blob: 8ab8442acd9f7acc6b8073beb6bc5ce556fa47b3 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
|
// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*-
// vim: ts=8 sw=2 smarttab
#pragma once
#include <seastar/core/shared_mutex.hh>
#include "crimson/common/operation.h"
#include "crimson/osd/osd_operation.h"
namespace crimson::os::seastore {
struct WritePipeline {
struct ReserveProjectedUsage : OrderedExclusivePhaseT<ReserveProjectedUsage> {
constexpr static auto type_name = "WritePipeline::reserve_projected_usage";
} reserve_projected_usage;
struct OolWritesAndLBAUpdates : UnorderedStageT<OolWritesAndLBAUpdates> {
constexpr static auto type_name = "UnorderedStage::ool_writes_and_update_lba_stage";
} ool_writes_and_lba_updates;
struct Prepare : OrderedExclusivePhaseT<Prepare> {
constexpr static auto type_name = "WritePipeline::prepare_phase";
} prepare;
struct DeviceSubmission : OrderedConcurrentPhaseT<DeviceSubmission> {
constexpr static auto type_name = "WritePipeline::device_submission_phase";
} device_submission;
struct Finalize : OrderedExclusivePhaseT<Finalize> {
constexpr static auto type_name = "WritePipeline::finalize_phase";
} finalize;
using BlockingEvents = std::tuple<
ReserveProjectedUsage::BlockingEvent,
OolWritesAndLBAUpdates::BlockingEvent,
Prepare::BlockingEvent,
DeviceSubmission::BlockingEvent,
Finalize::BlockingEvent
>;
};
/**
* PlaceholderOperation
*
* Once seastore is more complete, I expect to update the externally
* facing interfaces to permit passing the osd level operation through.
* Until then (and for tests likely permanently) we'll use this unregistered
* placeholder for the pipeline phases necessary for journal correctness.
*/
class PlaceholderOperation : public crimson::osd::PhasedOperationT<PlaceholderOperation> {
public:
constexpr static auto type = 0U;
constexpr static auto type_name =
"crimson::os::seastore::PlaceholderOperation";
static PlaceholderOperation::IRef create() {
return IRef{new PlaceholderOperation()};
}
PipelineHandle handle;
WritePipeline::BlockingEvents tracking_events;
PipelineHandle& get_handle() {
return handle;
}
private:
void dump_detail(ceph::Formatter *f) const final {}
void print(std::ostream &) const final {}
};
struct OperationProxy {
OperationRef op;
OperationProxy(OperationRef op) : op(std::move(op)) {}
virtual seastar::future<> enter(WritePipeline::ReserveProjectedUsage&) = 0;
virtual seastar::future<> enter(WritePipeline::OolWritesAndLBAUpdates&) = 0;
virtual seastar::future<> enter(WritePipeline::Prepare&) = 0;
virtual seastar::future<> enter(WritePipeline::DeviceSubmission&) = 0;
virtual seastar::future<> enter(WritePipeline::Finalize&) = 0;
virtual void exit() = 0;
virtual seastar::future<> complete() = 0;
virtual ~OperationProxy() = default;
};
template <typename OpT>
struct OperationProxyT : OperationProxy {
OperationProxyT(typename OpT::IRef op) : OperationProxy(op) {}
OpT* that() {
return static_cast<OpT*>(op.get());
}
const OpT* that() const {
return static_cast<const OpT*>(op.get());
}
seastar::future<> enter(WritePipeline::ReserveProjectedUsage& s) final {
return that()->enter_stage(s);
}
seastar::future<> enter(WritePipeline::OolWritesAndLBAUpdates& s) final {
return that()->enter_stage(s);
}
seastar::future<> enter(WritePipeline::Prepare& s) final {
return that()->enter_stage(s);
}
seastar::future<> enter(WritePipeline::DeviceSubmission& s) final {
return that()->enter_stage(s);
}
seastar::future<> enter(WritePipeline::Finalize& s) final {
return that()->enter_stage(s);
}
void exit() final {
return that()->handle.exit();
}
seastar::future<> complete() final {
return that()->handle.complete();
}
};
struct OrderingHandle {
// we can easily optimize this dynalloc out as all concretes are
// supposed to have exactly the same size.
std::unique_ptr<OperationProxy> op;
seastar::shared_mutex *collection_ordering_lock = nullptr;
// in the future we might add further constructors / template to type
// erasure while extracting the location of tracking events.
OrderingHandle(std::unique_ptr<OperationProxy> op) : op(std::move(op)) {}
OrderingHandle(OrderingHandle &&other)
: op(std::move(other.op)),
collection_ordering_lock(other.collection_ordering_lock) {
other.collection_ordering_lock = nullptr;
}
seastar::future<> take_collection_lock(seastar::shared_mutex &mutex) {
ceph_assert(!collection_ordering_lock);
collection_ordering_lock = &mutex;
return collection_ordering_lock->lock();
}
void maybe_release_collection_lock() {
if (collection_ordering_lock) {
collection_ordering_lock->unlock();
collection_ordering_lock = nullptr;
}
}
template <typename T>
seastar::future<> enter(T &t) {
return op->enter(t);
}
void exit() {
op->exit();
}
seastar::future<> complete() {
return op->complete();
}
~OrderingHandle() {
maybe_release_collection_lock();
}
};
inline OrderingHandle get_dummy_ordering_handle() {
using PlaceholderOpProxy = OperationProxyT<PlaceholderOperation>;
return OrderingHandle{
std::make_unique<PlaceholderOpProxy>(PlaceholderOperation::create())};
}
} // namespace crimson::os::seastore
namespace crimson {
template <>
struct EventBackendRegistry<os::seastore::PlaceholderOperation> {
static std::tuple<> get_backends() {
return {};
}
};
} // namespace crimson
|