1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
|
// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*-
// vim: ts=8 sw=2 smarttab
#include "librbd/crypto/BlockCrypto.h"
#include "include/byteorder.h"
#include "include/ceph_assert.h"
#include <stdlib.h>
namespace librbd {
namespace crypto {
template <typename T>
BlockCrypto<T>::BlockCrypto(CephContext* cct, DataCryptor<T>* data_cryptor,
uint64_t block_size)
: m_cct(cct), m_data_cryptor(data_cryptor), m_block_size(block_size),
m_iv_size(data_cryptor->get_iv_size()) {
ceph_assert(isp2(block_size));
ceph_assert((block_size % data_cryptor->get_block_size()) == 0);
}
template <typename T>
int BlockCrypto<T>::crypt(ceph::bufferlist* data, uint64_t image_offset,
CipherMode mode) {
if (image_offset % m_block_size != 0) {
lderr(m_cct) << "image offset: " << image_offset
<< " not aligned to block size: " << m_block_size << dendl;
return -EINVAL;
}
if (data->length() % m_block_size != 0) {
lderr(m_cct) << "data length: " << data->length()
<< " not aligned to block size: " << m_block_size << dendl;
return -EINVAL;
}
unsigned char* iv = (unsigned char*)alloca(m_iv_size);
memset(iv, 0, m_iv_size);
bufferlist src = *data;
data->clear();
auto ctx = m_data_cryptor->get_context(mode);
if (ctx == nullptr) {
lderr(m_cct) << "unable to get crypt context" << dendl;
return -EIO;
}
auto block_offset = image_offset / m_block_size;
auto appender = data->get_contiguous_appender(src.length());
unsigned char* out_buf_ptr = nullptr;
uint32_t remaining_block_bytes = 0;
for (auto buf = src.buffers().begin(); buf != src.buffers().end(); ++buf) {
auto in_buf_ptr = reinterpret_cast<const unsigned char*>(buf->c_str());
auto remaining_buf_bytes = buf->length();
while (remaining_buf_bytes > 0) {
if (remaining_block_bytes == 0) {
auto block_offset_le = init_le64(block_offset);
memcpy(iv, &block_offset_le, sizeof(block_offset_le));
auto r = m_data_cryptor->init_context(ctx, iv, m_iv_size);
if (r != 0) {
lderr(m_cct) << "unable to init cipher's IV" << dendl;
return r;
}
out_buf_ptr = reinterpret_cast<unsigned char*>(
appender.get_pos_add(m_block_size));
remaining_block_bytes = m_block_size;
++block_offset;
}
auto crypto_input_length = std::min(remaining_buf_bytes,
remaining_block_bytes);
auto crypto_output_length = m_data_cryptor->update_context(
ctx, in_buf_ptr, out_buf_ptr, crypto_input_length);
if (crypto_output_length < 0) {
lderr(m_cct) << "crypt update failed" << dendl;
return crypto_output_length;
}
out_buf_ptr += crypto_output_length;
in_buf_ptr += crypto_input_length;
remaining_buf_bytes -= crypto_input_length;
remaining_block_bytes -= crypto_input_length;
}
}
m_data_cryptor->return_context(ctx, mode);
return 0;
}
template <typename T>
int BlockCrypto<T>::encrypt(ceph::bufferlist* data, uint64_t image_offset) {
return crypt(data, image_offset, CipherMode::CIPHER_MODE_ENC);
}
template <typename T>
int BlockCrypto<T>::decrypt(ceph::bufferlist* data, uint64_t image_offset) {
return crypt(data, image_offset, CipherMode::CIPHER_MODE_DEC);
}
} // namespace crypto
} // namespace librbd
|