1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
|
// vim: ts=8 sw=2 smarttab
/*
* Ceph - scalable distributed file system
*
* Copyright (C) 2004-2009 Sage Weil <sage@newdream.net>
*
* This is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License version 2.1, as published by the Free Software
* Foundation. See file COPYING.
*
*/
#include <array>
#include <sstream>
#include <limits>
#include <fcntl.h>
#include <openssl/aes.h>
#include "Crypto.h"
#include "include/ceph_assert.h"
#include "common/Clock.h"
#include "common/armor.h"
#include "common/ceph_context.h"
#include "common/ceph_crypto.h"
#include "common/hex.h"
#include "common/safe_io.h"
#include "include/ceph_fs.h"
#include "include/compat.h"
#include "common/Formatter.h"
#include "common/debug.h"
#include <errno.h>
using std::ostringstream;
using std::string;
using ceph::bufferlist;
using ceph::bufferptr;
using ceph::Formatter;
// use getentropy() if available. it uses the same source of randomness
// as /dev/urandom without the filesystem overhead
#ifdef HAVE_GETENTROPY
#include <unistd.h>
static bool getentropy_works()
{
char buf;
auto ret = TEMP_FAILURE_RETRY(::getentropy(&buf, sizeof(buf)));
if (ret == 0) {
return true;
} else if (errno == ENOSYS || errno == EPERM) {
return false;
} else {
throw std::system_error(errno, std::system_category());
}
}
CryptoRandom::CryptoRandom() : fd(getentropy_works() ? -1 : open_urandom())
{}
CryptoRandom::~CryptoRandom()
{
if (fd >= 0) {
VOID_TEMP_FAILURE_RETRY(::close(fd));
}
}
void CryptoRandom::get_bytes(char *buf, int len)
{
ssize_t ret = 0;
if (unlikely(fd >= 0)) {
ret = safe_read_exact(fd, buf, len);
} else {
// getentropy() reads up to 256 bytes
assert(len <= 256);
ret = TEMP_FAILURE_RETRY(::getentropy(buf, len));
}
if (ret < 0) {
throw std::system_error(errno, std::system_category());
}
}
#elif defined(_WIN32) // !HAVE_GETENTROPY
#include <bcrypt.h>
CryptoRandom::CryptoRandom() : fd(0) {}
CryptoRandom::~CryptoRandom() = default;
void CryptoRandom::get_bytes(char *buf, int len)
{
auto ret = BCryptGenRandom (
NULL,
(unsigned char*)buf,
len,
BCRYPT_USE_SYSTEM_PREFERRED_RNG);
if (ret != 0) {
throw std::system_error(ret, std::system_category());
}
}
#else // !HAVE_GETENTROPY && !_WIN32
// open /dev/urandom once on construction and reuse the fd for all reads
CryptoRandom::CryptoRandom()
: fd{open_urandom()}
{
if (fd < 0) {
throw std::system_error(errno, std::system_category());
}
}
CryptoRandom::~CryptoRandom()
{
VOID_TEMP_FAILURE_RETRY(::close(fd));
}
void CryptoRandom::get_bytes(char *buf, int len)
{
auto ret = safe_read_exact(fd, buf, len);
if (ret < 0) {
throw std::system_error(-ret, std::system_category());
}
}
#endif
int CryptoRandom::open_urandom()
{
int fd = TEMP_FAILURE_RETRY(::open("/dev/urandom", O_CLOEXEC|O_RDONLY));
if (fd < 0) {
throw std::system_error(errno, std::system_category());
}
return fd;
}
// ---------------------------------------------------
// fallback implementation of the bufferlist-free
// interface.
std::size_t CryptoKeyHandler::encrypt(
const CryptoKeyHandler::in_slice_t& in,
const CryptoKeyHandler::out_slice_t& out) const
{
ceph::bufferptr inptr(reinterpret_cast<const char*>(in.buf), in.length);
ceph::bufferlist plaintext;
plaintext.append(std::move(inptr));
ceph::bufferlist ciphertext;
std::string error;
const int ret = encrypt(plaintext, ciphertext, &error);
if (ret != 0 || !error.empty()) {
throw std::runtime_error(std::move(error));
}
// we need to specify the template parameter explicitly as ::length()
// returns unsigned int, not size_t.
const auto todo_len = \
std::min<std::size_t>(ciphertext.length(), out.max_length);
memcpy(out.buf, ciphertext.c_str(), todo_len);
return todo_len;
}
std::size_t CryptoKeyHandler::decrypt(
const CryptoKeyHandler::in_slice_t& in,
const CryptoKeyHandler::out_slice_t& out) const
{
ceph::bufferptr inptr(reinterpret_cast<const char*>(in.buf), in.length);
ceph::bufferlist ciphertext;
ciphertext.append(std::move(inptr));
ceph::bufferlist plaintext;
std::string error;
const int ret = decrypt(ciphertext, plaintext, &error);
if (ret != 0 || !error.empty()) {
throw std::runtime_error(std::move(error));
}
// we need to specify the template parameter explicitly as ::length()
// returns unsigned int, not size_t.
const auto todo_len = \
std::min<std::size_t>(plaintext.length(), out.max_length);
memcpy(out.buf, plaintext.c_str(), todo_len);
return todo_len;
}
sha256_digest_t CryptoKeyHandler::hmac_sha256(
const ceph::bufferlist& in) const
{
TOPNSPC::crypto::HMACSHA256 hmac((const unsigned char*)secret.c_str(), secret.length());
for (const auto& bptr : in.buffers()) {
hmac.Update((const unsigned char *)bptr.c_str(), bptr.length());
}
sha256_digest_t ret;
hmac.Final(ret.v);
return ret;
}
// ---------------------------------------------------
class CryptoNoneKeyHandler : public CryptoKeyHandler {
public:
CryptoNoneKeyHandler()
: CryptoKeyHandler(CryptoKeyHandler::BLOCK_SIZE_0B()) {
}
using CryptoKeyHandler::encrypt;
using CryptoKeyHandler::decrypt;
int encrypt(const bufferlist& in,
bufferlist& out, std::string *error) const override {
out = in;
return 0;
}
int decrypt(const bufferlist& in,
bufferlist& out, std::string *error) const override {
out = in;
return 0;
}
};
class CryptoNone : public CryptoHandler {
public:
CryptoNone() { }
~CryptoNone() override {}
int get_type() const override {
return CEPH_CRYPTO_NONE;
}
int create(CryptoRandom *random, bufferptr& secret) override {
return 0;
}
int validate_secret(const bufferptr& secret) override {
return 0;
}
CryptoKeyHandler *get_key_handler(const bufferptr& secret, string& error) override {
return new CryptoNoneKeyHandler;
}
};
// ---------------------------------------------------
class CryptoAES : public CryptoHandler {
public:
CryptoAES() { }
~CryptoAES() override {}
int get_type() const override {
return CEPH_CRYPTO_AES;
}
int create(CryptoRandom *random, bufferptr& secret) override;
int validate_secret(const bufferptr& secret) override;
CryptoKeyHandler *get_key_handler(const bufferptr& secret, string& error) override;
};
// when we say AES, we mean AES-128
static constexpr const std::size_t AES_KEY_LEN{16};
static constexpr const std::size_t AES_BLOCK_LEN{16};
class CryptoAESKeyHandler : public CryptoKeyHandler {
AES_KEY enc_key;
AES_KEY dec_key;
public:
CryptoAESKeyHandler()
: CryptoKeyHandler(CryptoKeyHandler::BLOCK_SIZE_16B()) {
}
int init(const bufferptr& s, ostringstream& err) {
secret = s;
const int enc_key_ret = \
AES_set_encrypt_key((const unsigned char*)secret.c_str(),
AES_KEY_LEN * CHAR_BIT, &enc_key);
if (enc_key_ret != 0) {
err << "cannot set OpenSSL encrypt key for AES: " << enc_key_ret;
return -1;
}
const int dec_key_ret = \
AES_set_decrypt_key((const unsigned char*)secret.c_str(),
AES_KEY_LEN * CHAR_BIT, &dec_key);
if (dec_key_ret != 0) {
err << "cannot set OpenSSL decrypt key for AES: " << dec_key_ret;
return -1;
}
return 0;
}
int encrypt(const ceph::bufferlist& in,
ceph::bufferlist& out,
std::string* /* unused */) const override {
// we need to take into account the PKCS#7 padding. There *always* will
// be at least one byte of padding. This stays even to input aligned to
// AES_BLOCK_LEN. Otherwise we would face ambiguities during decryption.
// To exemplify:
// 16 + p2align(10, 16) -> 16
// 16 + p2align(16, 16) -> 32 including 16 bytes for padding.
ceph::bufferptr out_tmp{static_cast<unsigned>(
AES_BLOCK_LEN + p2align<std::size_t>(in.length(), AES_BLOCK_LEN))};
// let's pad the data
std::uint8_t pad_len = out_tmp.length() - in.length();
ceph::bufferptr pad_buf{pad_len};
// FIPS zeroization audit 20191115: this memset is not intended to
// wipe out a secret after use.
memset(pad_buf.c_str(), pad_len, pad_len);
// form contiguous buffer for block cipher. The ctor copies shallowly.
ceph::bufferlist incopy(in);
incopy.append(std::move(pad_buf));
const auto in_buf = reinterpret_cast<unsigned char*>(incopy.c_str());
// reinitialize IV each time. It might be unnecessary depending on
// actual implementation but at the interface layer we are obliged
// to deliver IV as non-const.
static_assert(strlen_ct(CEPH_AES_IV) == AES_BLOCK_LEN);
unsigned char iv[AES_BLOCK_LEN];
memcpy(iv, CEPH_AES_IV, AES_BLOCK_LEN);
// we aren't using EVP because of performance concerns. Profiling
// shows the cost is quite high. Endianness might be an issue.
// However, as they would affect Cephx, any fallout should pop up
// rather early, hopefully.
AES_cbc_encrypt(in_buf, reinterpret_cast<unsigned char*>(out_tmp.c_str()),
out_tmp.length(), &enc_key, iv, AES_ENCRYPT);
out.append(out_tmp);
return 0;
}
int decrypt(const ceph::bufferlist& in,
ceph::bufferlist& out,
std::string* /* unused */) const override {
// PKCS#7 padding enlarges even empty plain-text to take 16 bytes.
if (in.length() < AES_BLOCK_LEN || in.length() % AES_BLOCK_LEN) {
return -1;
}
// needed because of .c_str() on const. It's a shallow copy.
ceph::bufferlist incopy(in);
const auto in_buf = reinterpret_cast<unsigned char*>(incopy.c_str());
// make a local, modifiable copy of IV.
static_assert(strlen_ct(CEPH_AES_IV) == AES_BLOCK_LEN);
unsigned char iv[AES_BLOCK_LEN];
memcpy(iv, CEPH_AES_IV, AES_BLOCK_LEN);
ceph::bufferptr out_tmp{in.length()};
AES_cbc_encrypt(in_buf, reinterpret_cast<unsigned char*>(out_tmp.c_str()),
in.length(), &dec_key, iv, AES_DECRYPT);
// BE CAREFUL: we cannot expose any single bit of information about
// the cause of failure. Otherwise we'll face padding oracle attack.
// See: https://en.wikipedia.org/wiki/Padding_oracle_attack.
const auto pad_len = \
std::min<std::uint8_t>(out_tmp[in.length() - 1], AES_BLOCK_LEN);
out_tmp.set_length(in.length() - pad_len);
out.append(std::move(out_tmp));
return 0;
}
std::size_t encrypt(const in_slice_t& in,
const out_slice_t& out) const override {
if (out.buf == nullptr) {
// 16 + p2align(10, 16) -> 16
// 16 + p2align(16, 16) -> 32
return AES_BLOCK_LEN + p2align<std::size_t>(in.length, AES_BLOCK_LEN);
}
// how many bytes of in.buf hang outside the alignment boundary and how
// much padding we need.
// length = 23 -> tail_len = 7, pad_len = 9
// length = 32 -> tail_len = 0, pad_len = 16
const std::uint8_t tail_len = in.length % AES_BLOCK_LEN;
const std::uint8_t pad_len = AES_BLOCK_LEN - tail_len;
static_assert(std::numeric_limits<std::uint8_t>::max() > AES_BLOCK_LEN);
std::array<unsigned char, AES_BLOCK_LEN> last_block;
memcpy(last_block.data(), in.buf + in.length - tail_len, tail_len);
// FIPS zeroization audit 20191115: this memset is not intended to
// wipe out a secret after use.
memset(last_block.data() + tail_len, pad_len, pad_len);
// need a local copy because AES_cbc_encrypt takes `iv` as non-const.
// Useful because it allows us to encrypt in two steps: main + tail.
static_assert(strlen_ct(CEPH_AES_IV) == AES_BLOCK_LEN);
std::array<unsigned char, AES_BLOCK_LEN> iv;
memcpy(iv.data(), CEPH_AES_IV, AES_BLOCK_LEN);
const std::size_t main_encrypt_size = \
std::min(in.length - tail_len, out.max_length);
AES_cbc_encrypt(in.buf, out.buf, main_encrypt_size, &enc_key, iv.data(),
AES_ENCRYPT);
const std::size_t tail_encrypt_size = \
std::min(AES_BLOCK_LEN, out.max_length - main_encrypt_size);
AES_cbc_encrypt(last_block.data(), out.buf + main_encrypt_size,
tail_encrypt_size, &enc_key, iv.data(), AES_ENCRYPT);
return main_encrypt_size + tail_encrypt_size;
}
std::size_t decrypt(const in_slice_t& in,
const out_slice_t& out) const override {
if (in.length % AES_BLOCK_LEN != 0 || in.length < AES_BLOCK_LEN) {
throw std::runtime_error("input not aligned to AES_BLOCK_LEN");
} else if (out.buf == nullptr) {
// essentially it would be possible to decrypt into a buffer that
// doesn't include space for any PKCS#7 padding. We don't do that
// for the sake of performance and simplicity.
return in.length;
} else if (out.max_length < in.length) {
throw std::runtime_error("output buffer too small");
}
static_assert(strlen_ct(CEPH_AES_IV) == AES_BLOCK_LEN);
std::array<unsigned char, AES_BLOCK_LEN> iv;
memcpy(iv.data(), CEPH_AES_IV, AES_BLOCK_LEN);
AES_cbc_encrypt(in.buf, out.buf, in.length, &dec_key, iv.data(),
AES_DECRYPT);
// NOTE: we aren't handling partial decrypt. PKCS#7 padding must be
// at the end. If it's malformed, don't say a word to avoid risk of
// having an oracle. All we need to ensure is valid buffer boundary.
const auto pad_len = \
std::min<std::uint8_t>(out.buf[in.length - 1], AES_BLOCK_LEN);
return in.length - pad_len;
}
};
// ------------------------------------------------------------
int CryptoAES::create(CryptoRandom *random, bufferptr& secret)
{
bufferptr buf(AES_KEY_LEN);
random->get_bytes(buf.c_str(), buf.length());
secret = std::move(buf);
return 0;
}
int CryptoAES::validate_secret(const bufferptr& secret)
{
if (secret.length() < AES_KEY_LEN) {
return -EINVAL;
}
return 0;
}
CryptoKeyHandler *CryptoAES::get_key_handler(const bufferptr& secret,
string& error)
{
CryptoAESKeyHandler *ckh = new CryptoAESKeyHandler;
ostringstream oss;
if (ckh->init(secret, oss) < 0) {
error = oss.str();
delete ckh;
return NULL;
}
return ckh;
}
// --
// ---------------------------------------------------
void CryptoKey::encode(bufferlist& bl) const
{
using ceph::encode;
encode(type, bl);
encode(created, bl);
__u16 len = secret.length();
encode(len, bl);
bl.append(secret);
}
void CryptoKey::decode(bufferlist::const_iterator& bl)
{
using ceph::decode;
decode(type, bl);
decode(created, bl);
__u16 len;
decode(len, bl);
bufferptr tmp;
bl.copy_deep(len, tmp);
if (_set_secret(type, tmp) < 0)
throw ceph::buffer::malformed_input("malformed secret");
}
int CryptoKey::set_secret(int type, const bufferptr& s, utime_t c)
{
int r = _set_secret(type, s);
if (r < 0)
return r;
this->created = c;
return 0;
}
int CryptoKey::_set_secret(int t, const bufferptr& s)
{
if (s.length() == 0) {
secret = s;
ckh.reset();
return 0;
}
CryptoHandler *ch = CryptoHandler::create(t);
if (ch) {
int ret = ch->validate_secret(s);
if (ret < 0) {
delete ch;
return ret;
}
string error;
ckh.reset(ch->get_key_handler(s, error));
delete ch;
if (error.length()) {
return -EIO;
}
} else {
return -EOPNOTSUPP;
}
type = t;
secret = s;
return 0;
}
int CryptoKey::create(CephContext *cct, int t)
{
CryptoHandler *ch = CryptoHandler::create(t);
if (!ch) {
if (cct)
lderr(cct) << "ERROR: cct->get_crypto_handler(type=" << t << ") returned NULL" << dendl;
return -EOPNOTSUPP;
}
bufferptr s;
int r = ch->create(cct->random(), s);
delete ch;
if (r < 0)
return r;
r = _set_secret(t, s);
if (r < 0)
return r;
created = ceph_clock_now();
return r;
}
void CryptoKey::print(std::ostream &out) const
{
out << encode_base64();
}
void CryptoKey::to_str(std::string& s) const
{
int len = secret.length() * 4;
char buf[len];
hex2str(secret.c_str(), secret.length(), buf, len);
s = buf;
}
void CryptoKey::encode_formatted(string label, Formatter *f, bufferlist &bl)
{
f->open_object_section(label.c_str());
f->dump_string("key", encode_base64());
f->close_section();
f->flush(bl);
}
void CryptoKey::encode_plaintext(bufferlist &bl)
{
bl.append(encode_base64());
}
// ------------------
CryptoHandler *CryptoHandler::create(int type)
{
switch (type) {
case CEPH_CRYPTO_NONE:
return new CryptoNone;
case CEPH_CRYPTO_AES:
return new CryptoAES;
default:
return NULL;
}
}
|