_read_only_fs(c->parameter); if (r < 0) log_debug_errno(r, "Failed to determine if '%s' is read-only, ignoring: %m", c->parameter); if (r > 0) return false; /* Any other failure means we should allow the condition to be true, so that we rather invoke too * many update tools than too few. */ p = strjoina(c->parameter, "/.updated"); if (lstat(p, &other) < 0) { if (errno != ENOENT) log_debug_errno(errno, "Failed to stat() '%s', assuming an update is needed: %m", p); return true; } if (lstat("/usr/", &usr) < 0) { log_debug_errno(errno, "Failed to stat() /usr/, assuming an update is needed: %m"); return true; } /* * First, compare seconds as they are always accurate... */ if (usr.st_mtim.tv_sec != other.st_mtim.tv_sec) return usr.st_mtim.tv_sec > other.st_mtim.tv_sec; /* * ...then compare nanoseconds. * * A false positive is only possible when /usr's nanoseconds > 0 * (otherwise /usr cannot be strictly newer than the target file) * AND the target file's nanoseconds == 0 * (otherwise the filesystem supports nsec timestamps, see stat(2)). */ if (usr.st_mtim.tv_nsec == 0 || other.st_mtim.tv_nsec > 0) return usr.st_mtim.tv_nsec > other.st_mtim.tv_nsec; _cleanup_free_ char *timestamp_str = NULL; r = parse_env_file(NULL, p, "TIMESTAMP_NSEC", ×tamp_str); if (r < 0) { log_debug_errno(r, "Failed to parse timestamp file '%s', using mtime: %m", p); return true; } if (isempty(timestamp_str)) { log_debug("No data in timestamp file '%s', using mtime.", p); return true; } uint64_t timestamp; r = safe_atou64(timestamp_str, ×tamp); if (r < 0) { log_debug_errno(r, "Failed to parse timestamp value '%s' in file '%s', using mtime: %m", timestamp_str, p); return true; } return timespec_load_nsec(&usr.st_mtim) > timestamp; } static bool in_first_boot(void) { static int first_boot = -1; int r; if (first_boot >= 0) return first_boot; const char *e = secure_getenv("SYSTEMD_FIRST_BOOT"); if (e) { r = parse_boolean(e); if (r < 0) log_debug_errno(r, "Failed to parse $SYSTEMD_FIRST_BOOT, ignoring: %m"); else return (first_boot = r); } r = RET_NERRNO(access("/run/systemd/first-boot", F_OK)); if (r < 0 && r != -ENOENT) log_debug_errno(r, "Failed to check if /run/systemd/first-boot exists, assuming no: %m"); return r >= 0; } static int condition_test_first_boot(Condition *c, char **env) { int r; assert(c); assert(c->parameter); assert(c->type == CONDITION_FIRST_BOOT); // TODO: Parse c->parameter immediately when reading the config. // Apply negation when parsing too. r = parse_boolean(c->parameter); if (r < 0) return r; return in_first_boot() == r; } static int condition_test_environment(Condition *c, char **env) { bool equal; assert(c); assert(c->parameter); assert(c->type == CONDITION_ENVIRONMENT); equal = strchr(c->parameter, '='); STRV_FOREACH(i, env) { bool found; if (equal) found = streq(c->parameter, *i); else { const char *f; f = startswith(*i, c->parameter); found = f && IN_SET(*f, 0, '='); } if (found) return true; } return false; } static int condition_test_path_exists(Condition *c, char **env) { assert(c); assert(c->parameter); assert(c->type == CONDITION_PATH_EXISTS); return access(c->parameter, F_OK) >= 0; } static int condition_test_path_exists_glob(Condition *c, char **env) { assert(c); assert(c->parameter); assert(c->type == CONDITION_PATH_EXISTS_GLOB); return glob_exists(c->parameter) > 0; } static int condition_test_path_is_directory(Condition *c, char **env) { assert(c); assert(c->parameter); assert(c->type == CONDITION_PATH_IS_DIRECTORY); return is_dir(c->parameter, true) > 0; } static int condition_test_path_is_symbolic_link(Condition *c, char **env) { assert(c); assert(c->parameter); assert(c->type == CONDITION_PATH_IS_SYMBOLIC_LINK); return is_symlink(c->parameter) > 0; } static int condition_test_path_is_mount_point(Condition *c, char **env) { assert(c); assert(c->parameter); assert(c->type == CONDITION_PATH_IS_MOUNT_POINT); return path_is_mount_point_full(c->parameter, /* root = */ NULL, AT_SYMLINK_FOLLOW) > 0; } static int condition_test_path_is_read_write(Condition *c, char **env) { int r; assert(c); assert(c->parameter); assert(c->type == CONDITION_PATH_IS_READ_WRITE); r = path_is_read_only_fs(c->parameter); return r <= 0 && r != -ENOENT; } static int condition_test_cpufeature(Condition *c, char **env) { assert(c); assert(c->parameter); assert(c->type == CONDITION_CPU_FEATURE); return has_cpu_with_flag(ascii_strlower(c->parameter)); } static int condition_test_path_is_encrypted(Condition *c, char **env) { int r; assert(c); assert(c->parameter); assert(c->type == CONDITION_PATH_IS_ENCRYPTED); r = path_is_encrypted(c->parameter); if (r < 0 && r != -ENOENT) log_debug_errno(r, "Failed to determine if '%s' is encrypted: %m", c->parameter); return r > 0; } static int condition_test_directory_not_empty(Condition *c, char **env) { int r; assert(c); assert(c->parameter); assert(c->type == CONDITION_DIRECTORY_NOT_EMPTY); r = dir_is_empty(c->parameter, /* ignore_hidden_or_backup= */ true); return r <= 0 && !IN_SET(r, -ENOENT, -ENOTDIR); } static int condition_test_file_not_empty(Condition *c, char **env) { struct stat st; assert(c); assert(c->parameter); assert(c->type == CONDITION_FILE_NOT_EMPTY); return (stat(c->parameter, &st) >= 0 && S_ISREG(st.st_mode) && st.st_size > 0); } static int condition_test_file_is_executable(Condition *c, char **env) { struct stat st; assert(c); assert(c->parameter); assert(c->type == CONDITION_FILE_IS_EXECUTABLE); return (stat(c->parameter, &st) >= 0 && S_ISREG(st.st_mode) && (st.st_mode & 0111)); } static int condition_test_psi(Condition *c, char **env) { _cleanup_free_ char *first = NULL, *second = NULL, *third = NULL, *fourth = NULL, *pressure_path = NULL; const char *p, *value, *pressure_type; loadavg_t *current, limit; ResourcePressure pressure; PressureType preferred_pressure_type = PRESSURE_TYPE_FULL; int r; assert(c); assert(c->parameter); assert(IN_SET(c->type, CONDITION_MEMORY_PRESSURE, CONDITION_CPU_PRESSURE, CONDITION_IO_PRESSURE)); if (!is_pressure_supported()) { log_debug("Pressure Stall Information (PSI) is not supported, skipping."); return 1; } pressure_type = c->type == CONDITION_MEMORY_PRESSURE ? "memory" : c->type == CONDITION_CPU_PRESSURE ? "cpu" : "io"; p = c->parameter; r = extract_many_words(&p, ":", 0, &first, &second); if (r <= 0) return log_debug_errno(r < 0 ? r : SYNTHETIC_ERRNO(EINVAL), "Failed to parse condition parameter %s: %m", c->parameter); /* If only one parameter is passed, then we look at the global system pressure rather than a specific cgroup. */ if (r == 1) { /* cpu.pressure 'full' is reported but undefined at system level */ if (c->type == CONDITION_CPU_PRESSURE) preferred_pressure_type = PRESSURE_TYPE_SOME; pressure_path = path_join("/proc/pressure", pressure_type); if (!pressure_path) return log_oom_debug(); value = first; } else { const char *controller = strjoina(pressure_type, ".pressure"); _cleanup_free_ char *slice_path = NULL, *root_scope = NULL; CGroupMask mask, required_mask; char *slice, *e; required_mask = c->type == CONDITION_MEMORY_PRESSURE ? CGROUP_MASK_MEMORY : c->type == CONDITION_CPU_PRESSURE ? CGROUP_MASK_CPU : CGROUP_MASK_IO; slice = strstrip(first); if (!slice) return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Failed to parse condition parameter %s.", c->parameter); r = cg_all_unified(); if (r < 0) return log_debug_errno(r, "Failed to determine whether the unified cgroups hierarchy is used: %m"); if (r == 0) { log_debug("PSI condition check requires the unified cgroups hierarchy, skipping."); return 1; } r = cg_mask_supported(&mask); if (r < 0) return log_debug_errno(r, "Failed to get supported cgroup controllers: %m"); if (!FLAGS_SET(mask, required_mask)) { log_debug("Cgroup %s controller not available, skipping PSI condition check.", pressure_type); return 1; } r = cg_slice_to_path(slice, &slice_path); if (r < 0) return log_debug_errno(r, "Cannot determine slice \"%s\" cgroup path: %m", slice); /* We might be running under the user manager, so get the root path and prefix it accordingly. */ r = cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, getpid_cached(), &root_scope); if (r < 0) return log_debug_errno(r, "Failed to get root cgroup path: %m"); /* Drop init.scope, we want the parent. We could get an empty or / path, but that's fine, * just skip it in that case. */ e = endswith(root_scope, "/" SPECIAL_INIT_SCOPE); if (e) *e = 0; if (!empty_or_root(root_scope)) { _cleanup_free_ char *slice_joined = NULL; slice_joined = path_join(root_scope, slice_path); if (!slice_joined) return log_oom_debug(); free_and_replace(slice_path, slice_joined); } r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, slice_path, controller, &pressure_path); if (r < 0) return log_debug_errno(r, "Error getting cgroup pressure path from %s: %m", slice_path); value = second; } /* If a value including a specific timespan (in the intervals allowed by the kernel), * parse it, otherwise we assume just a plain percentage that will be checked if it is * smaller or equal to the current pressure average over 5 minutes. */ r = extract_many_words(&value, "/", 0, &third, &fourth); if (r <= 0) return log_debug_errno(r < 0 ? r : SYNTHETIC_ERRNO(EINVAL), "Failed to parse condition parameter %s: %m", c->parameter); if (r == 1) current = &pressure.avg300; else { const char *timespan; timespan = skip_leading_chars(fourth, NULL); if (!timespan) return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Failed to parse condition parameter %s.", c->parameter); if (startswith(timespan, "10sec")) current = &pressure.avg10; else if (startswith(timespan, "1min")) current = &pressure.avg60; else if (startswith(timespan, "5min")) current = &pressure.avg300; else return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Failed to parse condition parameter %s.", c->parameter); } value = strstrip(third); if (!value) return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Failed to parse condition parameter %s.", c->parameter); r = parse_permyriad(value); if (r < 0) return log_debug_errno(r, "Failed to parse permyriad: %s", c->parameter); r = store_loadavg_fixed_point(r / 100LU, r % 100LU, &limit); if (r < 0) return log_debug_errno(r, "Failed to parse loadavg: %s", c->parameter); r = read_resource_pressure(pressure_path, preferred_pressure_type, &pressure); /* cpu.pressure 'full' was recently added at cgroup level, fall back to 'some' */ if (r == -ENODATA && preferred_pressure_type == PRESSURE_TYPE_FULL) r = read_resource_pressure(pressure_path, PRESSURE_TYPE_SOME, &pressure); if (r == -ENOENT) { /* We already checked that /proc/pressure exists, so this means we were given a cgroup * that doesn't exist or doesn't exist any longer. */ log_debug("\"%s\" not found, skipping PSI check.", pressure_path); return 1; } if (r < 0) return log_debug_errno(r, "Error parsing pressure from %s: %m", pressure_path); return *current <= limit; } static int condition_test_kernel_module_loaded(Condition *c, char **env) { int r; assert(c); assert(c->parameter); assert(c->type == CONDITION_KERNEL_MODULE_LOADED); /* Checks whether a specific kernel module is fully loaded (i.e. with the full initialization routine * complete). */ _cleanup_free_ char *normalized = strreplace(c->parameter, "-", "_"); if (!normalized) return log_oom_debug(); if (!filename_is_valid(normalized)) { log_debug("Kernel module name '%s' is not valid, hence reporting it to not be loaded.", normalized); return false; } _cleanup_free_ char *p = path_join("/sys/module/", normalized); if (!p) return log_oom_debug(); _cleanup_close_ int dir_fd = open(p, O_PATH|O_DIRECTORY|O_CLOEXEC); if (dir_fd < 0) { if (errno == ENOENT) { log_debug_errno(errno, "'%s/' does not exist, kernel module '%s' not loaded.", p, normalized); return false; } return log_debug_errno(errno, "Failed to open directory '%s/': %m", p); } _cleanup_free_ char *initstate = NULL; r = read_virtual_file_at(dir_fd, "initstate", SIZE_MAX, &initstate, NULL); if (r == -ENOENT) { log_debug_errno(r, "'%s/' exists but '%s/initstate' does not, kernel module '%s' is built-in, hence loaded.", p, p, normalized); return true; } if (r < 0) return log_debug_errno(r, "Failed to open '%s/initstate': %m", p); delete_trailing_chars(initstate, WHITESPACE); if (!streq(initstate, "live")) { log_debug("Kernel module '%s' is reported as '%s', hence not loaded.", normalized, initstate); return false; } log_debug("Kernel module '%s' detected as loaded.", normalized); return true; } int condition_test(Condition *c, char **env) { static int (*const condition_tests[_CONDITION_TYPE_MAX])(Condition *c, char **env) = { [CONDITION_PATH_EXISTS] = condition_test_path_exists, [CONDITION_PATH_EXISTS_GLOB] = condition_test_path_exists_glob, [CONDITION_PATH_IS_DIRECTORY] = condition_test_path_is_directory, [CONDITION_PATH_IS_SYMBOLIC_LINK] = condition_test_path_is_symbolic_link, [CONDITION_PATH_IS_MOUNT_POINT] = condition_test_path_is_mount_point, [CONDITION_PATH_IS_READ_WRITE] = condition_test_path_is_read_write, [CONDITION_PATH_IS_ENCRYPTED] = condition_test_path_is_encrypted, [CONDITION_DIRECTORY_NOT_EMPTY] = condition_test_directory_not_empty, [CONDITION_FILE_NOT_EMPTY] = condition_test_file_not_empty, [CONDITION_FILE_IS_EXECUTABLE] = condition_test_file_is_executable, [CONDITION_KERNEL_COMMAND_LINE] = condition_test_kernel_command_line, [CONDITION_KERNEL_VERSION] = condition_test_kernel_version, [CONDITION_CREDENTIAL] = condition_test_credential, [CONDITION_VIRTUALIZATION] = condition_test_virtualization, [CONDITION_SECURITY] = condition_test_security, [CONDITION_CAPABILITY] = condition_test_capability, [CONDITION_HOST] = condition_test_host, [CONDITION_AC_POWER] = condition_test_ac_power, [CONDITION_ARCHITECTURE] = condition_test_architecture, [CONDITION_FIRMWARE] = condition_test_firmware, [CONDITION_NEEDS_UPDATE] = condition_test_needs_update, [CONDITION_FIRST_BOOT] = condition_test_first_boot, [CONDITION_USER] = condition_test_user, [CONDITION_GROUP] = condition_test_group, [CONDITION_CONTROL_GROUP_CONTROLLER] = condition_test_control_group_controller, [CONDITION_CPUS] = condition_test_cpus, [CONDITION_MEMORY] = condition_test_memory, [CONDITION_ENVIRONMENT] = condition_test_environment, [CONDITION_CPU_FEATURE] = condition_test_cpufeature, [CONDITION_OS_RELEASE] = condition_test_osrelease, [CONDITION_MEMORY_PRESSURE] = condition_test_psi, [CONDITION_CPU_PRESSURE] = condition_test_psi, [CONDITION_IO_PRESSURE] = condition_test_psi, [CONDITION_KERNEL_MODULE_LOADED] = condition_test_kernel_module_loaded, }; int r, b; assert(c); assert(c->type >= 0); assert(c->type < _CONDITION_TYPE_MAX); r = condition_tests[c->type](c, env); if (r < 0) { c->result = CONDITION_ERROR; return r; } b = (r > 0) == !c->negate; c->result = b ? CONDITION_SUCCEEDED : CONDITION_FAILED; return b; } bool condition_test_list( Condition *first, char **env, condition_to_string_t to_string, condition_test_logger_t logger, void *userdata) { int triggered = -1; /* If the condition list is empty, then it is true */ if (!first) return true; /* Otherwise, if all of the non-trigger conditions apply and * if any of the trigger conditions apply (unless there are * none) we return true */ LIST_FOREACH(conditions, c, first) { int r; r = condition_test(c, env); if (logger) { if (r < 0) logger(userdata, LOG_WARNING, r, PROJECT_FILE, __LINE__, __func__, "Couldn't determine result for %s=%s%s%s, assuming failed: %m", to_string(c->type), c->trigger ? "|" : "", c->negate ? "!" : "", c->parameter); else logger(userdata, LOG_DEBUG, 0, PROJECT_FILE, __LINE__, __func__, "%s=%s%s%s %s.", to_string(c->type), c->trigger ? "|" : "", c->negate ? "!" : "", c->parameter, condition_result_to_string(c->result)); } if (!c->trigger && r <= 0) return false; if (c->trigger && triggered <= 0) triggered = r > 0; } return triggered != 0; } void condition_dump(Condition *c, FILE *f, const char *prefix, condition_to_string_t to_string) { assert(c); assert(f); assert(to_string); prefix = strempty(prefix); fprintf(f, "%s\t%s: %s%s%s %s\n", prefix, to_string(c->type), c->trigger ? "|" : "", c->negate ? "!" : "", c->parameter, condition_result_to_string(c->result)); } void condition_dump_list(Condition *first, FILE *f, const char *prefix, condition_to_string_t to_string) { LIST_FOREACH(conditions, c, first) condition_dump(c, f, prefix, to_string); } static const char* const condition_type_table[_CONDITION_TYPE_MAX] = { [CONDITION_ARCHITECTURE] = "ConditionArchitecture", [CONDITION_FIRMWARE] = "ConditionFirmware", [CONDITION_VIRTUALIZATION] = "ConditionVirtualization", [CONDITION_HOST] = "ConditionHost", [CONDITION_KERNEL_COMMAND_LINE] = "ConditionKernelCommandLine", [CONDITION_KERNEL_VERSION] = "ConditionKernelVersion", [CONDITION_CREDENTIAL] = "ConditionCredential", [CONDITION_SECURITY] = "ConditionSecurity", [CONDITION_CAPABILITY] = "ConditionCapability", [CONDITION_AC_POWER] = "ConditionACPower", [CONDITION_NEEDS_UPDATE] = "ConditionNeedsUpdate", [CONDITION_FIRST_BOOT] = "ConditionFirstBoot", [CONDITION_PATH_EXISTS] = "ConditionPathExists", [CONDITION_PATH_EXISTS_GLOB] = "ConditionPathExistsGlob", [CONDITION_PATH_IS_DIRECTORY] = "ConditionPathIsDirectory", [CONDITION_PATH_IS_SYMBOLIC_LINK] = "ConditionPathIsSymbolicLink", [CONDITION_PATH_IS_MOUNT_POINT] = "ConditionPathIsMountPoint", [CONDITION_PATH_IS_READ_WRITE] = "ConditionPathIsReadWrite", [CONDITION_PATH_IS_ENCRYPTED] = "ConditionPathIsEncrypted", [CONDITION_DIRECTORY_NOT_EMPTY] = "ConditionDirectoryNotEmpty", [CONDITION_FILE_NOT_EMPTY] = "ConditionFileNotEmpty", [CONDITION_FILE_IS_EXECUTABLE] = "ConditionFileIsExecutable", [CONDITION_USER] = "ConditionUser", [CONDITION_GROUP] = "ConditionGroup", [CONDITION_CONTROL_GROUP_CONTROLLER] = "ConditionControlGroupController", [CONDITION_CPUS] = "ConditionCPUs", [CONDITION_MEMORY] = "ConditionMemory", [CONDITION_ENVIRONMENT] = "ConditionEnvironment", [CONDITION_CPU_FEATURE] = "ConditionCPUFeature", [CONDITION_OS_RELEASE] = "ConditionOSRelease", [CONDITION_MEMORY_PRESSURE] = "ConditionMemoryPressure", [CONDITION_CPU_PRESSURE] = "ConditionCPUPressure", [CONDITION_IO_PRESSURE] = "ConditionIOPressure", [CONDITION_KERNEL_MODULE_LOADED] = "ConditionKernelModuleLoaded", }; DEFINE_STRING_TABLE_LOOKUP(condition_type, ConditionType); static const char* const assert_type_table[_CONDITION_TYPE_MAX] = { [CONDITION_ARCHITECTURE] = "AssertArchitecture", [CONDITION_FIRMWARE] = "AssertFirmware", [CONDITION_VIRTUALIZATION] = "AssertVirtualization", [CONDITION_HOST] = "AssertHost", [CONDITION_KERNEL_COMMAND_LINE] = "AssertKernelCommandLine", [CONDITION_KERNEL_VERSION] = "AssertKernelVersion", [CONDITION_CREDENTIAL] = "AssertCredential", [CONDITION_SECURITY] = "AssertSecurity", [CONDITION_CAPABILITY] = "AssertCapability", [CONDITION_AC_POWER] = "AssertACPower", [CONDITION_NEEDS_UPDATE] = "AssertNeedsUpdate", [CONDITION_FIRST_BOOT] = "AssertFirstBoot", [CONDITION_PATH_EXISTS] = "AssertPathExists", [CONDITION_PATH_EXISTS_GLOB] = "AssertPathExistsGlob", [CONDITION_PATH_IS_DIRECTORY] = "AssertPathIsDirectory", [CONDITION_PATH_IS_SYMBOLIC_LINK] = "AssertPathIsSymbolicLink", [CONDITION_PATH_IS_MOUNT_POINT] = "AssertPathIsMountPoint", [CONDITION_PATH_IS_READ_WRITE] = "AssertPathIsReadWrite", [CONDITION_PATH_IS_ENCRYPTED] = "AssertPathIsEncrypted", [CONDITION_DIRECTORY_NOT_EMPTY] = "AssertDirectoryNotEmpty", [CONDITION_FILE_NOT_EMPTY] = "AssertFileNotEmpty", [CONDITION_FILE_IS_EXECUTABLE] = "AssertFileIsExecutable", [CONDITION_USER] = "AssertUser", [CONDITION_GROUP] = "AssertGroup", [CONDITION_CONTROL_GROUP_CONTROLLER] = "AssertControlGroupController", [CONDITION_CPUS] = "AssertCPUs", [CONDITION_MEMORY] = "AssertMemory", [CONDITION_ENVIRONMENT] = "AssertEnvironment", [CONDITION_CPU_FEATURE] = "AssertCPUFeature", [CONDITION_OS_RELEASE] = "AssertOSRelease", [CONDITION_MEMORY_PRESSURE] = "AssertMemoryPressure", [CONDITION_CPU_PRESSURE] = "AssertCPUPressure", [CONDITION_IO_PRESSURE] = "AssertIOPressure", [CONDITION_KERNEL_MODULE_LOADED] = "AssertKernelModuleLoaded", }; DEFINE_STRING_TABLE_LOOKUP(assert_type, ConditionType); static const char* const condition_result_table[_CONDITION_RESULT_MAX] = { [CONDITION_UNTESTED] = "untested", [CONDITION_SUCCEEDED] = "succeeded", [CONDITION_FAILED] = "failed", [CONDITION_ERROR] = "error", }; DEFINE_STRING_TABLE_LOOKUP(condition_result, ConditionResult);