1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
|
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
<meta content="text/html; charset=ISO-8859-1" http-equiv="Content-Type" />
<!--
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
This file is generated from xml source: DO NOT EDIT
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
-->
<title>Apache Performance Tuning - Apache HTTP Server Version 2.5</title>
<link href="../style/css/manual.css" rel="stylesheet" media="all" type="text/css" title="Main stylesheet" />
<link href="../style/css/manual-loose-100pc.css" rel="alternate stylesheet" media="all" type="text/css" title="No Sidebar - Default font size" />
<link href="../style/css/manual-print.css" rel="stylesheet" media="print" type="text/css" /><link rel="stylesheet" type="text/css" href="../style/css/prettify.css" />
<script src="../style/scripts/prettify.min.js" type="text/javascript">
</script>
<link href="../images/favicon.ico" rel="shortcut icon" /></head>
<body id="manual-page"><div id="page-header">
<p class="menu"><a href="../mod/">Modules</a> | <a href="../mod/quickreference.html">Directives</a> | <a href="http://wiki.apache.org/httpd/FAQ">FAQ</a> | <a href="../glossary.html">Glossary</a> | <a href="../sitemap.html">Sitemap</a></p>
<p class="apache">Apache HTTP Server Version 2.5</p>
<img alt="" src="../images/feather.png" /></div>
<div class="up"><a href="./"><img title="<-" alt="<-" src="../images/left.gif" /></a></div>
<div id="path">
<a href="http://www.apache.org/">Apache</a> > <a href="http://httpd.apache.org/">HTTP Server</a> > <a href="http://httpd.apache.org/docs/">Documentation</a> > <a href="../">Version 2.5</a> > <a href="./">Miscellaneous Documentation</a></div><div id="page-content"><div id="preamble"><h1>Apache Performance Tuning</h1>
<div class="toplang">
<p><span>Available Languages: </span><a href="../en/misc/perf-tuning.html" title="English"> en </a> |
<a href="../fr/misc/perf-tuning.html" hreflang="fr" rel="alternate" title="Fran�ais"> fr </a> |
<a href="../ko/misc/perf-tuning.html" hreflang="ko" rel="alternate" title="Korean"> ko </a> |
<a href="../tr/misc/perf-tuning.html" hreflang="tr" rel="alternate" title="T�rk�e"> tr </a></p>
</div>
<div class="warning"><h3>Warning</h3>
<p>This document is partially out of date and might be inaccurate.</p>
</div>
<p>Apache 2.4 is a general-purpose webserver, designed to
provide a balance of flexibility, portability, and performance.
Although it has not been designed specifically to set benchmark
records, Apache 2.4 is capable of high performance in many
real-world situations.</p>
<p>This document describes the options that a server administrator
can configure to tune the performance of an Apache 2.4 installation.
Some of these configuration options enable the httpd to better take
advantage of the capabilities of the hardware and OS, while others allow
the administrator to trade functionality for speed.</p>
</div>
<div id="quickview"><ul id="toc"><li><img alt="" src="../images/down.gif" /> <a href="#hardware">Hardware and Operating System Issues</a></li>
<li><img alt="" src="../images/down.gif" /> <a href="#runtime">Run-Time Configuration Issues</a></li>
<li><img alt="" src="../images/down.gif" /> <a href="#compiletime">Compile-Time Configuration Issues</a></li>
<li><img alt="" src="../images/down.gif" /> <a href="#trace">Appendix: Detailed Analysis of a Trace</a></li>
</ul><h3>See also</h3><ul class="seealso"><li><a href="#comments_section">Comments</a></li></ul></div>
<div class="top"><a href="#page-header"><img alt="top" src="../images/up.gif" /></a></div>
<div class="section">
<h2><a name="hardware" id="hardware">Hardware and Operating System Issues</a><a title="Permanent link" href="#hardware" class="permalink">¶</a></h2>
<p>The single biggest hardware issue affecting webserver
performance is RAM. A webserver should never ever have to swap,
as swapping increases the latency of each request beyond a point
that users consider "fast enough". This causes users to hit
stop and reload, further increasing the load. You can, and
should, control the <code class="directive"><a href="../mod/mpm_common.html#maxrequestworkers">MaxRequestWorkers</a></code> setting so that your server
does not spawn so many children that it starts swapping. The procedure
for doing this is simple: determine the size of your average Apache
process, by looking at your process list via a tool such as
<code>top</code>, and divide this into your total available memory,
leaving some room for other processes.</p>
<p>Beyond that the rest is mundane: get a fast enough CPU, a
fast enough network card, and fast enough disks, where "fast
enough" is something that needs to be determined by
experimentation.</p>
<p>Operating system choice is largely a matter of local
concerns. But some guidelines that have proven generally
useful are:</p>
<ul>
<li>
<p>Run the latest stable release and patch level of the
operating system that you choose. Many OS suppliers have
introduced significant performance improvements to their
TCP stacks and thread libraries in recent years.</p>
</li>
<li>
<p>If your OS supports a <code>sendfile(2)</code> system
call, make sure you install the release and/or patches
needed to enable it. (With Linux, for example, this means
using Linux 2.4 or later. For early releases of Solaris 8,
you may need to apply a patch.) On systems where it is
available, <code>sendfile</code> enables Apache to deliver
static content faster and with lower CPU utilization.</p>
</li>
</ul>
</div><div class="top"><a href="#page-header"><img alt="top" src="../images/up.gif" /></a></div>
<div class="section">
<h2><a name="runtime" id="runtime">Run-Time Configuration Issues</a><a title="Permanent link" href="#runtime" class="permalink">¶</a></h2>
<table class="related"><tr><th>Related Modules</th><th>Related Directives</th></tr><tr><td><ul><li><code class="module"><a href="../mod/mod_dir.html">mod_dir</a></code></li><li><code class="module"><a href="../mod/mpm_common.html">mpm_common</a></code></li><li><code class="module"><a href="../mod/mod_status.html">mod_status</a></code></li></ul></td><td><ul><li><code class="directive"><a href="../mod/core.html#allowoverride">AllowOverride</a></code></li><li><code class="directive"><a href="../mod/mod_dir.html#directoryindex">DirectoryIndex</a></code></li><li><code class="directive"><a href="../mod/core.html#hostnamelookups">HostnameLookups</a></code></li><li><code class="directive"><a href="../mod/core.html#enablemmap">EnableMMAP</a></code></li><li><code class="directive"><a href="../mod/core.html#enablesendfile">EnableSendfile</a></code></li><li><code class="directive"><a href="../mod/core.html#keepalivetimeout">KeepAliveTimeout</a></code></li><li><code class="directive"><a href="../mod/prefork.html#maxspareservers">MaxSpareServers</a></code></li><li><code class="directive"><a href="../mod/prefork.html#minspareservers">MinSpareServers</a></code></li><li><code class="directive"><a href="../mod/core.html#options">Options</a></code></li><li><code class="directive"><a href="../mod/mpm_common.html#startservers">StartServers</a></code></li></ul></td></tr></table>
<h3><a name="dns" id="dns">HostnameLookups and other DNS considerations</a></h3>
<p>Prior to Apache 1.3, <code class="directive"><a href="../mod/core.html#hostnamelookups">HostnameLookups</a></code> defaulted to <code>On</code>.
causing an extra latency penalty for every request due to a
DNS lookup to complete before the request was finished.
In Apache 2.4 this setting defaults to <code>Off</code>. If you need
to have addresses in your log files resolved to hostnames, please
consider post-processing rather than forcing Apache to do it in the first
place. It is recommended that you do this sort of post-processing of
your log files on some machine other than the production web
server machine, in order that this activity not adversely affect
server performance.</p>
<p>If you use any <code><code class="directive"><a href="../mod/mod_access_compat.html#allow">Allow</a></code> from domain</code> or <code><code class="directive"><a href="../mod/mod_access_compat.html#deny">Deny</a></code> from domain</code>
directives (i.e., using a hostname, or a domain name, rather than
an IP address) then you will pay for
two DNS lookups (a reverse, followed by a forward lookup
to make sure that the reverse is not being spoofed). For best
performance, whenever it is possible, use IP addresses rather
than domain names.</p>
<div class="warning"><h3>Warning:</h3>
<p>Please use the <code class="directive"><a href="../mod/mod_authz_core.html#require">Require</a></code> directive with Apache 2.4;
more info in the related <a href="../upgrading.html">upgrading guide</a>.</p>
</div>
<p>Note that it's possible to scope the directives, such as
within a <code><Location "/server-status"></code> section.
In this case the DNS lookups are only performed on requests
matching the criteria. Here's an example which disables lookups
except for <code>.html</code> and <code>.cgi</code> files:</p>
<pre class="prettyprint lang-config"><Files ~ "\.(html|cgi)$">
HostnameLookups on
</Files></pre>
<p>But even still, if you just need DNS names in some CGIs you
could consider doing the <code>gethostbyname</code> call in the
specific CGIs that need it.</p>
<h3><a name="symlinks" id="symlinks">FollowSymLinks and SymLinksIfOwnerMatch</a></h3>
<p>Wherever in your URL-space you do not have an <code>Options
FollowSymLinks</code>, or you do have an <code>Options
SymLinksIfOwnerMatch</code>, Apache will need to issue extra
system calls to check up on symlinks. (One extra call per
filename component.) For example, if you had:</p>
<pre class="prettyprint lang-config">DocumentRoot "/www/htdocs"
<Directory "/">
Options SymLinksIfOwnerMatch
</Directory></pre>
<p>and a request is made for the URI <code>/index.html</code>,
then Apache will perform <code>lstat(2)</code> on
<code>/www</code>, <code>/www/htdocs</code>, and
<code>/www/htdocs/index.html</code>. The results of these
<code>lstats</code> are never cached, so they will occur on
every single request. If you really desire the symlinks
security checking, you can do something like this:</p>
<pre class="prettyprint lang-config">DocumentRoot "/www/htdocs"
<Directory "/">
Options FollowSymLinks
</Directory>
<Directory "/www/htdocs">
Options -FollowSymLinks +SymLinksIfOwnerMatch
</Directory></pre>
<p>This at least avoids the extra checks for the
<code class="directive"><a href="../mod/core.html#documentroot">DocumentRoot</a></code> path.
Note that you'll need to add similar sections if you
have any <code class="directive"><a href="../mod/mod_alias.html#alias">Alias</a></code> or
<code class="directive"><a href="../mod/mod_rewrite.html#rewriterule">RewriteRule</a></code> paths
outside of your document root. For highest performance,
and no symlink protection, set <code>FollowSymLinks</code>
everywhere, and never set <code>SymLinksIfOwnerMatch</code>.</p>
<h3><a name="htaccess" id="htaccess">AllowOverride</a></h3>
<p>Wherever in your URL-space you allow overrides (typically
<code>.htaccess</code> files), Apache will attempt to open
<code>.htaccess</code> for each filename component. For
example,</p>
<pre class="prettyprint lang-config">DocumentRoot "/www/htdocs"
<Directory "/">
AllowOverride all
</Directory></pre>
<p>and a request is made for the URI <code>/index.html</code>.
Then Apache will attempt to open <code>/.htaccess</code>,
<code>/www/.htaccess</code>, and
<code>/www/htdocs/.htaccess</code>. The solutions are similar
to the previous case of <code>Options FollowSymLinks</code>.
For highest performance use <code>AllowOverride None</code>
everywhere in your filesystem.</p>
<h3><a name="negotiation" id="negotiation">Negotiation</a></h3>
<p>If at all possible, avoid content negotiation if you're
really interested in every last ounce of performance. In
practice the benefits of negotiation outweigh the performance
penalties. There's one case where you can speed up the server.
Instead of using a wildcard such as:</p>
<pre class="prettyprint lang-config">DirectoryIndex index</pre>
<p>Use a complete list of options:</p>
<pre class="prettyprint lang-config">DirectoryIndex index.cgi index.pl index.shtml index.html</pre>
<p>where you list the most common choice first.</p>
<p>Also note that explicitly creating a <code>type-map</code>
file provides better performance than using
<code>MultiViews</code>, as the necessary information can be
determined by reading this single file, rather than having to
scan the directory for files.</p>
<p>If your site needs content negotiation, consider using
<code>type-map</code> files, rather than the <code>Options
MultiViews</code> directive to accomplish the negotiation. See the
<a href="../content-negotiation.html">Content Negotiation</a>
documentation for a full discussion of the methods of negotiation,
and instructions for creating <code>type-map</code> files.</p>
<h3>Memory-mapping</h3>
<p>In situations where Apache 2.x needs to look at the contents
of a file being delivered--for example, when doing server-side-include
processing--it normally memory-maps the file if the OS supports
some form of <code>mmap(2)</code>.</p>
<p>On some platforms, this memory-mapping improves performance.
However, there are cases where memory-mapping can hurt the performance
or even the stability of the httpd:</p>
<ul>
<li>
<p>On some operating systems, <code>mmap</code> does not scale
as well as <code>read(2)</code> when the number of CPUs increases.
On multiprocessor Solaris servers, for example, Apache 2.x sometimes
delivers server-parsed files faster when <code>mmap</code> is disabled.</p>
</li>
<li>
<p>If you memory-map a file located on an NFS-mounted filesystem
and a process on another NFS client machine deletes or truncates
the file, your process may get a bus error the next time it tries
to access the mapped file content.</p>
</li>
</ul>
<p>For installations where either of these factors applies, you
should use <code>EnableMMAP off</code> to disable the memory-mapping
of delivered files. (Note: This directive can be overridden on
a per-directory basis.)</p>
<h3>Sendfile</h3>
<p>In situations where Apache 2.x can ignore the contents of the file
to be delivered -- for example, when serving static file content --
it normally uses the kernel sendfile support for the file if the OS
supports the <code>sendfile(2)</code> operation.</p>
<p>On most platforms, using sendfile improves performance by eliminating
separate read and send mechanics. However, there are cases where using
sendfile can harm the stability of the httpd:</p>
<ul>
<li>
<p>Some platforms may have broken sendfile support that the build
system did not detect, especially if the binaries were built on
another box and moved to such a machine with broken sendfile support.</p>
</li>
<li>
<p>With an NFS-mounted filesystem, the kernel may be unable
to reliably serve the network file through its own cache.</p>
</li>
</ul>
<p>For installations where either of these factors applies, you
should use <code>EnableSendfile off</code> to disable sendfile
delivery of file contents. (Note: This directive can be overridden
on a per-directory basis.)</p>
<h3><a name="process" id="process">Recycle child processes</a></h3>
<p><code class="directive"><a href="../mod/mpm_common.html#maxconnectionsperchild">MaxConnectionsPerChild</a></code>
limits the numbers of connections that a child process can handle during
its lifetime (by default set to <code>0</code> - unlimited). This affects all
the <a href="../mpm.html#defaults">MPMs</a>, even the ones using threads.
For example, each process created by the <code class="module"><a href="../mod/worker.html">worker</a></code> MPM spawns
multiple threads that will handle connections, but this does not influence
the overall count. It only means that the sum of requests handled by all the
threads spawned by a single process will be counted against the
<code class="directive"><a href="../mod/mpm_common.html#maxconnectionsperchild">MaxConnectionsPerChild</a></code> value.</p>
<p><code class="directive"><a href="../mod/mpm_common.html#maxconnectionsperchild">MaxConnectionsPerChild</a></code> should
not have any limit in the optimal use case, since there should not be any
reason to force a process kill other than software bugs causing memory leaks
or excessive CPU usage.</p>
<p>When keep-alives are in use, a process (or a thread spawned by a process)
will be kept busy doing nothing but waiting for more requests on the already open
connection. The default <code class="directive"><a href="../mod/core.html#keepalivetimeout">KeepAliveTimeout</a></code> of <code>5</code>
seconds attempts to minimize this effect. The tradeoff here is
between network bandwidth and server resources.</p>
</div><div class="top"><a href="#page-header"><img alt="top" src="../images/up.gif" /></a></div>
<div class="section">
<h2><a name="compiletime" id="compiletime">Compile-Time Configuration Issues</a><a title="Permanent link" href="#compiletime" class="permalink">¶</a></h2>
<h3>Choosing an MPM</h3>
<p>Apache 2.x supports pluggable concurrency models, called
<a href="../mpm.html">Multi-Processing Modules</a> (MPMs).
When building Apache, you must choose an MPM to use. There
are platform-specific MPMs for some platforms:
<code class="module"><a href="../mod/mpm_netware.html">mpm_netware</a></code>,
<code class="module"><a href="../mod/mpmt_os2.html">mpmt_os2</a></code>, and <code class="module"><a href="../mod/mpm_winnt.html">mpm_winnt</a></code>. For
general Unix-type systems, there are several MPMs from which
to choose. The choice of MPM can affect the speed and scalability
of the httpd:</p>
<ul>
<li>The <code class="module"><a href="../mod/worker.html">worker</a></code> MPM uses multiple child
processes with many threads each. Each thread handles
one connection at a time. Worker generally is a good
choice for high-traffic servers because it has a smaller
memory footprint than the prefork MPM.</li>
<li>The <code class="module"><a href="../mod/event.html">event</a></code> MPM is threaded like the
Worker MPM, but is designed to allow more requests to be
served simultaneously by passing off some processing work
to supporting threads, freeing up the main threads to work
on new requests.</li>
<li>The <code class="module"><a href="../mod/prefork.html">prefork</a></code> MPM uses multiple child
processes with one thread each. Each process handles
one connection at a time. On many systems, prefork is
comparable in speed to worker, but it uses more memory.
Prefork's threadless design has advantages over worker
in some situations: it can be used with non-thread-safe
third-party modules, and it is easier to debug on platforms
with poor thread debugging support.</li>
</ul>
<p>For more information on these and other MPMs, please
see the MPM <a href="../mpm.html">documentation</a>.</p>
<h3><a name="modules" id="modules">Modules</a></h3>
<p>Since memory usage is such an important consideration in
performance, you should attempt to eliminate modules that you are
not actually using. If you have built the modules as <a href="../dso.html">DSOs</a>, eliminating modules is a simple
matter of commenting out the associated <code class="directive"><a href="../mod/mod_so.html#loadmodule">LoadModule</a></code> directive for that module.
This allows you to experiment with removing modules and seeing
if your site still functions in their absence.</p>
<p>If, on the other hand, you have modules statically linked
into your Apache binary, you will need to recompile Apache in
order to remove unwanted modules.</p>
<p>An associated question that arises here is, of course, what
modules you need, and which ones you don't. The answer here
will, of course, vary from one web site to another. However, the
<em>minimal</em> list of modules which you can get by with tends
to include <code class="module"><a href="../mod/mod_mime.html">mod_mime</a></code>, <code class="module"><a href="../mod/mod_dir.html">mod_dir</a></code>,
and <code class="module"><a href="../mod/mod_log_config.html">mod_log_config</a></code>. <code>mod_log_config</code> is,
of course, optional, as you can run a web site without log
files. This is, however, not recommended.</p>
<h3>Atomic Operations</h3>
<p>Some modules, such as <code class="module"><a href="../mod/mod_cache.html">mod_cache</a></code> and
recent development builds of the worker MPM, use APR's
atomic API. This API provides atomic operations that can
be used for lightweight thread synchronization.</p>
<p>By default, APR implements these operations using the
most efficient mechanism available on each target
OS/CPU platform. Many modern CPUs, for example, have
an instruction that does an atomic compare-and-swap (CAS)
operation in hardware. On some platforms, however, APR
defaults to a slower, mutex-based implementation of the
atomic API in order to ensure compatibility with older
CPU models that lack such instructions. If you are
building Apache for one of these platforms, and you plan
to run only on newer CPUs, you can select a faster atomic
implementation at build time by configuring Apache with
the <code>--enable-nonportable-atomics</code> option:</p>
<div class="example"><p><code>
./buildconf<br />
./configure --with-mpm=worker --enable-nonportable-atomics=yes
</code></p></div>
<p>The <code>--enable-nonportable-atomics</code> option is
relevant for the following platforms:</p>
<ul>
<li>Solaris on SPARC<br />
By default, APR uses mutex-based atomics on Solaris/SPARC.
If you configure with <code>--enable-nonportable-atomics</code>,
however, APR generates code that uses a SPARC v8plus opcode for
fast hardware compare-and-swap. If you configure Apache with
this option, the atomic operations will be more efficient
(allowing for lower CPU utilization and higher concurrency),
but the resulting executable will run only on UltraSPARC
chips.
</li>
<li>Linux on x86<br />
By default, APR uses mutex-based atomics on Linux. If you
configure with <code>--enable-nonportable-atomics</code>,
however, APR generates code that uses a 486 opcode for fast
hardware compare-and-swap. This will result in more efficient
atomic operations, but the resulting executable will run only
on 486 and later chips (and not on 386).
</li>
</ul>
<h3>mod_status and ExtendedStatus On</h3>
<p>If you include <code class="module"><a href="../mod/mod_status.html">mod_status</a></code> and you also set
<code>ExtendedStatus On</code> when building and running
Apache, then on every request Apache will perform two calls to
<code>gettimeofday(2)</code> (or <code>times(2)</code>
depending on your operating system), and (pre-1.3) several
extra calls to <code>time(2)</code>. This is all done so that
the status report contains timing indications. For highest
performance, set <code>ExtendedStatus off</code> (which is the
default).</p>
<h3>accept Serialization - Multiple Sockets</h3>
<div class="warning"><h3>Warning:</h3>
<p>This section has not been fully updated
to take into account changes made in the 2.x version of the
Apache HTTP Server. Some of the information may still be
relevant, but please use it with care.</p>
</div>
<p>This discusses a shortcoming in the Unix socket API. Suppose
your web server uses multiple <code class="directive"><a href="../mod/mpm_common.html#listen">Listen</a></code> statements to listen on either multiple
ports or multiple addresses. In order to test each socket
to see if a connection is ready, Apache uses
<code>select(2)</code>. <code>select(2)</code> indicates that a
socket has <em>zero</em> or <em>at least one</em> connection
waiting on it. Apache's model includes multiple children, and
all the idle ones test for new connections at the same time. A
naive implementation looks something like this (these examples
do not match the code, they're contrived for pedagogical
purposes):</p>
<pre class="prettyprint lang-c"> for (;;) {
for (;;) {
fd_set accept_fds;
FD_ZERO (&accept_fds);
for (i = first_socket; i <= last_socket; ++i) {
FD_SET (i, &accept_fds);
}
rc = select (last_socket+1, &accept_fds, NULL, NULL, NULL);
if (rc < 1) continue;
new_connection = -1;
for (i = first_socket; i <= last_socket; ++i) {
if (FD_ISSET (i, &accept_fds)) {
new_connection = accept (i, NULL, NULL);
if (new_connection != -1) break;
}
}
if (new_connection != -1) break;
}
process_the(new_connection);
}</pre>
<p>But this naive implementation has a serious starvation problem.
Recall that multiple children execute this loop at the same
time, and so multiple children will block at
<code>select</code> when they are in between requests. All
those blocked children will awaken and return from
<code>select</code> when a single request appears on any socket.
(The number of children which awaken varies depending on the
operating system and timing issues.) They will all then fall
down into the loop and try to <code>accept</code> the
connection. But only one will succeed (assuming there's still
only one connection ready). The rest will be <em>blocked</em>
in <code>accept</code>. This effectively locks those children
into serving requests from that one socket and no other
sockets, and they'll be stuck there until enough new requests
appear on that socket to wake them all up. This starvation
problem was first documented in <a href="http://bugs.apache.org/index/full/467">PR#467</a>. There
are at least two solutions.</p>
<p>One solution is to make the sockets non-blocking. In this
case the <code>accept</code> won't block the children, and they
will be allowed to continue immediately. But this wastes CPU
time. Suppose you have ten idle children in
<code>select</code>, and one connection arrives. Then nine of
those children will wake up, try to <code>accept</code> the
connection, fail, and loop back into <code>select</code>,
accomplishing nothing. Meanwhile none of those children are
servicing requests that occurred on other sockets until they
get back up to the <code>select</code> again. Overall this
solution does not seem very fruitful unless you have as many
idle CPUs (in a multiprocessor box) as you have idle children
(not a very likely situation).</p>
<p>Another solution, the one used by Apache, is to serialize
entry into the inner loop. The loop looks like this
(differences highlighted):</p>
<pre class="prettyprint lang-c"> for (;;) {
<strong>accept_mutex_on ();</strong>
for (;;) {
fd_set accept_fds;
FD_ZERO (&accept_fds);
for (i = first_socket; i <= last_socket; ++i) {
FD_SET (i, &accept_fds);
}
rc = select (last_socket+1, &accept_fds, NULL, NULL, NULL);
if (rc < 1) continue;
new_connection = -1;
for (i = first_socket; i <= last_socket; ++i) {
if (FD_ISSET (i, &accept_fds)) {
new_connection = accept (i, NULL, NULL);
if (new_connection != -1) break;
}
}
if (new_connection != -1) break;
}
<strong>accept_mutex_off ();</strong>
process the new_connection;
}</pre>
<p><a id="serialize" name="serialize">The functions</a>
<code>accept_mutex_on</code> and <code>accept_mutex_off</code>
implement a mutual exclusion semaphore. Only one child can have
the mutex at any time. There are several choices for
implementing these mutexes. The choice is defined in
<code>src/conf.h</code> (pre-1.3) or
<code>src/include/ap_config.h</code> (1.3 or later). Some
architectures do not have any locking choice made, on these
architectures it is unsafe to use multiple
<code class="directive"><a href="../mod/mpm_common.html#listen">Listen</a></code>
directives.</p>
<p>The <code class="directive"><a href="../mod/core.html#mutex">Mutex</a></code> directive can
be used to change the mutex implementation of the
<code>mpm-accept</code> mutex at run-time. Special considerations
for different mutex implementations are documented with that
directive.</p>
<p>Another solution that has been considered but never
implemented is to partially serialize the loop -- that is, let
in a certain number of processes. This would only be of
interest on multiprocessor boxes where it's possible that multiple
children could run simultaneously, and the serialization
actually doesn't take advantage of the full bandwidth. This is
a possible area of future investigation, but priority remains
low because highly parallel web servers are not the norm.</p>
<p>Ideally you should run servers without multiple
<code class="directive"><a href="../mod/mpm_common.html#listen">Listen</a></code>
statements if you want the highest performance.
But read on.</p>
<h3>accept Serialization - Single Socket</h3>
<p>The above is fine and dandy for multiple socket servers, but
what about single socket servers? In theory they shouldn't
experience any of these same problems because all children can
just block in <code>accept(2)</code> until a connection
arrives, and no starvation results. In practice this hides
almost the same "spinning" behavior discussed above in the
non-blocking solution. The way that most TCP stacks are
implemented, the kernel actually wakes up all processes blocked
in <code>accept</code> when a single connection arrives. One of
those processes gets the connection and returns to user-space.
The rest spin in the kernel and go back to sleep when they
discover there's no connection for them. This spinning is
hidden from the user-land code, but it's there nonetheless.
This can result in the same load-spiking wasteful behavior
that a non-blocking solution to the multiple sockets case
can.</p>
<p>For this reason we have found that many architectures behave
more "nicely" if we serialize even the single socket case. So
this is actually the default in almost all cases. Crude
experiments under Linux (2.0.30 on a dual Pentium pro 166
w/128Mb RAM) have shown that the serialization of the single
socket case causes less than a 3% decrease in requests per
second over unserialized single-socket. But unserialized
single-socket showed an extra 100ms latency on each request.
This latency is probably a wash on long haul lines, and only an
issue on LANs. If you want to override the single socket
serialization, you can define
<code>SINGLE_LISTEN_UNSERIALIZED_ACCEPT</code>, and then
single-socket servers will not serialize at all.</p>
<h3>Lingering Close</h3>
<p>As discussed in <a href="http://www.ics.uci.edu/pub/ietf/http/draft-ietf-http-connection-00.txt">
draft-ietf-http-connection-00.txt</a> section 8, in order for
an HTTP server to <strong>reliably</strong> implement the
protocol, it needs to shut down each direction of the
communication independently. (Recall that a TCP connection is
bi-directional. Each half is independent of the other.)</p>
<p>When this feature was added to Apache, it caused a flurry of
problems on various versions of Unix because of shortsightedness.
The TCP specification does not state that the <code>FIN_WAIT_2</code>
state has a timeout, but it doesn't prohibit it.
On systems without the timeout, Apache 1.2 induces many sockets
stuck forever in the <code>FIN_WAIT_2</code> state. In many cases this
can be avoided by simply upgrading to the latest TCP/IP patches
supplied by the vendor. In cases where the vendor has never
released patches (<em>i.e.</em>, SunOS4 -- although folks with
a source license can patch it themselves), we have decided to
disable this feature.</p>
<p>There are two ways to accomplish this. One is the socket
option <code>SO_LINGER</code>. But as fate would have it, this
has never been implemented properly in most TCP/IP stacks. Even
on those stacks with a proper implementation (<em>i.e.</em>,
Linux 2.0.31), this method proves to be more expensive (cputime)
than the next solution.</p>
<p>For the most part, Apache implements this in a function
called <code>lingering_close</code> (in
<code>http_main.c</code>). The function looks roughly like
this:</p>
<pre class="prettyprint lang-c"> void lingering_close (int s)
{
char junk_buffer[2048];
/* shutdown the sending side */
shutdown (s, 1);
signal (SIGALRM, lingering_death);
alarm (30);
for (;;) {
select (s for reading, 2 second timeout);
if (error) break;
if (s is ready for reading) {
if (read (s, junk_buffer, sizeof (junk_buffer)) <= 0) {
break;
}
/* just toss away whatever is here */
}
}
close (s);
}</pre>
<p>This naturally adds some expense at the end of a connection,
but it is required for a reliable implementation. As HTTP/1.1
becomes more prevalent, and all connections are persistent,
this expense will be amortized over more requests. If you want
to play with fire and disable this feature, you can define
<code>NO_LINGCLOSE</code>, but this is not recommended at all.
In particular, as HTTP/1.1 pipelined persistent connections
come into use, <code>lingering_close</code> is an absolute
necessity (and <a href="http://www.w3.org/Protocols/HTTP/Performance/Pipeline.html">
pipelined connections are faster</a>, so you want to support
them).</p>
<h3>Scoreboard File</h3>
<p>Apache's parent and children communicate with each other
through something called the scoreboard. Ideally this should be
implemented in shared memory. For those operating systems that
we either have access to, or have been given detailed ports
for, it typically is implemented using shared memory. The rest
default to using an on-disk file. The on-disk file is not only
slow, but it is unreliable (and less featured). Peruse the
<code>src/main/conf.h</code> file for your architecture, and
look for either <code>USE_MMAP_SCOREBOARD</code> or
<code>USE_SHMGET_SCOREBOARD</code>. Defining one of those two
(as well as their companions <code>HAVE_MMAP</code> and
<code>HAVE_SHMGET</code> respectively) enables the supplied
shared memory code. If your system has another type of shared
memory, edit the file <code>src/main/http_main.c</code> and add
the hooks necessary to use it in Apache. (Send us back a patch
too, please.)</p>
<div class="note">Historical note: The Linux port of Apache didn't start to
use shared memory until version 1.2 of Apache. This oversight
resulted in really poor and unreliable behavior of earlier
versions of Apache on Linux.</div>
<h3>DYNAMIC_MODULE_LIMIT</h3>
<p>If you have no intention of using dynamically loaded modules
(you probably don't if you're reading this and tuning your
server for every last ounce of performance), then you should add
<code>-DDYNAMIC_MODULE_LIMIT=0</code> when building your
server. This will save RAM that's allocated only for supporting
dynamically loaded modules.</p>
</div><div class="top"><a href="#page-header"><img alt="top" src="../images/up.gif" /></a></div>
<div class="section">
<h2><a name="trace" id="trace">Appendix: Detailed Analysis of a Trace</a><a title="Permanent link" href="#trace" class="permalink">¶</a></h2>
<p>Here is a system call trace of Apache 2.0.38 with the worker MPM
on Solaris 8. This trace was collected using:</p>
<div class="example"><p><code>
truss -l -p <var>httpd_child_pid</var>.
</code></p></div>
<p>The <code>-l</code> option tells truss to log the ID of the
LWP (lightweight process--Solaris' form of kernel-level thread)
that invokes each system call.</p>
<p>Other systems may have different system call tracing utilities
such as <code>strace</code>, <code>ktrace</code>, or <code>par</code>.
They all produce similar output.</p>
<p>In this trace, a client has requested a 10KB static file
from the httpd. Traces of non-static requests or requests
with content negotiation look wildly different (and quite ugly
in some cases).</p>
<div class="example"><pre>/67: accept(3, 0x00200BEC, 0x00200C0C, 1) (sleeping...)
/67: accept(3, 0x00200BEC, 0x00200C0C, 1) = 9</pre></div>
<p>In this trace, the listener thread is running within LWP #67.</p>
<div class="note">Note the lack of <code>accept(2)</code> serialization. On this
particular platform, the worker MPM uses an unserialized accept by
default unless it is listening on multiple ports.</div>
<div class="example"><pre>/65: lwp_park(0x00000000, 0) = 0
/67: lwp_unpark(65, 1) = 0</pre></div>
<p>Upon accepting the connection, the listener thread wakes up
a worker thread to do the request processing. In this trace,
the worker thread that handles the request is mapped to LWP #65.</p>
<div class="example"><pre>/65: getsockname(9, 0x00200BA4, 0x00200BC4, 1) = 0</pre></div>
<p>In order to implement virtual hosts, Apache needs to know
the local socket address used to accept the connection. It
is possible to eliminate this call in many situations (such
as when there are no virtual hosts, or when
<code class="directive"><a href="../mod/mpm_common.html#listen">Listen</a></code> directives
are used which do not have wildcard addresses). But
no effort has yet been made to do these optimizations. </p>
<div class="example"><pre>/65: brk(0x002170E8) = 0
/65: brk(0x002190E8) = 0</pre></div>
<p>The <code>brk(2)</code> calls allocate memory from the heap.
It is rare to see these in a system call trace, because the httpd
uses custom memory allocators (<code>apr_pool</code> and
<code>apr_bucket_alloc</code>) for most request processing.
In this trace, the httpd has just been started, so it must
call <code>malloc(3)</code> to get the blocks of raw memory
with which to create the custom memory allocators.</p>
<div class="example"><pre>/65: fcntl(9, F_GETFL, 0x00000000) = 2
/65: fstat64(9, 0xFAF7B818) = 0
/65: getsockopt(9, 65535, 8192, 0xFAF7B918, 0xFAF7B910, 2190656) = 0
/65: fstat64(9, 0xFAF7B818) = 0
/65: getsockopt(9, 65535, 8192, 0xFAF7B918, 0xFAF7B914, 2190656) = 0
/65: setsockopt(9, 65535, 8192, 0xFAF7B918, 4, 2190656) = 0
/65: fcntl(9, F_SETFL, 0x00000082) = 0</pre></div>
<p>Next, the worker thread puts the connection to the client (file
descriptor 9) in non-blocking mode. The <code>setsockopt(2)</code>
and <code>getsockopt(2)</code> calls are a side-effect of how
Solaris' libc handles <code>fcntl(2)</code> on sockets.</p>
<div class="example"><pre>/65: read(9, " G E T / 1 0 k . h t m".., 8000) = 97</pre></div>
<p>The worker thread reads the request from the client.</p>
<div class="example"><pre>/65: stat("/var/httpd/apache/httpd-8999/htdocs/10k.html", 0xFAF7B978) = 0
/65: open("/var/httpd/apache/httpd-8999/htdocs/10k.html", O_RDONLY) = 10</pre></div>
<p>This httpd has been configured with <code>Options FollowSymLinks</code>
and <code>AllowOverride None</code>. Thus it doesn't need to
<code>lstat(2)</code> each directory in the path leading up to the
requested file, nor check for <code>.htaccess</code> files.
It simply calls <code>stat(2)</code> to verify that the file:
1) exists, and 2) is a regular file, not a directory.</p>
<div class="example"><pre>/65: sendfilev(0, 9, 0x00200F90, 2, 0xFAF7B53C) = 10269</pre></div>
<p>In this example, the httpd is able to send the HTTP response
header and the requested file with a single <code>sendfilev(2)</code>
system call. Sendfile semantics vary among operating systems. On some other
systems, it is necessary to do a <code>write(2)</code> or
<code>writev(2)</code> call to send the headers before calling
<code>sendfile(2)</code>.</p>
<div class="example"><pre>/65: write(4, " 1 2 7 . 0 . 0 . 1 - ".., 78) = 78</pre></div>
<p>This <code>write(2)</code> call records the request in the
access log. Note that one thing missing from this trace is a
<code>time(2)</code> call. Unlike Apache 1.3, Apache 2.x uses
<code>gettimeofday(3)</code> to look up the time. On some operating
systems, like Linux or Solaris, <code>gettimeofday</code> has an
optimized implementation that doesn't require as much overhead
as a typical system call.</p>
<div class="example"><pre>/65: shutdown(9, 1, 1) = 0
/65: poll(0xFAF7B980, 1, 2000) = 1
/65: read(9, 0xFAF7BC20, 512) = 0
/65: close(9) = 0</pre></div>
<p>The worker thread does a lingering close of the connection.</p>
<div class="example"><pre>/65: close(10) = 0
/65: lwp_park(0x00000000, 0) (sleeping...)</pre></div>
<p>Finally the worker thread closes the file that it has just delivered
and blocks until the listener assigns it another connection.</p>
<div class="example"><pre>/67: accept(3, 0x001FEB74, 0x001FEB94, 1) (sleeping...)</pre></div>
<p>Meanwhile, the listener thread is able to accept another connection
as soon as it has dispatched this connection to a worker thread (subject
to some flow-control logic in the worker MPM that throttles the listener
if all the available workers are busy). Though it isn't apparent from
this trace, the next <code>accept(2)</code> can (and usually does, under
high load conditions) occur in parallel with the worker thread's handling
of the just-accepted connection.</p>
</div></div>
<div class="bottomlang">
<p><span>Available Languages: </span><a href="../en/misc/perf-tuning.html" title="English"> en </a> |
<a href="../fr/misc/perf-tuning.html" hreflang="fr" rel="alternate" title="Fran�ais"> fr </a> |
<a href="../ko/misc/perf-tuning.html" hreflang="ko" rel="alternate" title="Korean"> ko </a> |
<a href="../tr/misc/perf-tuning.html" hreflang="tr" rel="alternate" title="T�rk�e"> tr </a></p>
</div><div class="top"><a href="#page-header"><img src="../images/up.gif" alt="top" /></a></div><div class="section"><h2><a id="comments_section" name="comments_section">Comments</a></h2><div class="warning"><strong>Notice:</strong><br />This is not a Q&A section. Comments placed here should be pointed towards suggestions on improving the documentation or server, and may be removed again by our moderators if they are either implemented or considered invalid/off-topic. Questions on how to manage the Apache HTTP Server should be directed at either our IRC channel, #httpd, on Freenode, or sent to our <a href="http://httpd.apache.org/lists.html">mailing lists</a>.</div>
<script type="text/javascript"><!--//--><![CDATA[//><!--
var comments_shortname = 'httpd';
var comments_identifier = 'http://httpd.apache.org/docs/trunk/misc/perf-tuning.html';
(function(w, d) {
if (w.location.hostname.toLowerCase() == "httpd.apache.org") {
d.write('<div id="comments_thread"><\/div>');
var s = d.createElement('script');
s.type = 'text/javascript';
s.async = true;
s.src = 'https://comments.apache.org/show_comments.lua?site=' + comments_shortname + '&page=' + comments_identifier;
(d.getElementsByTagName('head')[0] || d.getElementsByTagName('body')[0]).appendChild(s);
}
else {
d.write('<div id="comments_thread">Comments are disabled for this page at the moment.<\/div>');
}
})(window, document);
//--><!]]></script></div><div id="footer">
<p class="apache">Copyright 2018 The Apache Software Foundation.<br />Licensed under the <a href="http://www.apache.org/licenses/LICENSE-2.0">Apache License, Version 2.0</a>.</p>
<p class="menu"><a href="../mod/">Modules</a> | <a href="../mod/quickreference.html">Directives</a> | <a href="http://wiki.apache.org/httpd/FAQ">FAQ</a> | <a href="../glossary.html">Glossary</a> | <a href="../sitemap.html">Sitemap</a></p></div><script type="text/javascript"><!--//--><![CDATA[//><!--
if (typeof(prettyPrint) !== 'undefined') {
prettyPrint();
}
//--><!]]></script>
</body></html>
|