summaryrefslogtreecommitdiffstats
path: root/src/include/mempool.h
blob: a6dca48dd6fef43d5e2f9baadc8c0cbd5f0a6b52 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*-
// vim: ts=8 sw=2 smarttab
/*
 * Ceph - scalable distributed file system
 *
 * Copyright (C) 2016 Allen Samuels <allen.samuels@sandisk.com>
 *
 * This is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License version 2.1, as published by the Free Software
 * Foundation.  See file COPYING.
 *
 */

#ifndef _CEPH_INCLUDE_MEMPOOL_H
#define _CEPH_INCLUDE_MEMPOOL_H

#include <cstddef>
#include <map>
#include <unordered_map>
#include <set>
#include <vector>
#include <list>
#include <mutex>
#include <typeinfo>
#include <boost/container/flat_set.hpp>
#include <boost/container/flat_map.hpp>

#if defined(_GNU_SOURCE) && defined(WITH_SEASTAR) && !defined(WITH_ALIEN)
#  include <sched.h>
#endif

#include "common/Formatter.h"
#include "common/ceph_atomic.h"
#include "include/ceph_assert.h"
#include "include/compact_map.h"
#include "include/compact_set.h"
#include "include/compat.h"


/*

Memory Pools
============

A memory pool is a method for accounting the consumption of memory of
a set of containers.

Memory pools are statically declared (see pool_index_t).

Each memory pool tracks the number of bytes and items it contains.

Allocators can be declared and associated with a type so that they are
tracked independently of the pool total.  This additional accounting
is optional and only incurs an overhead if the debugging is enabled at
runtime.  This allows developers to see what types are consuming the
pool resources.


Declaring
---------

Using memory pools is very easy.

To create a new memory pool, simply add a new name into the list of
memory pools that's defined in "DEFINE_MEMORY_POOLS_HELPER".  That's
it.  :)

For each memory pool that's created a C++ namespace is also
automatically created (name is same as in DEFINE_MEMORY_POOLS_HELPER).
That namespace contains a set of common STL containers that are predefined
with the appropriate allocators.

Thus for mempool "osd" we have automatically available to us:

   mempool::osd::map
   mempool::osd::multimap
   mempool::osd::set
   mempool::osd::multiset
   mempool::osd::list
   mempool::osd::vector
   mempool::osd::unordered_map


Putting objects in a mempool
----------------------------

In order to use a memory pool with a particular type, a few additional
declarations are needed.

For a class:

  struct Foo {
    MEMPOOL_CLASS_HELPERS();
    ...
  };

Then, in an appropriate .cc file,

  MEMPOOL_DEFINE_OBJECT_FACTORY(Foo, foo, osd);

The second argument can generally be identical to the first, except
when the type contains a nested scope.  For example, for
BlueStore::Onode, we need to do

  MEMPOOL_DEFINE_OBJECT_FACTORY(BlueStore::Onode, bluestore_onode,
                                bluestore_meta);

(This is just because we need to name some static variables and we
can't use :: in a variable name.)

XXX Note: the new operator hard-codes the allocation size to the size of the
object given in MEMPOOL_DEFINE_OBJECT_FACTORY. For this reason, you cannot
incorporate mempools into a base class without also defining a helper/factory
for the child class as well (as the base class is usually smaller than the
child class).

In order to use the STL containers, simply use the namespaced variant
of the container type.  For example,

  mempool::osd::map<int> myvec;

Introspection
-------------

The simplest way to interrogate the process is with

  Formater *f = ...
  mempool::dump(f);

This will dump information about *all* memory pools.  When debug mode
is enabled, the runtime complexity of dump is O(num_shards *
num_types).  When debug name is disabled it is O(num_shards).

You can also interrogate a specific pool programmatically with

  size_t bytes = mempool::unittest_2::allocated_bytes();
  size_t items = mempool::unittest_2::allocated_items();

The runtime complexity is O(num_shards).

Note that you cannot easily query per-type, primarily because debug
mode is optional and you should not rely on that information being
available.

*/

namespace mempool {

// --------------------------------------------------------------
// define memory pools

#define DEFINE_MEMORY_POOLS_HELPER(f) \
  f(bloom_filter)		      \
  f(bluestore_alloc)		      \
  f(bluestore_cache_data)	      \
  f(bluestore_cache_onode)	      \
  f(bluestore_cache_meta)	      \
  f(bluestore_cache_other)	      \
  f(bluestore_cache_buffer)	      \
  f(bluestore_extent)		      \
  f(bluestore_blob)		      \
  f(bluestore_shared_blob)	      \
  f(bluestore_inline_bl)	      \
  f(bluestore_fsck)		      \
  f(bluestore_txc)		      \
  f(bluestore_writing_deferred)      \
  f(bluestore_writing)		      \
  f(bluefs)			      \
  f(bluefs_file_reader)              \
  f(bluefs_file_writer)              \
  f(buffer_anon)		      \
  f(buffer_meta)		      \
  f(osd)			      \
  f(osd_mapbl)			      \
  f(osd_pglog)			      \
  f(osdmap)			      \
  f(osdmap_mapping)		      \
  f(pgmap)			      \
  f(mds_co)			      \
  f(unittest_1)			      \
  f(unittest_2)


// give them integer ids
#define P(x) mempool_##x,
enum pool_index_t {
  DEFINE_MEMORY_POOLS_HELPER(P)
  num_pools        // Must be last.
};
#undef P

extern bool debug_mode;
extern void set_debug_mode(bool d);

// --------------------------------------------------------------
class pool_t;

// we shard pool stats across many shard_t's to reduce the amount
// of cacheline ping pong.
enum {
  num_shard_bits = 5
};
enum {
  num_shards = 1 << num_shard_bits
};

static size_t pick_a_shard_int() {
#if defined(_GNU_SOURCE) && defined(WITH_SEASTAR) && !defined(WITH_ALIEN)
  // a thread local storage is actually just an approximation;
  // what we truly want is a _cpu local storage_.
  //
  // on the architectures we care about sched_getcpu() is
  // a syscall-handled-in-userspace (vdso!). it grabs the cpu
  // id kernel exposes to a task on context switch.
  return sched_getcpu() & ((1 << num_shard_bits) - 1);
#else
  // Dirt cheap, see:
  //   https://fossies.org/dox/glibc-2.32/pthread__self_8c_source.html
  size_t me = (size_t)pthread_self();
  size_t i = (me >> CEPH_PAGE_SHIFT) & ((1 << num_shard_bits) - 1);
  return i;
#endif
}

//
// Align shard to a cacheline.
//
// It would be possible to retrieve the value at runtime (for instance
// with getconf LEVEL1_DCACHE_LINESIZE or grep -m1 cache_alignment
// /proc/cpuinfo). It is easier to hard code the largest cache
// linesize for all known processors (128 bytes). If the actual cache
// linesize is smaller on a given processor, it will just waste a few
// bytes.
//
struct shard_t {
  ceph::atomic<size_t> bytes = {0};
  ceph::atomic<size_t> items = {0};
  char __padding[128 - sizeof(ceph::atomic<size_t>)*2];
} __attribute__ ((aligned (128)));

static_assert(sizeof(shard_t) == 128, "shard_t should be cacheline-sized");

struct stats_t {
  ssize_t items = 0;
  ssize_t bytes = 0;
  void dump(ceph::Formatter *f) const {
    f->dump_int("items", items);
    f->dump_int("bytes", bytes);
  }

  stats_t& operator+=(const stats_t& o) {
    items += o.items;
    bytes += o.bytes;
    return *this;
  }
};

pool_t& get_pool(pool_index_t ix);
const char *get_pool_name(pool_index_t ix);

struct type_t {
  const char *type_name;
  size_t item_size;
#if defined(WITH_SEASTAR) && !defined(WITH_ALIEN)
  struct type_shard_t {
    ceph::atomic<ssize_t> items = {0}; // signed
    char __padding[128 - sizeof(ceph::atomic<ssize_t>)];
  } __attribute__ ((aligned (128)));
  static_assert(sizeof(type_shard_t) == 128,
                "type_shard_t should be cacheline-sized");
  type_shard_t shards[num_shards];
#else
// XXX: consider dropping this case for classic with perf tests
  ceph::atomic<ssize_t> items = {0};  // signed
#endif
};

struct type_info_hash {
  std::size_t operator()(const std::type_info& k) const {
    return k.hash_code();
  }
};

class pool_t {
  shard_t shard[num_shards];

  mutable std::mutex lock;  // only used for types list
  std::unordered_map<const char *, type_t> type_map;

  template<pool_index_t, typename T>
  friend class pool_allocator;
public:
  //
  // How much this pool consumes. O(<num_shards>)
  //
  size_t allocated_bytes() const;
  size_t allocated_items() const;

  void adjust_count(ssize_t items, ssize_t bytes);

  type_t *get_type(const std::type_info& ti, size_t size) {
    std::lock_guard<std::mutex> l(lock);
    auto p = type_map.find(ti.name());
    if (p != type_map.end()) {
      return &p->second;
    }
    type_t &t = type_map[ti.name()];
    t.type_name = ti.name();
    t.item_size = size;
    return &t;
  }

  // get pool stats.  by_type is not populated if !debug
  void get_stats(stats_t *total,
		 std::map<std::string, stats_t> *by_type) const;

  void dump(ceph::Formatter *f, stats_t *ptotal=0) const;
};

void dump(ceph::Formatter *f);


// STL allocator for use with containers.  All actual state
// is stored in the static pool_allocator_base_t, which saves us from
// passing the allocator to container constructors.

template<pool_index_t pool_ix, typename T>
class pool_allocator {
  pool_t *pool;
  type_t *type = nullptr;

public:
  typedef pool_allocator<pool_ix, T> allocator_type;
  typedef T value_type;
  typedef value_type *pointer;
  typedef const value_type * const_pointer;
  typedef value_type& reference;
  typedef const value_type& const_reference;
  typedef std::size_t size_type;
  typedef std::ptrdiff_t difference_type;

  template<typename U> struct rebind {
    typedef pool_allocator<pool_ix,U> other;
  };

  void init(bool force_register) {
    pool = &get_pool(pool_ix);
    if (debug_mode || force_register) {
      type = pool->get_type(typeid(T), sizeof(T));
    }
  }

  pool_allocator(bool force_register=false) {
    init(force_register);
  }
  template<typename U>
  pool_allocator(const pool_allocator<pool_ix,U>&) {
    init(false);
  }

  T* allocate(size_t n, void *p = nullptr) {
    size_t total = sizeof(T) * n;
    const auto shid = pick_a_shard_int();
    auto& shard = pool->shard[shid];
    shard.bytes += total;
    shard.items += n;
    if (type) {
#if defined(WITH_SEASTAR) && !defined(WITH_ALIEN)
      type->shards[shid].items += n;
#else
      type->items += n;
#endif
    }
    T* r = reinterpret_cast<T*>(new char[total]);
    return r;
  }

  void deallocate(T* p, size_t n) {
    size_t total = sizeof(T) * n;
    const auto shid = pick_a_shard_int();
    auto& shard = pool->shard[shid];
    shard.bytes -= total;
    shard.items -= n;
    if (type) {
#if defined(WITH_SEASTAR) && !defined(WITH_ALIEN)
      type->shards[shid].items -= n;
#else
      type->items -= n;
#endif
    }
    delete[] reinterpret_cast<char*>(p);
  }

  T* allocate_aligned(size_t n, size_t align, void *p = nullptr) {
    size_t total = sizeof(T) * n;
    const auto shid = pick_a_shard_int();
    auto& shard = pool->shard[shid];
    shard.bytes += total;
    shard.items += n;
    if (type) {
#if defined(WITH_SEASTAR) && !defined(WITH_ALIEN)
      type->shards[shid].items += n;
#else
      type->items += n;
#endif
    }
    char *ptr;
    int rc = ::posix_memalign((void**)(void*)&ptr, align, total);
    if (rc)
      throw std::bad_alloc();
    T* r = reinterpret_cast<T*>(ptr);
    return r;
  }

  void deallocate_aligned(T* p, size_t n) {
    size_t total = sizeof(T) * n;
    const auto shid = pick_a_shard_int();
    auto& shard = pool->shard[shid];
    shard.bytes -= total;
    shard.items -= n;
    if (type) {
#if defined(WITH_SEASTAR) && !defined(WITH_ALIEN)
      type->shards[shid].items -= n;
#else
      type->items -= n;
#endif
    }
    aligned_free(p);
  }

  void destroy(T* p) {
    p->~T();
  }

  template<class U>
  void destroy(U *p) {
    p->~U();
  }

  void construct(T* p, const T& val) {
    ::new ((void *)p) T(val);
  }

  template<class U, class... Args> void construct(U* p,Args&&... args) {
    ::new((void *)p) U(std::forward<Args>(args)...);
  }

  bool operator==(const pool_allocator&) const { return true; }
  bool operator!=(const pool_allocator&) const { return false; }
};


// Namespace mempool

#define P(x)								\
  namespace x {								\
    static const mempool::pool_index_t id = mempool::mempool_##x;	\
    template<typename v>						\
    using pool_allocator = mempool::pool_allocator<id,v>;		\
                                                                        \
    using string = std::basic_string<char,std::char_traits<char>,       \
                                     pool_allocator<char>>;             \
                                                                        \
    template<typename k,typename v, typename cmp = std::less<k> >	\
    using map = std::map<k, v, cmp,					\
			 pool_allocator<std::pair<const k,v>>>;		\
                                                                        \
    template<typename k,typename v, typename cmp = std::less<k> >       \
    using compact_map = compact_map<k, v, cmp,                          \
			 pool_allocator<std::pair<const k,v>>>;         \
                                                                        \
    template<typename k,typename v, typename cmp = std::less<k> >       \
    using compact_multimap = compact_multimap<k, v, cmp,                \
			 pool_allocator<std::pair<const k,v>>>;         \
                                                                        \
    template<typename k, typename cmp = std::less<k> >                  \
    using compact_set = compact_set<k, cmp, pool_allocator<k>>;         \
                                                                        \
    template<typename k,typename v, typename cmp = std::less<k> >	\
    using multimap = std::multimap<k,v,cmp,				\
				   pool_allocator<std::pair<const k,	\
							    v>>>;	\
                                                                        \
    template<typename k, typename cmp = std::less<k> >			\
    using set = std::set<k,cmp,pool_allocator<k>>;			\
                                                                        \
    template<typename k, typename cmp = std::less<k> >			\
    using flat_set = boost::container::flat_set<k,cmp,pool_allocator<k>>; \
									\
    template<typename k, typename v, typename cmp = std::less<k> >	\
    using flat_map = boost::container::flat_map<k,v,cmp,		\
						pool_allocator<std::pair<k,v>>>; \
                                                                        \
    template<typename v>						\
    using list = std::list<v,pool_allocator<v>>;			\
                                                                        \
    template<typename v>						\
    using vector = std::vector<v,pool_allocator<v>>;			\
                                                                        \
    template<typename k, typename v,					\
	     typename h=std::hash<k>,					\
	     typename eq = std::equal_to<k>>				\
    using unordered_map =						\
      std::unordered_map<k,v,h,eq,pool_allocator<std::pair<const k,v>>>;\
                                                                        \
    inline size_t allocated_bytes() {					\
      return mempool::get_pool(id).allocated_bytes();			\
    }									\
    inline size_t allocated_items() {					\
      return mempool::get_pool(id).allocated_items();			\
    }									\
  };

DEFINE_MEMORY_POOLS_HELPER(P)

#undef P

};

// the elements allocated by mempool is in the same memory space as the ones
// allocated by the default allocator. so compare them in an efficient way:
// libstdc++'s std::equal is specialized to use memcmp if T is integer or
// pointer. this is good enough for our usecase. use
// std::is_trivially_copyable<T> to expand the support to more types if
// nececssary.
template<typename T, mempool::pool_index_t pool_index>
bool operator==(const std::vector<T, std::allocator<T>>& lhs,
		const std::vector<T, mempool::pool_allocator<pool_index, T>>& rhs)
{
  return (lhs.size() == rhs.size() &&
	  std::equal(lhs.begin(), lhs.end(), rhs.begin()));
}

template<typename T, mempool::pool_index_t pool_index>
bool operator!=(const std::vector<T, std::allocator<T>>& lhs,
		const std::vector<T, mempool::pool_allocator<pool_index, T>>& rhs)
{
  return !(lhs == rhs);
}

template<typename T, mempool::pool_index_t pool_index>
bool operator==(const std::vector<T, mempool::pool_allocator<pool_index, T>>& lhs,
		const std::vector<T, std::allocator<T>>& rhs)
{
  return rhs == lhs;
}

template<typename T, mempool::pool_index_t pool_index>
bool operator!=(const std::vector<T, mempool::pool_allocator<pool_index, T>>& lhs,
		const std::vector<T, std::allocator<T>>& rhs)
{
  return !(lhs == rhs);
}

// Use this for any type that is contained by a container (unless it
// is a class you defined; see below).
#define MEMPOOL_DECLARE_FACTORY(obj, factoryname, pool)			\
  namespace mempool {							\
    namespace pool {							\
      extern pool_allocator<obj> alloc_##factoryname;			\
    }									\
  }

#define MEMPOOL_DEFINE_FACTORY(obj, factoryname, pool)			\
  namespace mempool {							\
    namespace pool {							\
      pool_allocator<obj> alloc_##factoryname = {true};			\
    }									\
  }

// Use this for each class that belongs to a mempool.  For example,
//
//   class T {
//     MEMPOOL_CLASS_HELPERS();
//     ...
//   };
//
#define MEMPOOL_CLASS_HELPERS()						\
  void *operator new(size_t size);					\
  void *operator new[](size_t size) noexcept {				\
    ceph_abort_msg("no array new");					\
    return nullptr; }							\
  void  operator delete(void *);					\
  void  operator delete[](void *) { ceph_abort_msg("no array delete"); }


// Use this in some particular .cc file to match each class with a
// MEMPOOL_CLASS_HELPERS().
#define MEMPOOL_DEFINE_OBJECT_FACTORY(obj,factoryname,pool)		\
  MEMPOOL_DEFINE_FACTORY(obj, factoryname, pool)			\
  void *obj::operator new(size_t size) {				\
    return mempool::pool::alloc_##factoryname.allocate(1); \
  }									\
  void obj::operator delete(void *p)  {					\
    return mempool::pool::alloc_##factoryname.deallocate((obj*)p, 1);	\
  }

#endif