summaryrefslogtreecommitdiffstats
path: root/src/blk/BlockDevice.cc
blob: 8c06256d25477b9a612f8defc2b69cbe632d2fd6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*-
// vim: ts=8 sw=2 smarttab
/*
 * Ceph - scalable distributed file system
  *
 * Copyright (C) 2015 XSky <haomai@xsky.com>
 *
 * Author: Haomai Wang <haomaiwang@gmail.com>
 *
 * This is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License version 2.1, as published by the Free Software
 * Foundation.  See file COPYING.
 *
 */

#include <libgen.h>
#include <unistd.h>

#include "BlockDevice.h"

#if defined(HAVE_LIBAIO) || defined(HAVE_POSIXAIO)
#include "kernel/KernelDevice.h"
#endif

#if defined(HAVE_SPDK)
#include "spdk/NVMEDevice.h"
#endif

#if defined(HAVE_BLUESTORE_PMEM)
#include "pmem/PMEMDevice.h"
#endif

#include "common/debug.h"
#include "common/EventTrace.h"
#include "common/errno.h"
#include "include/compat.h"

#define dout_context cct
#define dout_subsys ceph_subsys_bdev
#undef dout_prefix
#define dout_prefix *_dout << "bdev "

using std::string;
using ceph::mono_clock;


blk_access_mode_t buffermode(bool buffered) 
{
  return buffered ? blk_access_mode_t::BUFFERED : blk_access_mode_t::DIRECT;
}

std::ostream& operator<<(std::ostream& os, const blk_access_mode_t buffered) 
{
  os << (buffered == blk_access_mode_t::BUFFERED ? "(buffered)" : "(direct)");
  return os;
}



void IOContext::aio_wait()
{
  std::unique_lock l(lock);
  // see _aio_thread for waker logic
  while (num_running.load() > 0) {
    dout(10) << __func__ << " " << this
	     << " waiting for " << num_running.load() << " aios to complete"
	     << dendl;
    cond.wait(l);
  }
  dout(20) << __func__ << " " << this << " done" << dendl;
}

uint64_t IOContext::get_num_ios() const
{
  // this is about the simplest model for transaction cost you can
  // imagine.  there is some fixed overhead cost by saying there is a
  // minimum of one "io".  and then we have some cost per "io" that is
  // a configurable (with different hdd and ssd defaults), and add
  // that to the bytes value.
  uint64_t ios = 0;
#if defined(HAVE_LIBAIO) || defined(HAVE_POSIXAIO)
  ios += pending_aios.size();
#endif
#ifdef HAVE_SPDK
  ios += total_nseg;
#endif
  return ios;
}

void IOContext::release_running_aios()
{
  ceph_assert(!num_running);
#if defined(HAVE_LIBAIO) || defined(HAVE_POSIXAIO)
  // release aio contexts (including pinned buffers).
  running_aios.clear();
#endif
}

BlockDevice::block_device_t
BlockDevice::detect_device_type(const std::string& path)
{
#if defined(HAVE_SPDK)
  if (NVMEDevice::support(path)) {
    return block_device_t::spdk;
  }
#endif
#if defined(HAVE_BLUESTORE_PMEM)
  if (PMEMDevice::support(path)) {
    return block_device_t::pmem;
  }
#endif
#if defined(HAVE_LIBAIO) || defined(HAVE_POSIXAIO)
  return block_device_t::aio;
#else
  return block_device_t::unknown;
#endif
}

BlockDevice::block_device_t
BlockDevice::device_type_from_name(const std::string& blk_dev_name)
{
#if defined(HAVE_LIBAIO) || defined(HAVE_POSIXAIO)
  if (blk_dev_name == "aio") {
    return block_device_t::aio;
  }
#endif
#if defined(HAVE_SPDK)
  if (blk_dev_name == "spdk") {
    return block_device_t::spdk;
  }
#endif
#if defined(HAVE_BLUESTORE_PMEM)
  if (blk_dev_name == "pmem") {
    return block_device_t::pmem;
  }
#endif
  return block_device_t::unknown;
}

BlockDevice* BlockDevice::create_with_type(block_device_t device_type,
  CephContext* cct, const std::string& path, aio_callback_t cb,
  void *cbpriv, aio_callback_t d_cb, void *d_cbpriv, const char* dev_name)
{

  switch (device_type) {
#if defined(HAVE_LIBAIO) || defined(HAVE_POSIXAIO)
  case block_device_t::aio:
    return new KernelDevice(cct, cb, cbpriv, d_cb, d_cbpriv, dev_name);
#endif
#if defined(HAVE_SPDK)
  case block_device_t::spdk:
    return new NVMEDevice(cct, cb, cbpriv);
#endif
#if defined(HAVE_BLUESTORE_PMEM)
  case block_device_t::pmem:
    return new PMEMDevice(cct, cb, cbpriv);
#endif
  default:
    ceph_abort_msg("unsupported device");
    return nullptr;
  }
}

BlockDevice *BlockDevice::create(
    CephContext* cct, const string& path, aio_callback_t cb,
    void *cbpriv, aio_callback_t d_cb, void *d_cbpriv, const char* dev_name)
{
  const string blk_dev_name = cct->_conf.get_val<string>("bdev_type");
  block_device_t device_type = block_device_t::unknown;
  if (blk_dev_name.empty()) {
    device_type = detect_device_type(path);
  } else {
    device_type = device_type_from_name(blk_dev_name);
  }
  return create_with_type(device_type, cct, path, cb, cbpriv, d_cb, d_cbpriv, dev_name);
}

bool BlockDevice::is_valid_io(uint64_t off, uint64_t len) const {
  bool ret = (off % block_size == 0 &&
    len % block_size == 0 &&
    len > 0 &&
    off < size &&
    off + len <= size);

  if (!ret) {
    derr << __func__ << " " << std::hex
         << off << "~" << len
         << " block_size " << block_size
         << " size " << size
         << std::dec << dendl;
  }
  return ret;
}

size_t BlockDevice::trim_stalled_read_event_queue(mono_clock::time_point cur_time) {
  std::lock_guard lock(stalled_read_event_queue_lock);
  auto warn_duration = std::chrono::seconds(cct->_conf->bdev_stalled_read_warn_lifetime);
  while (!stalled_read_event_queue.empty() && 
    ((stalled_read_event_queue.front() < cur_time - warn_duration) ||
      (stalled_read_event_queue.size() > cct->_conf->bdev_stalled_read_warn_threshold))) {
      stalled_read_event_queue.pop();
  }
  return stalled_read_event_queue.size();
}

void BlockDevice::add_stalled_read_event() {
  if (!cct->_conf->bdev_stalled_read_warn_threshold) {
    return;
  }
  auto cur_time = mono_clock::now();
  {
    std::lock_guard lock(stalled_read_event_queue_lock);
    stalled_read_event_queue.push(cur_time);
  }
  trim_stalled_read_event_queue(cur_time);
}

void BlockDevice::collect_alerts(osd_alert_list_t& alerts, const std::string& device_name) {
  if (cct->_conf->bdev_stalled_read_warn_threshold) {
    size_t qsize = trim_stalled_read_event_queue(mono_clock::now());
    if (qsize >= cct->_conf->bdev_stalled_read_warn_threshold) {
      std::ostringstream ss;
      ss << "observed stalled read indications in "
        << device_name << " device";
      alerts.emplace(device_name + "_DEVICE_STALLED_READ_ALERT", ss.str());
    }
  }
}